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Abstract

We derive a two-dimensional depth-averaged model for coastal waves with both dispersive
and dissipative effects. A tensor quantity called enstrophy models the subdepth large-scale
turbulence, including its anisotropic character, and is a source of vorticity of the average flow.
The small-scale turbulence is modelled through a turbulent-viscosity hypothesis. This fully
nonlinear model has equivalent dispersive properties to the Green-Naghdi equations and is
treated, both for the optimization of these properties and for the numerical resolution, with
the same techniques which are used for the Green-Naghdi system. The model equations
are solved with a discontinuous Galerkin discretization based on a decoupling between the
hyperbolic and non-hydrostatic parts of the system. The predictions of the model are com-
pared to experimental data in a wide range of physical conditions. Simulations were run
in one-dimensional and two-dimensional cases, including run-up and run-down on beaches,
non-trivial topographies, wave trains over a bar or propagation around an island or a reef.
A very good agreement is reached in every cases, validating the predictive empirical laws
for the parameters of the model. These comparisons confirm the efficiency of the present
strategy, highlighting the enstrophy as a robust and reliable tool to describe wave breaking
even in a two dimensional context. Compared with existing depth-averaged models, this
approach is numerically robust and adds more physical effects without significant increase
in numerical complexity.

1 Introduction

The need of accurate models in coastal engineering motivated many works in the past decades.
The difficulties met by the researchers lie in the fact that the capability of the model to capture
the main physical phenomena must be accompanied by an easy and reliable numerical resolution.
A successful approach must combine an accurate and physically relevant model with a robust
and efficient numerical scheme, both being mutually dependent. The main physical effects to
model are the dispersive effects and the dissipative effects. The dispersion brings the most acute
difficulties in the numerical resolution because it typically introduces third-order derivatives
in the equations. Moreover the classical dispersive equations like the Green-Naghdi equations
(Green & Naghdi 1976) lack dissipative terms whereas the even more classical Saint-Venant
equations, also known as the nonlinear shallow water equations (Barré de Saint-Venant 1871),
are nondispersive. The dispersive effects are dominant before breaking, in the so-called shoaling
zone of the coastal waves propagation, and the dissipation dominates after breaking in what is
called the surf zone. One of the challenge in coastal wave modelling is to derive a model capable
of describing both the dispersion and the dissipation and of predicting accurately the breaking
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point. The zone of the beach which is not permanently covered by water is the swash zone where
take place the phenomena of run-up and run-down which are also challenging for the numerical
resolution.

The first dispersive equations used for coastal waves were the weakly nonlinear equations
derived by Boussinesq (1872) for the propagation of a solitary wave in water of constant depth,
extended by Peregrine (1967) for water of variable depth using the depth-averaged velocity.
However the weak nonlinear assumption reduces the validity of these equations. The dispersive
properties were improved by different techniques, notably by Madsen et al. (1991) and also
by Nwogu (1993) who considered the velocity at an arbitray distance from the still water level
instead of the depth-averaged velocity. Models which were able to dispense with the weak
nonlinearity hypothesis were developed by Green & Naghdi (1976) and were adopted for coastal
waves propagation under the name of fully nonlinear Boussinesq models in spite of the fact
that the scope of these models exceeds by far the original Boussinesq equations. The dispersive
properties of these equations, while better than those of weakly dispersive models, are not
completely satisfactory because of their weakly dispersive character. They were in turn improved
by various means such as considering the velocity at an arbitray depth (Wei et al. 1995) or by
using asymptotically equivalent equations (Bonneton et al. 2011). New Green-Naghdi systems,
asymptotically equivalent to the standard Green-Naghdi equations, but having a mathematical
structure more suited to the numerical resolution, were proposed by Lannes & Marche (2015)
and, in the one-dimensional case, by do Carmo et al. (2018). Rotational effects were included
by Zhang et al. (2013). Reviews on this subject can be found in Brocchini (2013) and Kirby
(2016).

Different strategies were implemented to add dissipative effects to the dispersive models
in order to describe properly the breaking waves. We focus here mostly on two-dimensional
models and we refer to the Part I of this work (Kazakova & Richard 2018) for one-dimensional
models of coastal waves and to Brocchini (2013) for a complete overview. In the roller model
of Madsen et al. (1997) the surface roller of breaking waves is considered as a volume of water
being carried by the wave with the wave celerity. The position of the breaking point is found
by a breaking criterion involving the local slope of the surface elevation. This approach requires
also the geometrical determination of the roller, the determination of the roller celerity and a
complex calibration of various parameters.

In another approach the energy dissipation in the breaking waves is modelled by introducing
an eddy viscosity in the equations. In the model of Chen et al. (2000) two empirical parameters
are used to determine the onset and cessation of breaking and the implementation of the breaking
model in two horizontal dimensions requires the determination of the wave direction in order to
estimate the age of a breaking event. A Smagorinsky-type subgrid model (Smagorinsky 1963) is
used to account for the effect of the resultant eddy viscosity on the underlying flow (Chen et al.
1999). In some other eddy-viscosity models the viscosity is calculated from a turbulent kinetic
energy for which a semi-empirical transport equation with source term is solved (Nwogu 1996,
Zhang et al. 2014).

Removing the dispersive terms in the Green-Naghdi equation leads to the Saint-Venant
equations which produce discontinuities that dissipate energy. This is at the basis of the hybrid
or switching method (Tonelli & Petti 2011, Bonneton et al. 2011, Tissier et al. 2012) which
switch off the dispersive terms when some breaking criterion is satisfied and which switch on
these terms when a criterion for the end of breaking is activated.

For all these approaches, a breaking criterion is needed and many criteria were used such as
a relative trough Froude number (Okamoto & Basco 2006), a gradient of momentum (Roeber
& Cheung 2012), a combination of a local evaluation of the mechanical energy dissipation, a
maximal front slope and a critical Froude number (Tissier et al. 2012) or a combination of the
surface variation and the local slope angle (Filippini et al. 2016). The numerical shock detector
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of Krivodonova et al. (2004) was used as a breaking criterion by Duran & Marche (2015) for
the switching strategy and a numerical resolution by a Discontinuous Galerkin method.

The switching method was numerically implemented by various schemes (hybrid finite-
volume/finite difference scheme in Tissier et al. 2012, finite volume and finite element in Filippini
et al. 2016, Discontinuous Galerkin finite element scheme in Duran & Marche 2017 and in Shar-
ifian et al. 2018). The major drawbacks of the switching approach are the mesh grid sensitivity
and the nonphysical oscillatory effects due to the switching of the dispersive terms (see Filippini
et al. 2016, Kazolea & Ricchiuto 2018). These numerical oscillations may increase with the
mesh refinement and can be damped by a smooth transition to the hyperbolic regime. Further
the numerical wave breaking detection involves the calibration of a set of empirical parameters.

Alternative approaches include the Saint-Venant equations with non-hydrostatic pressure
corrections, which avoid the high-order derivatives in the Boussinesq or Green-Naghdi equations
with a calculation of the vertical distribution of the non-hydrostatic pressure (see for example
Stelling & Zijlema 2003 or Lu et al. 2015), or the semi-integrated model of Antuono & Brocchini
(2013). A more complete overview on these approaches was made by Kirby (2016).

Although the turbulence is maybe the most striking phenomenon in a breaking wave, it is
rarely taken into account directly in the models. In the eddy-viscosity models the turbulence is
modelled by a turbulent-viscosity hypothesis but it is not resolved. As highlighted by Nadaoka
& Yagi (1998), the turbulence in shallow-water flows has a double-structural and strongly non-
isotropic character. The double structure lies in the coexistence of a three-dimensional (3D)
turbulence with length scales less than the water depth and horizontal two-dimensional (2D)
eddies (with a vertical vorticity) with much larger length scales. Moreover the shallow-water
turbulence may show an inverse cascade of energy or backscatter i.e. an energy transfer from the
3D turbulence toward the 2D eddies (Nadaoka & Yagi 1998, Hinterberger et al. 2007). With an
eddy-viscosity hypothesis, even if calculated with a turbulent kinetic energy and an additional
transport equation, not only the anisotropic character of the turbulence cannot be described
but also the backscatter cannot be captured by the model.

In the Part I of this work (Kazakova & Richard 2018) a filtering approach was implemented
with a cutoff frequency in the inertial subrange. It follows that only the residual small-scale tur-
bulence is modelled through a turbulent-viscosity hypothesis while the 3D subdepth turbulence
is resolved. After depth-averaging the filtered equations over the depth, this subdepth turbulence
was taken into account in the model by a new quantity called enstrophy. The isotropic character
of the small-scale turbulence, the equality of the dissipation of the mean residual kinetic energy
and its rate of production (Lilly 1967) and the large validity of the energy cascade hypothesis in
the inertial subrange give a much greater validity to the turbulent-viscosity hypothesis for the
residual turbulence with a cutoff in the inertial subrange. The existence of an explicit quantity
for the subdepth large-scale turbulence is an advantage over previous approaches to model the
breaking phenomenon and to describe the breaking waves. In particular, whereas finding and
implementing a suitable breaking criterion is a laborious task for the models lacking a quantity
describing explicitly the turbulence, the approach of Kazakova & Richard (2018) leads to an
easier breaking criterion based on the value of a variable of the model and, in the favourable
cases, does not need a breaking criterion at all.

In the present paper the one-dimensional model of Kazakova & Richard (2018) is extended
to a two-dimensional model describing three-dimensional flows. Phenomena such as run-up
and run-down are studied as well. In a 2D context the anisotropic character of turbulence is
an important feature to model. The optimization techniques of the dispersive properties are
extended to the new model in order to simulate accurately the wave propagation in the shoaling
zone. An important goal is to be able to add more physical effects to the model, namely
turbulence effects, without increasing significantly the complexity of the numerical resolution.
Accordingly a suitable numerical scheme is extended to this model. Further the empirical
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laws determining the values of the model parameters are validated in a wide range of physical
situations in order to give a real predictive character to the model.

The two-dimensional equations of the model are derived and discussed in §2 and the em-
pirical laws chosen to model the eddy viscosity and the dissipation are presented in §3. The
numerical implementation is explained in §4 with a formulation of the equations more suited to
the numerical resolution and improving the dispersive properties. A discussion on the breaking
criterion is given in §5. The numerical results on several test cases with the comparison with
experimental results of the literature are presented in §6.

2 Two-dimensional depth-averaged filtered equations

2.1 Three-dimensional filtered equations

The Navier-Stokes equations of an incompressible fluid of density ρ and kinematic viscosity ν are
filtered in the same manner as for the large-eddy simulation approach with a cutoff frequency
in the inertial subrange. The details of this filtering approach are given in Part I of this work
(Kazakova & Richard 2018). The velocity field v is decomposed as v = v + vr where v is the
filtered velocity field and vr is the residual (or subgrid) velocity field. The residual stress tensor
is modelled by a turbulent viscosity hypothesis and the residual kinetic energy is absorbed into
a modified pressure p (see for example Pope 2000 for more explanations on this approach). The
filtered continuity equation is

div v = 0 (1)

and the filtered momentum equation can be written

∂v

∂t
+ div (v ⊗ v) = g − 1

ρ
grad p+ div

(
2 νTD

)
+ ν∆v (2)

where g is the acceleration of the gravity, νT is a turbulent viscosity and D is the filtered strain
rate tensor

D =
1

2

[
grad v + (grad v)T

]
. (3)

The kinetic energy of the filtered velocity field ef = v · v/2 satisfies the equation

∂ef
∂t

+ div

[
efv +

pv

ρ
− 2 (ν + νT )v ·D + epv

]
= −εf − P r (4)

where ep is defined by g = −grad ep, εf = 2νD : D is the viscous dissipation in the filtered
motions (the colon denotes the double dot product) and P r = 2νTD : D is the energy transfer
from the filtered motions towards the residual motions. At high Reynolds numbers, the term
εf is negligible. Denoting by ε the dissipation of the turbulent kinetic energy, a result due to
Lilly (1967) allows to write the equality of the dissipation of the mean residual kinetic energy
and its rate of production (see also Pope 2000, Higgins et al. 2004) and therefore 〈P r〉 ' ε (the
brackets denote the Reynolds averaging).

The problem is a three-dimensional flow over a variable bottom. The components of the
filtered velocity field v are u and v in the horizontal directions Ox and Oy respectively and
w in the vertical direction Oz. It is convenient to define the two-dimensional filtered velocity
field in the horizontal plane by u = [u, v]T . The elevation of the bottom and of the free surface
with respect to a horizontal datum are denoted by b(x, y) and Z(x, y, t) respectively. The water
depth is h(x, y, t) = Z(x, y, t)− b(x, y). The still water depth is h0(x, y) and the water elevation
is η(x, y, t) = h(x, y, t)− h0(x, y). These notations are depicted in Figure 1.
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Figure 1: Notations used in the text.

In the following, the operators gradient and divergence are related to a two-dimensional space
(Oxy) unless noted otherwise. The conventions used for tensor calculus are given in Appendix
A.

The no-penetration boundary condition at the bottom and the kinematic boundary condition
at the free surface can be written respectively

w(b) = u(b) · grad b (5)

and

w(Z) =
∂Z

∂t
+ u(Z) · grad Z. (6)

Additionally the dynamic boundary condition at the free surface is (σ · n)(Z) = 0 where σ is
the Cauchy stress tensor including the turbulent viscosity effect and where n is the unit normal
vector at the free surface.

2.2 Scaling

According to the shallow water hypothesis, which is here assumed to be valid, there is a small
parameter µ = h∗0/L � 1 where h∗0 is a reference value of the still-water depth and where L
is a characteristic lengthscale in the horizontal plane. A classical scaling is used to write the
equations in dimensionless form (see Antuono & Brocchini 2013). The dimensionless quantities
are denoted by a tilde symbol.

x̃ =
x

L
ỹ =

y

L
z̃ =

z

h∗0
t̃ = µt

√
g

h∗0
h̃ =

h

h∗0
p̃ =

p

ρgh∗0

ũ =
u√
gh∗0

ṽ =
v√
gh∗0

w̃ =
w

µ
√
gh∗0

ũ =
u√
gh∗0

b̃ =
b

h∗0
Z̃ =

Z

h∗0

(7)

The viscous stress tensor is defined by τ = 2ρνD = τijei ⊗ ej where the vectors ei are the unit
vectors (with Einstein notation and the indexes 1, 2 and 3 for x, y and z respectively). It is
scaled as

τ̃xx =
Lτxx

ρν
√
gh∗0

τ̃yy =
Lτyy

ρν
√
gh∗0

τ̃zz =
Lτzz

ρν
√
gh∗0

τ̃xy =
Lτxy

ρν
√
gh∗0

τ̃xz =
τxz
ρν

√
h∗0
g

τ̃yz =
τyz
ρν

√
h∗0
g
.

(8)
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If the Reynolds number defined by Re = h∗0
√
gh∗0/ν is high enough, the viscous terms are

negligible (see for example Antuono & Brocchini 2013). With the hypothesis of a weakly-
turbulent flow (see below), these terms are negligible if Re = O(µ−3) (Kazakova & Richard
2018) and this will be assumed in the following.

The same scaling as in Antuono & Brocchini (2013) is used for the eddy viscosity, i.e.

ν̃T =
νT

µh∗0
√
gh∗0

. (9)

The scaling of the deviatoric part of the residual stress tensor Ar = 2ρνTD = Ar
ijei⊗ej is thus

Ãr
xx =

Ar
xx

µ2ρgh∗0
Ãr

yy =
Ar

yy

µ2ρgh∗0
Ãr

zz =
Ar

zz

µ2ρgh∗0

Ãr
xy =

Ar
xy

µ2ρgh∗0
Ãr

xz =
Ar

xz

µρgh∗0
Ãr

yz =
Ar

yz

µρgh∗0

(10)

It follows that the dimensionless continuity equation writes

div ũ+
∂w̃

∂z̃
= 0 (11)

and that the dimensionless momentum equation in the horizontal plane can be written

∂ũ

∂t̃
+ div (ũ⊗ ũ) +

∂w̃ũ

∂z̃
+ grad p̃ = µ2div a +

∂a3
∂z̃

. (12)

In this expression, the two-dimensional vector a3 = Ãr
xzex + Ãr

yzey is introduced as well as the
two-dimensional tensor a = 2ν̃T s where

s =
1

2

[
grad ũ+ (grad ũ)T

]
. (13)

We have

a3 = νT
∂ũ

∂z̃
+O(µ2). (14)

The dimensionless momentum equation in the vertical direction Oz is

µ2
(
∂w̃

∂t̃
+
∂ũw̃

∂x̃
+
∂ṽw̃

∂ỹ
+
∂w̃2

∂z̃

)
= −1− ∂p̃

∂z̃
+ µ2

Ar
xz

∂x̃
+ µ2

Ar
yz

∂ỹ
+ µ2

Ar
zz

∂z̃
. (15)

The no-penetration boundary conditions writes w̃(b) = ũ(b) ·grad b̃ while the kinematic bound-
ary condition is

w̃(Z) =
∂h̃

∂t̃
+ ũ(Z) · grad Z̃. (16)

The dynamic boundary condition at the free surface becomes in dimensionless form

a3(Z) +
p̃(Z)

ν̃T
grad Z̃ − µ2a(Z) · gradZ = 0, (17)

p̃(Z) + µ2ν̃Ta3(Z) · grad Z̃ − µ2Ar
zz(Z) = 0. (18)

All capillary effects are neglected. In the following the deviatoric residual stress tensor is ne-
glected on the bottom (Ar(b) ' 0) where there is a free-slip condition. Veeramony & Svendsen
(2000) similarly neglected the shear stress on the bottom.
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2.3 Averaged mass and momentum equations

The equations (11), (12) and (15) are averaged over the depth taking into account the boundary
conditions. The averaged quantity corresponding to any quantity X is defined as

〈〈X〉〉 =
1

h

∫ Z(x,t)

b(x)
X dz. (19)

The two-dimensional average velocity vector is denoted by U = 〈〈u〉〉 and its components in the
Ox and Oy directions are denoted by U and V respectively. The filtered horizontal velocity
vector is decomposed as the sum of its averaged value and of a deviation u′ representing the
large-scale turbulence and the shearing effects i.e.

u(x, y, z, t) = U(x, y, t) + u′(x, y, z, t). (20)

In the same way as in Teshukov (2007), the flow is supposed to be weakly turbulent (see Kazakova
& Richard 2018). This means that u′ = O(µ) and that in dimensionless form ũ = Ũ+µũ′. This
hypothesis is not very restrictive in practice since strong hydraulic jumps (with an upstream
Froude number as high as 16 and consequently a very strong turbulence) can be correctly
modelled this way (Richard & Gavrilyuk 2013).

In the following the tilde symbols for dimensionless quantities are dropped to lighten the
notations. After averaging over the depth, the mass equation becomes

∂h

∂t
+ div (hU) = 0 (21)

With the kinematic boundary condition at the free surface, the averaging over the depth of
the three first terms of the momentum equation (12) yields∫ Z

b

[
∂u

∂t
+ div (u⊗ u) +

∂wu

∂z

]
dz =

∂hU

∂t
+ div

∫ Z

b
u⊗ u dz. (22)

The approach of Teshukov (2007) is followed here for the treatment of the integral of u ⊗ u.
The enstrophy tensor is defined as

ϕ =
1

h3

∫ Z

b
u′ ⊗ u′ dz. (23)

Since, by definition, 〈〈u′〉〉 = 0, we can write 〈〈u⊗ u〉〉 = U ⊗U + µ2h2ϕ. This gives∫ Z

b

[
∂u

∂t
+ div (u⊗ u) +

∂wu

∂z

]
dz =

∂hU

∂t
+ div

(
hU ⊗U + µ2h3ϕ

)
. (24)

The equation (15) is needed to calculate the pressure term. First the material derivative of h is
defined as

ḣ =
∂h

∂t
+U · gradh. (25)

Second an expression of the vertical velocity w can be obtained from the continuity equation.
We get

w = (z − b) ḣ
h

+U · grad b+O(µ). (26)

Then the left-hand part of equation (15) can be written

∂w

∂t
+
∂uw

∂x
+
∂vw

∂y
+
∂w2

∂z
= (z − b) ḧ

h
+

D

Dt
(U · grad b) +O(µ) (27)
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where the material derivative has the same meaning as the dot in (25) i.e. DX/Dt = ∂X/∂t+
U · gradX for any scalar quantity X. This result is used to calculate the part of the pressure
term that does not depend on the eddy viscosity. Using the boundary conditions, we find∫ Z

b
p dz =

h2

2
+ µ2

h2ḧ

3
+ µ2

h2

2

D

Dt
(U · grad b) + µ2F1 (28)

where F1 is the integral of viscous terms

F1 =

∫ Z

b
dz

∂

∂x

∫ z

Z
Ar

xz dz +

∫ Z

b
dz

∂

∂y

∫ z

Z
Ar

yz dz +

∫ Z

b
Ar

zz dz. (29)

As in Part I of this work (Kazakova & Richard 2018), the turbulent viscosity is assumed to be
uniform over the depth. It follows from this assumption and from the hypothesis of a weakly
turbulent flow that∫ Z

b
dz

∂

∂x

∫ z

Z
Ar

xz dz = O(µ) and

∫ Z

b
dz

∂

∂y

∫ z

Z
Ar

yz dz = O(µ). (30)

These two integrals can therefore be neglected. Using again the boundary conditions, this leads
to the following expression for the averaged momentum balance equation

∂hU

∂t
+ div

(
hU ⊗U + µ2h3ϕ

)
+ grad

(
h2

2
+ µ2

h2ḧ

3
+ µ2Π′

)

= −p(b)grad b+ µ2div

∫ Z

b
a dz − µ2grad

∫ Z

b
Ar

zz dz +O(µ3) (31)

where

Π′ =
h2

2

D

Dt
(U · grad b) (32)

and p(b) = h+µ2hḧ/2 +µ22Π′/h+O(µ3). The continuity equation implies that Ar
zz = −Ar

xx−
Ar

yy. The calculation of the last integrals leads to

∂hU

∂t
+ div

(
hU ⊗U + µ2h3ϕ

)
+ grad

(
h2

2
+ µ2

h2ḧ

3
+ µ2Π′

)
= −hgrad b+ µ2div (hA)− µ2f ′ +O(µ3). (33)

The expression of the quantity f ′ is

f ′ = h

[
ḧ

2
+

D

Dt
(U · grad b)

]
grad b. (34)

It encompasses terms due to the variable bottom of O(µ2). The tensor A satisfies the relation

A = 2νTS + 2νT (divU) I (35)

where I is the identity tensor (two-dimensional) and where

S =
1

2

[
gradU + (gradU)T

]
. (36)

This tensor A acts like a viscous stress tensor of a compressible fluid. The averaged mass
equation (21) of the model is analogous to the mass conservation equation of a compressible
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fluid, the depth h being analogous to the density. The relation (35) is then analogous to the
constitutive equation of a Newtonian compressible fluid i.e. τ = 2µD+η(div v)I3 where D is the
strain rate tensor, I3 the three-dimensional identity tensor, v is the velocity field (the operator
divergence is here three-dimensional), µ and η being the first and second viscosities respectively.
In the case of the model, the first viscosity is equal to the turbulent viscosity νT and the second
viscosity is equal to 2νT . Note that S is not a deviator since tr S = divU 6= 0. For compressible
fluids, it is more convenient to define the deviatoric tensor S0 = S − (divU)I/2 (this gives
tr S0 = 0 since tr I = 2 in a two-dimensional space). The tensor A can then be written

A = 2νTS0 + ζ (divU) I (37)

where ζ = 3νT is the sum of the first and second viscosities and is the volume viscosity of
the model (in a three-dimensional space, the volume viscosity is equal to η + 2µ/3). The first
viscosity and the volume viscosity are both positive which is in accordance with the second law
of thermodynamics. Note that the Stokes’ hypothesis, according to which the volume viscosity
is equal to zero, is not satisfied in the model.

The gradient term in the left-hand side of (33) includes dispersive effects originating from
a non-hydrostatic correction to the pressure. It should be noted that no smallness assumption
was made on the nonlinearity which implies that the model is fully nonlinear. Its dispersive
properties are identical to those of the Green-Naghdi equations. An improvement of these
properties is proposed in §4.

The model is anisotropic due to the enstrophy tensor ϕ. It follows from its definition (23)
that the enstrophy tensor is symmetrical. However it is not an isotropic tensor and it has three
independant components denoted by ϕ11, ϕ12 and ϕ22 which are defined by ϕ = ϕ11ex ⊗ ex +
ϕ12ex⊗ey +ϕ12ey⊗ex +ϕ22ey⊗ey. This tensor represents the large-scale turbulence and the
shearing effects. The large-scale turbulence of the energy-containing range has an anisotropic
character which is thus taken into account in the model through the anisotropic tensor ϕ.

This is one of the main advantages of this approach in comparison with the classical ap-
proaches modelling all turbulence with an eddy viscosity. A viscosity hypothesis is a valid
model for turbulence if this one is reasonably isotropic and not too far from the equilibrium
between production and dissipation. These two conditions are questionable in the case of the
turbulence of a breaking wave. Consequently the classical eddy viscosity approaches for break-
ing waves misses the anisotropic effects of the large-scale turbulence (Nadaoka & Yagi 1998).
Furthermore there is no backscatter with an eddy-viscosity model and consequently no energy
transfer from the horizontal three-dimensional eddies towards the vertical two-dimensional ed-
dies and yet this transfer can happen (see for example Nadaoka & Yagi 1998, Hinterberger et
al. 2007).

With our depth-averaged large-eddy simulation (LES) approach with a cutoff frequency in the
inertial subrange, only the small-scale turbulence is modelled by a turbulent viscosity hypothesis
while the anisotropic large-scale turbulence of the energy-containing range is resolved. Both the
isotropic and equilibrium conditions are well satisfied for the small-scale turbulence (see for
example Kolmogorov’s hypotheses, Kolmogorov 1941) and the absence of backscatter from the
small scales towards the large scales is a very classical view in accordance with the energy
cascade of Richardson (1922) which was confirmed experimentally in the case of breaking waves
by Hattori & Aono (1985). The introduction of the eddy viscosity has thus better physical
justifications than for the classical eddy-viscosity models. The anisotropic character of our
equations has a physical basis and on the whole the resolution of the large-scale turbulence gives
our model a richer physical content.

The model features six scalar unknowns which are the water depth h, the components U
and V of the average velocity field in the Ox and Oy directions respectively and the three
components of the enstrophy tensor. The mass (21) and momentum (33) equations provide
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three scalar equations. Three more equations are thus needed to close the system. In the one-
dimensional case (Kazakova & Richard 2018) the closure was obtained with the energy equation.
In this two-dimensional case, the energy equation gives only one scalar equation and it is not
sufficient. In the one-dimensional (1D) case the energy equation could be replaced with the
enstrophy equation which was one scalar equation since the 1D enstrophy is a scalar. In the
two-dimensional (2D) case the enstrophy tensor equation is used to provide the three remaining
scalar equations.

2.4 Enstrophy tensor equation

The tilde symbols are also dropped in this section. The first step to derive the enstrophy tensor
equation is to form the tensor product u⊗ (12) + (12)⊗ u. Taking into account the boundary
conditions, this leads to

∂u⊗ u
∂t

+ div (u⊗ u⊗ u) +
∂

∂z
(wu⊗ u) + u⊗ grad p+ grad p⊗ u

= µ2u⊗ div a + µ2diva⊗ u+ νTu⊗
∂2u

∂z2
+ νT

∂2u

∂z2
⊗ u. (38)

The second step is to average this equation over the depth, again with the boundary conditions.
This procedure yields

∂

∂t

(
hU ⊗U + µ2h3ϕ

)
+ div

(
hU ⊗U ⊗U + µ2U ⊗ h3ϕ+ µ2h3ϕ⊗U

)
+ µ2div

(
h3ϕ

)
⊗U + µ2h3ϕ · (gradU)T +U ⊗ gradP + gradP ⊗U

= −p(b) (U ⊗ grad b+ grad b⊗U) + µ2div (U ⊗ hA) + µ2 [div (U ⊗ hA)]T

− µ2h 〈〈Pr〉〉+O(µ3) (39)

where

P =
h2

2
+ µ2

h2ḧ

3
+ µ2Π′. (40)

The tensor Pr includes all dissipative effects and its expression is

Pr = gradu · a + a · (gradu)T + 2νT
∂u′

∂z
⊗ ∂u

′

∂z
+ 2 (tr a) s +O(µ2). (41)

Note that tr Pr = 2P r since the energy equation (4) is half the trace of the tensor equation
(38). This tensor corresponds to a transfer from the filtered scales towards the residual scales
in the same way as P r is an energy transfer from the filtered scales towards the residual scales.
Extending the result of Lilly (1967) according to which 〈P r〉 ' ε, the average tensor 〈Pr〉 is
almost equal to the dissipation tensor ε which corresponds to the dissipation of the residual-
stress tensor σr = −ρ(v ⊗ v−v⊗v). The estimation 〈〈P r〉〉 ' 〈〈ε〉〉 made in Kazakova & Richard
(2018) is extended to the corresponding tensors as

〈〈Pr〉〉 ' 〈〈ε〉〉 . (42)

The third step is to form the tensor product U ⊗ (33) + (33)⊗U . This gives

∂hU ⊗U
∂t

+ div
(
hU ⊗U ⊗U + µ2U ⊗ h3ϕ

)
− µ2gradU · h3ϕ+ µ2div

(
h3ϕ

)
⊗U

+U ⊗ gradP + gradP ⊗U = −p(b) (U ⊗ grad b+ grad b⊗U)

+ µ2U ⊗ div (hA) + µ2div (hA)⊗U +O(µ3). (43)
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This equation (43) is finally subtracted from equation (39) to yield the evolution equation of
the enstrophy tensor

∂hϕ

∂t
+ div (hϕ⊗U)− 2h (divU)ϕ+ gradU · hϕ+ hϕ · (gradU)T

= gradU · A
h

+
A

h
· (gradU)T − 〈〈ε〉〉

h
+O(µ). (44)

It is noteworthy that this equation includes no dispersive term and no term depending on the
variable bottom. Further there is no second-order nor third-order derivatives which means that
the numerical resolution of this equation is a priori not especially difficult if the dissipative term
is known.

This equation is similar to the Reynolds-stress equation with the following differences: First
there is no term involving the third-order tensor 〈〈u′ ⊗ u′ ⊗ u′〉〉 which is of O(µ3) and thus neg-
ligible. This is the main interest of Teshukov’s hypothesis of a weakly turbulent flow (Teshukov
2007). Second there is no velocity-pressure-gradient tensor (or no pressure-rate-of-strain tensor)
because the depth-averaging procedure is based on a decomposition of the horizontal filtered
velocity field but not on a decomposition of the pressure. The pressure is explicitly and consis-
tently expressed from the momentum equation in the Oz-direction. There is thus no analogous
to the fluctuating pressure field. These two differences constitute a huge simplification. Third
there is no diffusive term. Lastly the production tensor has two parts. The first part,

− gradU · hϕ− hϕ · (gradU)T , (45)

is relative to the large-scale turbulence. It originates from the depth-averaging of the filtered
velocity field and thus from the part of the turbulence which is resolved. It is anisotropic. The
second part,

gradU · A
h

+
A

h
· (gradU)T , (46)

is due to the residual small-scale turbulence. Modelling the residual-stress tensor with an eddy-
viscosity hypothesis gives this term the structure of a viscous production, although of a com-
pressible type since divU 6= 0. The term −2h (divU)ϕ is due to the equation being written
for the evolution of the tensor ϕ instead of the evolution of the tensor 〈〈u′ ⊗ u′〉〉 = h2ϕ. The
left-hand part of equation (44) was obtained by Teshukov (2007) who included no dissipation.
The compressible viscous production is new in this kind of approach.

2.5 Energy

Taking half the trace of equation (39) gives an energy balance equation for the model. This
energy equation can also be derived by averaging over the depth the equation (4). This equation
writes

∂

∂t

[
h
(
e+ µ2e′

)]
+ div

[
hU

(
e+ µ2e′

)
+ PU + µ2U · h3ϕ

]
= −hU · grad b+ µ2div (hU ·A)− µ2h

2
tr 〈〈ε〉〉+O(µ3) (47)

where

e =
U ·U

2
+ µ2

h2

2
trϕ+

h

2
+ µ2

ḣ2

6
(48)

and

e′ =
ḣ

2
(U · grad b) +

1

2
(U · grad b)2 . (49)
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The energy of the system is e + µ2e′ where e′ encompasses terms of O(µ2) due to the variable
bottom. The term µ2h2trϕ/2 is a turbulent energy for the system. It includes only the large-
scale turbulence. The equation of trϕ can be found by taking the trace of equation (44).
Alternatively it can be derived from the energy equation (47) and from the mass and momentum
equations (21) and (33). The equation for the trace of the enstrophy tensor is thus equivalent
to the energy equation. It can be written

∂htrϕ

∂t
+ div (hUtrϕ)− 2h (divU) trϕ+ 2hϕ : gradU

=
2

h
A : gradU − tr 〈〈ε〉〉

h
+O(µ). (50)

The term in A : gradU is positive and results in a creation of turbulent energy since A :
gradU = 2νT ‖S0‖2 + 3νT (divU)2 > 0 where ‖S0‖ = (S0 : S0)1/2 .

2.6 Vorticity of the mean flow

Let’s denote by J the determinant of the enstrophy tensor ϕ. The Cauchy inequalities imply
that J > 0. If the dispersive, viscous and dissipative terms are removed, the remaining system is
hyperbolic (Teshukov 2007) if J 6= 0 (Richard 2013). If the system is restricted to its hyperbolic
part, the determinant of the enstrophy tensor satisfies the equation (Teshukov 2007)

DJ

Dt
= 2JdivU (51)

which implies that h2J is conserved along the trajectories of the mean flow and can be interpreted
as an entropy of the system (Gavrilyuk & Gouin 2012). Also, in the hyperbolic system, if
J > 0 at a time t = 0, then J > 0 at any time t > 0. A geometrical interpretation of the
evolution equation of the tensor h2ϕ was given in Gavrilyuk & Gouin (2012) who showed that
the eigenvectors of this tensor undergo a rotation similar to a rigid body and form a natural
moving frame whose evolution is determined by the mean rate of the deformation tensor. This
interpretation can be further specified. Assuming that J 6= 0, the tensor ϕ is invertible. The
evolution equation of the inverse tensor ϕ−1 can be deduced from equation (44). Restricting
ourselves again to the hyperbolic part of the equations, this equation can be written

Dϕ−1

Dt
= −2 (divU)ϕ−1 +ϕ−1 · S + S ·ϕ−1 +ϕ−1 ·Ω−Ω ·ϕ−1 (52)

where the tensor Ω is the mean rotation-rate tensor which is the antisymmetric part of gradU .
For comparison, we define another tensor that satisfies a similar equation. First we consider

two orthogonal infinitesimal vectors dx1 = dx1e
′
1 and dx2 = dx2e

′
2 attached to a point of the

fluid and transported by the mean flow (dx1 > 0 and dx2 > 0). They satisfy the equation
D(dxi)/Dt = gradU · dxi, (i ∈ {1, 2}). We define the diagonal tensor P as P = dx1e

′
1 ⊗ e′1 +

dx2e
′
2⊗ e′2. The vectors e′1 and e′2 are eigenvectors of P and dx1 and dx2 are eigenvalues. The

tensor Q defined by Q = (P · P)−1 can be represented by an ellipse whose semi-major axis is
dx1 and semi-minor axis is dx2 (assuming dx1 > dx2). The following equality pertaining to the
tensor Q can be derived

DQ

Dt
= −2 (divU) Q + Q · S + S ·Q−Q ·Ω + Ω ·Q. (53)

The comparison between (52) and (53) shows that these equations differ only in that the mean

rotation-rate tensor Ω in (53) is replaced by −Ω in (52). This means that the inverse enstrophy
tensor is convected by the mean flow, deformed by the mean strain rate tensor and rotated by
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the opposite of the mean rotation-rate tensor. Moreover the tensor ϕ−1 can be represented by
an ellipse whose area can be written A = π

√
J . The equation (51) implies that

1

A
DA
Dt

= divU . (54)

The rate of change of the area of the ellipse is the rate of change of area due to the mean flow
(in a three-dimensional space divU would be a rate of change of volume). The area of the
ellipse associated to Q satisfies the same equation. It follows that the dilatation, convection and
deformation of this ellipse is the same as an infinitesimal ellipse attached to material particles
moving with the mean flow but that this ellipse undergoes a rotation with an angular velocity
which is exactly the opposite of the local angular velocity of the mean flow.

The vorticity of the mean flow could be defined as Ω = rotU but, as the mean flow is
two-dimensional, there is only one non-zero component which is in the Oz direction and it is
better to define the vorticity as

Ω = ε : gradU . (55)

In this expression, ε is the two-dimensional pseudotensor of Levi-Civita which can be written
ε = εijei ⊗ ej where εij is the two-dimensional symbol of Levi-Civita defined by

εij =


+1 if (i , j) = (1 , 2)
−1 if (i , j) = (2 , 1)

0 if i = j.
(56)

The mean rotation-rate tensor can be written Ω = −(Ω/2)e1 ⊗ e2 + (Ω/2)e2 ⊗ e1. Thus it
seems that the difference between the equations (52) and (53) is due to the vorticity of the mean
flow and that the tensors ϕ−1 and Q satisfy the same equation if the mean flow is irrotational
(Debieve et al. 1982).

However an evolution equation of the vorticity of the mean flow can be derived from the
equation (33). This vorticity equation can be written

∂Ω

∂t
+U · grad Ω = −Ω divU + µ2 ε : grad

[
1

h
div

(
2νThS0 − h3ϕD

)]
− µ2

h2
ε : grad

(
3νThdivU − h3

2
trϕ

)
⊗ gradh+ µ2ε : grad ḧ⊗ grad

(
h

3
+
b

2

)
+ µ2ε : grad

[
D

Dt
(U · grad b)

]
⊗ grad

(
h

2
+ b

)
. (57)

The decomposition of the enstrophy tensor as the sum of its isotropic (or spherical) part and
of its anisotropic (or deviatoric) part is written ϕ = (trϕ)I/2 + ϕD where ϕD is the deviator
of the enstrophy tensor. The compressible character of the equations entails the presence of
source terms in this vorticity equation such as the term −Ω divU in the right-hand side of the
equation. There are also baroclinic terms which in the three-dimensional usual case would be
written −(1/ρ2) grad ρ × grad p and which here take the form −(1/h2) ε : gradP ⊗ gradh
where P is some scalar field (h is here analogous to the density ρ). In particular there is a
baroclinic term due to the turbulent volume viscosity ζ = 3νT and to the trace of the enstrophy
tensor. There are also source terms akin to baroclinic terms due to the dispersion and to the
variable bottom. And finally there are source terms due to the first turbulent viscosity and to
the deviator of the enstrophy tensor.

This equation shows the big difference between the tensors ϕ−1 and Q. The equation (53) is
only a geometrical description of the variation of Q while it is transported by the mean flow. The
tensor Q has no influence on the mean flow and is only passively transported. On the contrary,
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the enstrophy tensor is not only transported and modified by the mean flow, it modifies the
mean flow since ϕ appears in the momentum equation (33). This means that the equation (44)
is a physical equation and not a mere geometrical equation such as (53) in spite of the similarity.

Even if the mean rotation-rate tensor has no influence on the trace of the enstrophy tensor

nor on the energy, because the terms involving Ω in (52) are traceless, it is inconsistent to neglect
these terms in the enstrophy tensor equation, assuming that the mean flow is irrotational or
weakly rotational, because the enstrophy tensor is a source in the vorticity equation, notably
by its deviatoric part. It is also not possible to calculate the enstrophy tensor by replacing the
equation (44) by an equation of the kind of (53) with a hypothesis of a weak vorticity because
this one is not tenable given that the enstrophy can create vorticity. Moreover the equation (53)
has a completely different meaning, is not hyperbolic and has wholly different characteristics.

The presence of the enstrophy tensor, including its deviator, in the vorticity equation (57)
shows that transfers can happen between the three-dimensional horizontal eddies modelled by
the enstrophy tensor and the two-dimensional vertical eddies represented by the vorticity of the
mean flow. Our depth-averaged LES approach with a cutoff in the inertial subrange follows the
energy cascade from the energy-containing range towards the dissipation range but can describe
transfers from the large-scale turbulence with a scale of O(h) or smaller (in the water depth)
towards the vertical eddies of the average flow with an even bigger scale.

3 Modelling the eddy viscosity and the dissipation tensor

To close the model, two quantities remain to be specified, namely the turbulent viscosity νT
and the averaged dissipation tensor 〈〈ε〉〉. Empirical laws are proposed to determine these two
quantities. A correct model of the dissipation should preserve the positivity of the enstrophy
tensor and thus of its determinant J and of its trace. The determinant can be written J =
[(trϕ)2−ϕ:ϕ]/2. Ignoring all terms except the dissipation in the enstrophy equation (44) leads
to the evolution equations

Dtrϕ

Dt
= −tr 〈〈ε〉〉

h2
(58)

and
DJ

Dt
= − 1

h2
(trϕ tr 〈〈ε〉〉 −ϕ : 〈〈ε〉〉) . (59)

A simple way to preserve the positivity of both trϕ and J is to have Dtrϕ/Dt = −trϕf1
and DJ/Dt = −Jf2 where f1 and f2 are positive functions depending on the variables of the
mean flow. As the equations of the model must satisfy the Galilean invariance, these functions
should not depend on U . Moreover, they should be invariant in every coordinate systems. This
implies that they can depend on h and on the two invariants of the tensor, trϕ and J . The
simplest way is to choose 〈〈ε〉〉 = ϕf(h, trϕ) where the function f depends only on h and trϕ
and is obtained by a dimensional analysis. This gives f(h, trϕ) = Crh

2√trϕ where Cr is a
dimensionless quantity. The model for the average dissipation is thus

〈〈ε〉〉 = Crh
2ϕ
√

trϕ. (60)

With this choice the one-dimensional case studied in Kazakova & Richard (2018) is recovered
as a particular case. Further, since the turbulent kinetic energy of the model is (h2trϕ)/2, the
chosen model has the same form as the model proposed by Rotta (1951) if the dissipation and
the turbulent kinetic energy are related with a mixing length proportional to the fluid depth.

The model for the turbulent viscosity is obtained by a similar approach. The eddy viscosity
must be the same in every Galilean reference frames and in every coordinate systems. It is
simpler to assume that νT depends on h and trϕ but not on J . A dimensional analysis yields
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νT = Cph
2√trϕ where the dimensionless quantity Cp can be interpreted as the inverse of a

turbulent Reynolds number R leading to

νT =
h2

R

√
trϕ. (61)

The one-dimensional case (Kazakova & Richard 2018) is also recovered as a particular case. This
expression of the eddy viscosity based on the turbulent kinetic energy and on a mixing length,
which is here proportional to the water depth, is a very classical one (Kolmogorov 1942).

4 Numerical implementation

In the absence of enstrophy, the present model reduces to the classical two-dimensional Green-
Naghdi equations. The introduction of this new variable entails a modified pressure law and
three supplementary transport equations that can be naturally injected in the hyperbolic part
of the system. As a consequence, from a general point of view, this model can be numerically
treated in a straightforward manner on the basis of any existing numerical approach dedicated
to the Green-Naghdi equations. Naturally, this is even simpler in the one-dimensional case, since
the enstrophy tensor equation reduces to a scalar equation. On this basis, preliminary results
were obtained by Kazakova & Richard (2018) using an extension of the strategy proposed in Le
Métayer et al. (2010) to mild slope topographies, allowing to establish relevant empirical laws
based on the study of solitary waves. In the present work we aim to pursue the efforts towards
describing realistic situations, considering a two-dimensional approach on general bathymetries.
In addition, and notably for the analysis of periodic waves, we have to think about how to
improve the dispersive properties of the proposed model. Before getting through the numerical
implementation, we briefly discuss how to address such an issue.

4.1 Constant diagonal formulation

In view of the targeted numerical simulations, we first propose to rewrite the model in an
asymptotically equivalent form, allowing both to improve the dispersive properties and provide
a gain in terms of computational cost. To achieve this outcome, we exploit the works proposed
by Bonneton et al. (2011), followed later by Lannes & Marche (2015), mainly for purposes of
computational efficiency. The present section merely consists in verifying that the current model
enters into the appropriate formalism. Consequently we shall not discuss all technical aspects,
and refer to the aforementioned references for more details.

As it is the case when dealing with Boussinesq-type models, the numerical challenge stands in
the treatment of the discharge equation, due to the presence of high-order derivatives (up to third
order) and second-order instationnary terms appearing through the material derivative. This
last point has heavy practical consequences since it results in the inversion of a time-dependent
elliptic operator which couples the velocity components.

The model is constituted by equations (21), (33) and (44). These equations, written with
the components of U and ϕ, are collected for convenience’ sake in Appendix B. As mentioned
before, this model reduces to the standard Green-Naghdi equations with a modified pressure
law, supplemented by the transport of the enstrophy tensor. We hence inherit the same technical
difficulties as discussed just before, concentrated in the discharge evolution. As a consequence,
in what follows we will only focus on the momentum equation.

As a first remark, adapting the notations used in Bonneton et al. (2011), we can express the
average velocity equation (33) as

(
I + µ2T

) ∂U
∂t

+U · gradU + grad (h+ b) +
µ2

h
div

(
h3ϕ− hA

)
+ µ2Q0 = O(µ3). (62)
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In this expression I is the identity operator, T is a linear operator depending on h and b and
defined by

TW = − 1

3h
grad

(
h3divW

)
− h

2
divWgrad b+

1

2h
grad

(
h2grad b ·W

)
+ (grad b ·W ) grad b (63)

for any vector field W and

Q0 = − 1

3h
grad

{
h3
[
div (UdivU)− 2 (divU)2

]}
+ [U · grad (U · grad b)] grad b

− h

2

[
div (UdivU)− 2 (divU)2

]
grad b+

1

2h
grad

[
h2U · grad (U · grad b)

]
. (64)

Introducing the notation

Q′0 = Q0 +
1

h
div

(
h3ϕ− hA

)
, (65)

the previous equation becomes(
I + µ2T

) ∂U
∂t

+U · gradU + grad (h+ b) + µ2Q′0 = O(µ3) , (66)

and we can reproduce the arguments employed in Bonneton et al. (2011) to obtain the equation

(
I + µ2T

)(∂U
∂t

+U · gradU
)

+ grad (h+ b) + µ2Q1 = O(µ3) (67)

where
Q1 = Q′0 −T (U · gradU) . (68)

Denoting by
(
I + µ2T

)−1
the inverse operator of

(
I + µ2T

)
, this equation can be written

∂U

∂t
+U · gradU +

(
I + µ2T

)−1 [
grad (h+ b) + µ2Q1

]
= O(µ3) (69)

As highlighted by Lannes & Marche (2015), this formulation has two main advantages, namely
it does not require the computation of third-order derivatives, and the presence of the operator(
I + µ2T

)
makes the model stable with respect to high frequency perturbations. Nevertheless,

a remaining major drawback is the necessity to invert this operator, since it is time-dependent
and involves a coupling between the velocity components. Starting form the dimensionless mass
equation and a velocity equation under the form (67), Lannes & Marche (2015) reached the
following so-called “constant diagonal” formulation of the momentum equations, which reads,
in the present context:

(
I + µ2αT

) [∂hU
∂t

+ div (hU ⊗U) +
α− 1

α
hgrad (h+ b)

]
+

1

α
hgrad (h+ b) + µ2 (hQ1 + hQ2 +Q3) = O(µ3), (70)

where the operator T only depends on a given water depth at rest h0 and has a time-independent
diagonal structure since

TW = −1

3
div

[
h30 grad

W

h0

]
= −1

3

∂

∂xj

(
h30

∂

∂xj

Wi

h30

)
ei (71)
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for any vector field W = Wiei. The auxiliary quantities are defined as follows:

Q2 = h grad
[
ε · grad (h+ b)

]
· ε · gradh− 1

2h
grad

[
h2grad b · grad (h+ b)

]
+
h

2
grad b∆ (h+ b)− [grad b · grad (h+ b)] grad b+O(µ2) (72)

and
Q3 = S

{(
I + µ2αT

)−1
[hgrad (h+ b)]

}
(73)

where S is an operator defined as

S{W } =
1

6
grad

(
h2 − h20

)
· gradW +

1

3

(
h2 − h20

)
∆W − 1

6
∆
(
h2 − h20

)
W (74)

for a generic smooth enough vector field W . The role of the constant α, initially introduced by
Bonneton et al. (2011), is precisely to improve the dispersive properties of the model (namely,
to provide a better matching with respect to the linear Stokes theory). Following the works
previously mentioned, we take α = 1.159 in our numerical experiments. Note that in the above
formulation (70), the only difference with the original work is the expression of Q1 (68), which
through (65) also contains the conservative and viscous terms related to the enstrophy. Going
back to variables with dimensions, the equation (70) becomes:

(I + αT)

[
∂hU

∂t
+ div (hU ⊗U) +

α− 1

α
ghgrad (h+ b)

]
+
gh

α
grad (h+ b) + hQ1 + ghQ2 + gQ3 = 0. (75)

Finally, following what has been done in Duran & Marche (2017), we reformulate the previous
equation as:

∂hU

∂t
+ div

(
hU ⊗U + h3ϕ

)
+ ghgrad (h+ b) +D = 0 (76)

where

D = −gh
α

grad (h+ b)− div
(
h3ϕ

)
+ (I + αT)−1

[
gh

α
grad (h+ b) + hQ1 + ghQ2 + gQ3

]
. (77)

4.2 Pre-balanced formulation

In this work, numerical investigations will be based on the high-order discontinuous Galerkin
approach developped by Duran & Marche (2017). This approach directly applies to (76) with a
preliminary rewriting of the hyperbolic part in the prospect of well-balancing properties. This
approach extends the 1D works introduced by Liang & Marche (2009) for the shallow water
(Saint-Venant) equations, in the context of unstructured high-order discretizations. The key
idea is to reformulate the hydrostatic pressure term as

ghgrad (h+ b) =
g

2
grad(Z2 − 2Zb) + gZ grad b . (78)

Then we denote the vector solution W = (Z, hUT, hϕ11, hϕ12, hϕ22)
T , and recast (76) in the

compact form:
∂W

∂t
+ divF(W , b) + D(W , b) = S(W , b), (79)
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F(W , b) =


hU

hU ⊗U + h3ϕ+
g

2
(Z2 − 2Zb)I

hϕ11U
hϕ12U
hϕ22U

 , D(W, b) =


0
D
0
0
0

 . (80)

The dispersive R2-valued term D is defined by (77), and the source term by

S(W, b) =


0

−gZ grad b
R11 + E11 − Cr hϕ11

√
ϕ11 + ϕ22

R12 + E12 − Cr hϕ12
√
ϕ11 + ϕ22

R22 + E22 − Cr hϕ22
√
ϕ11 + ϕ22

 , (81)

with

R11 = 2h

(
ϕ11

∂V

∂y
− ϕ12

∂U

∂y

)
R12 = h

[
ϕ12

(
∂U

∂x
+
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)
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∂V

∂x
− ϕ22

∂U

∂y

]
R22 = 2h

(
ϕ22

∂U

∂x
− ϕ12

∂V

∂x

) (82)

and
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(
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]
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(83)

Note that the flux function F in (79) allows a clear decoupling between the hyperbolic and
dispersive parts of the system.

4.3 Discrete formulation

We now turn to the numerical scheme, which consists in a direct extension of the works of Duran
& Marche (2017). In consequence, we shall not go into detail here, and refer to this paper for an
exhaustive description. The main principles of this numerical scheme are given in Appendix C.
An example of a regular triangular mesh used in the numerical computations is given in Figure
2. Overall, the main numerical challenge stands in the computation of the components of D,
which involves the resolution of a global linear system. As been said before, in our case this task
is considerably alleviated since the elliptic operator appearing in (76) is time-independent and
allows to decouple the velocity components evolution. The computation of this term follows the
protocol described in Duran & Marche (2017), based on the use of Local Discontinuous Galerkin
fluxes (Cockburn & Shu 1998) to build the first and second-order differential operators. We refer
to the above papers for technical details. As concerns the enstrophy transport, the conservative
terms are treated in the hyperbolic stage, according to (79), while the associated source terms are
computed in a collocated framework with direct nodal products, in the same way as those of the
momentum equations. Classically, advancing in time will be carried out by standard high-order
Strong Stability Preserving Runge Kutta (SSP-RK) algorithms, following the original work.
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Figure 2: Example of regular mesh.

5 Wave breaking

Preliminary results of Kazakova & Richard (2018) showed that the activation of enstrophy at
the beginning of the computations may impact the flow evolution before the breaking zone,
leading to underestimations of the wave amplitude. As expected, the phenomenon is all the
more pronounced as high nonlinearities are involved. As a consequence, for now, and in the
philosophy of other existing strategies, this compels us to introduce a breaking criterion in order
to activate the enstrophy only in eligible areas. Naturally, the different detection protocols
mentioned in the introduction can be used to turn on viscosity terms and generate enstrophy
only when needed. As for hybrid or ad-hoc viscosity methods, this entails the introduction of a
discontinuity in the momentum equations in the neighbourhood of the breaking area. From a
general viewpoint, this can be a source of numerical instabilities, especially if the discretization
parameters are not chosen appropriately. In the present case, the viscous terms being expressed
in terms of the enstrophy, they are subject to a regular growth localized in a very thin region
surrounding the breaking point, allowing to introduce the turbulent effects in a smooth way.
Further, this behaviour makes the model less sensitive with respect to the mask width in which
viscous terms are activated.

Another detection strategy, proposed by Kazakova & Richard (2018), consists in using the
enstrophy itself to detect wave breaking. Indeed, this quantity is intrinsically linked to shear
effects and can be used as a relevant tool to predict the development of turbulent structures.
This leads to the introduction of a new quantity, referred to as virtual enstrophy, which quantifies
the amount of enstrophy that the model is potentially able to produce. As in the original work,
the virtual enstrophy is computed at each time step as the real enstrophy, but without any
feedback on the evolution of the other variables. Then, breaking points can be identified as
those where the virtual enstrophy is high enough, which also imposes the introduction of an
appropriate threshold. Once this threshold is exceeded, viscous terms can be activated in the
neighbourhood of the incriminated cells in order to light the effective enstrophy to handle wave
breaking, in the same manner as for the detection protocols previously mentioned. Classically,
a slope limiter is applied in these areas (Cockburn & Shu 1998), notably to damp the brutal
entropy variations. Explicit details on the threshold calibration and other breaking parameters
will be given in the following section. Note that this strategy naturally implies a non-zero value
as initial data for the enstrophy. Following the original work, this value will be taken to 10−10 s−2

in our numerical tests.
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6 Numerical results

6.1 Augmented solitary wave

As a preliminary test we validate the ability of the scheme to capture an analytical solution, in
the absence of topography and without breaking effects. In a recent work, Richard & Gavrilyuk
(2015) showed the existence of solitary waves with non-trivial constant enstrophy profiles as
exact solutions to the model. Considering a reference enstrophy ϕ0, the corresponding relative
amplitude ã = a/h0, where the amplitude a of the wave is the maximum value of η (see Figure
1), is

ã =
1

2ϕ̃0

[
− (1 + 4ϕ̃0) +

√
(1 + 4ϕ̃0)

2 + 4 (Fr2 − 1− 3ϕ̃0) ϕ̃0

]
, (84)

where Fr stands for the Froude number and ϕ̃0 = h0ϕ0/g is the dimensionless enstrophy.
Inverting the previous equation we obtain:

Fr =
√

(1 + ã) [1 + ϕ̃0(3 + ã)] , (85)

leading to the following generalized wave celerity:

c0 = Fr

√
gh0 =

√
g (h0 + a) + ϕ0 (h0 + a) (3h0 + a). (86)

The free surface elevation is given by the following formula:

η(x, t) =
2a
(
Fr2 − 1− 3ϕ̃0

)
Fr2 − 1− (3 + a2)ϕ̃0 + (Fr2 − 1− (3− a2)ϕ̃0) cosh[κ(x− c0t− x0)]

, (87)

where
κ =

√
3 (Fr2 − 1− 3ϕ̃0) /Fr2 , (88)

and x0 stands for the initial location of the solitary wave. Setting the transverse velocity V and
the other components of the enstrophy tensor to zero, the exact solution is given by:

h(x, t) = h0 + η(x, t)

U(x, t) = c0

(
1− h0

h(x, t)

)
ϕ11(x, t) = ϕ0

(89)

The computational domain consists of a 200 m long rectangular channel, meshed with a regular
triangulation of characteristic size ∆x = ∆y = 0.25 m (see Figure 2). The solitary wave is
initially located at x0 = 50 m. We set h0 = 1 m and impose Fr = 1.2, ϕ0 = 0.2 s−2, leading
to an amplitude a = 0.128 m and the initial condition depicted in Figure 3. As highlighted by
Kazakova & Richard (2018), this gives a solution with a smaller amplitude than the classical
solitary wave solution of the Green-Naghdi equations obtained with the same Froude number.
We can observe on Figure 4 a comparison between analytical and numerical results at several
propagation times, obtained with the third-order scheme, highlighting a very good resolution of
the wave propagation. Note that the preservation of the initial enstrophy ϕ0 has been numer-
ically confirmed throughout the computation up to the machine error, independently from the
mesh size or the polynomial degree in the approximation space.

6.2 Wave breaking and run-up of a solitary wave

We now turn to a classical 1D test case implying wave breaking and run-up, based on the
experiment of Synolakis (1987). The initial condition consists of an incident wave, obtained
as an exact solution of the classical Green-Naghdi equations, propagating over a beach with
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Figure 3: Test 1 : 2D view of the initial condition.
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Figure 4: Test 1 : 1D free surface profiles at t = 0, t = 10.25 s, t = 20.5 s and t = 30.75 s. Exact
solution (dots) vs numerical solution (solid curves).
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Figure 5: Test 2 : Comparison of the 1D free surface profiles between numerical results (solid
curves) and experimental data from Synolakis (1987) (crosses) at several times during the prop-
agation (t∗ = t(g/h0)

1/2).

a constant bed slope s = 1/19.85. This benchmark is widely used to exhibit the ability to
capture shoaling and breaking processes, with subsequent run-up and run-down phenomena
(see Bonneton et al. 2011, Cienfuegos et al. 2010, Kazolea et al. 2014, Tissier et al. 2012,
Titov et al. 1995, Tonelli & Petti 2010, Zelt 1991 for instance). The numerical set-up implies
a solution centred at x0 = 10 m in a 35 m long domain, regularly meshed with a space step
∆x = ∆y = 0.0625 m, as indicated in Figure 2. A 5 m long sponge layer has been added at the
left boundary to stabilize the initiation of the wave propagation. Following the experiment, the
reference depth is h∗0 = 0.3 m and we consider a relative amplitude a/h∗0 = 0.28. The topography
is given by:

b(x) =

{
0 if x ≤ 15 m
s (x− 15) otherwise

(90)

Following the empirical laws established by Kazakova & Richard (2018), the trigger threshold
ψ0 of the virtual enstrophy and the dimensionless Reynolds number are calibrated as

ψ0 =


g

h∗0

(
0.1 +

0.031h∗0
a

)
if
a

h∗0
> 0.05

0 otherwise
Re = 0.85 + 60/s if a/h∗0 > 0.05

(91)

respectively, leading to approximative values ψ0 ≈ 6.89 s−2 and Re ≈ 3.87 in the present case.
Still following Kazakova & Richard (2018), the parameter Cr may rely on the value Cr = 0.48.
This parameter is the same in all the forthcoming simulations.

We can observe on Figure 5 a comparison between experimental and numerical results at sev-
eral reference times during the propagation. In accordance with the experimental observations,
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Figure 6: Test 2 : Virtual enstrophy profile at several times around the breaking point. Wave
breaking is identified at t∗ = 18.1, x = 30.3m.

the wave propagates, shoals and steepens when reaching the shore, as it can be seen at times
t∗ = t(g/h0)

1/2 = 10 and t∗ = 15. Then nonlinear effects induced by the bed elevation trigger
the breaking of the wave, occurring between t∗ = 15 and t∗ = 20. To better understand the key
role played by the enstrophy variables, a particular focus of the process is available on Figure
6. We can see that a sudden production of enstrophy occurs at t∗ = 18.1, allowing a precise
identification of the transition to the turbulent regime. Once the wave is identified as breaking,
the enstrophy production is able to correctly balance the dispersive effects and we recover the
expected characterics of the wave transformation, until the end of the run-up phenomenon. Note
that since the enstrophy is naturally following the wave motion, there is no need to artificially
turn-off irrelevant terms or introduce additional de-breaking criteria in regions which are not
concerned, as is can be the case with other existing approaches. As reported by Synolakis 1987
(see also Kazolea et al. 2014), a second breaking process happens at the end of the computa-
tion, under the form of a hydraulic jump around t∗ = 53. As shown in Figure 7, the process in
also well captured by the proposed method, highlighting the enstrophy as a relevant diagnostic
quantity with respect to the general detection of shock waves. These results were obtained with
the third-order scheme; identical space and time locations have been observed for the breaking
points using other space orders and/or different mesh resolutions. This low sensitivity with re-
spect to the discretization parameters is not surprising, since the breaking criterion is somehow
directly resolved as a model variable. Note finally that if a precise and predictive calibration
of the breaking parameters (ψ0, Re) has been extracted from the works of Kazakova & Richard
(2018), no significant variability has been observed around the corresponding reference values,
which also attests to the robustness of the proposed strategy.
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Figure 7: Test 2 : Virtual enstrophy profile at several times around the second breaking point
(hydraulic jump). Wave breaking is identified at t∗ = 53, x = 33.5m.

6.3 Wave train breaking over a bar

We now turn to a classical test based on the laboratory experiments carried out by Beji &
Battjes (1993), devoted to the study of periodic sinusoidal waves propagating over a submerged
bar. The experimental setup implies a 37.7 m long wave flume equipped with a trapezoidal bar
with 1/20 front and 1/10 back slopes, separated by a 2 m plane area, leading to the configuration
displayed in Figure 8. The evolution of the flow is followed at eight wave gauges disposed along
the channel, for which experimental data are available. The first one is placed at x = 6 m while
the others are located at the level of the bar, regularly spaced from x = 11 m to x = 17 m, as
indicated in Figure 8. The water depth at rest was set to h∗0 = 0.4 m, leading to a 0.1 m water
depth at the top of the bar.

Several series of experiments were run by Beji & Battjes (1993), with varying amplitudes
and frequencies. The objective pursued here is to show that the current approach can also be
applied to capture a complete breaking process in the context of wave trains. This leads us to
consider the experimental dataset obtained with a frequency of 0.4 Hz and a wave amplitude
0.054 m, corresponding to a strongly non-linear case. In this context, the shoaling of incoming
waves is followed by a spilling-type breaking at the arrival at the flat part of the bar. After
passing the bar, under the combined effect of the topography and their reintroduction in deeper
waters, waves experience highly nonlinear deformations, accompanied by the development of
high-order harmonics, close to the dispersive limits of the model. This induces a non-trivial
coupling between turbulent effects and highly nonlinear deformations throughout the simulation.
Capturing these complex dynamics is therefore a quite challenging issue, generally considered
as an important step in the validation of numerical methods for breaking.

Computations have been run on the domain[−10 m, 40 m], including 10 m left and right
sponge layers to generate incoming waves and to allow a proper exit of the outgoing waves.
A regular mesh with 1200 elements in the x-direction was used for this test. If we refer to
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Figure 8: Test 3 : Sketch of the experimental configuration of Beji & Battjes (1993) and location
of the wave gauges.
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Figure 9: Test 3 : Free surface (top) and enstrophy (bottom) profiles at three consecutive times
during the breaking process.

(91), the initial non-linearity has an order of magnitude allowing to set the activation criterion
ψ0 to zero, meaning that there is no breaking criterion and that the enstrophy is computed
everywhere at the beginning of the computation. In such regimes of small relative amplitudes,
the dimensionless Reynolds number has a value in the range of 5 < Re < 10 to fit with numerical
experiments (Kazakova & Richard 2018). Based on these observations, we directly resolve the
effective (and not virtual) enstrophy equation, with Re = 7.5. As previously discussed, the
dissipation parameter Cr is taken to 0.48. As it can be observed on Figure 9, this choice allows
to capture properly the breaking mechanism. It is noteworthy that the turbulent effects are not
totally damped between two successive waves leading to an accumulation of enstrophy at the
level of the bar.

These numerical observations are physically relevant, since they highlight that the turbulence
produced by a single wave can have not entirely disappeared at the arrival of the following wave
as it has been reported in several works (see for instance Ting & Kirby 1994).

In any case, this accumulation phenomenon is limited in practice and does not break the
stability of the method. Further, as shown in Figure 10, the method offers a good agreement
with the experiments, significantly better than the ones obtained with usual methods.

Looking at Figure 10 more closely, the results at Gauge 2 show that the shoaling process is
well described. In particular, we recover the correct amplitudes, while small overestimations can
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Figure 10: Test 3 : Time series of the free surface elevation at wave gauges. Comparison between
the numerical results (curve) and the experimental data of Beji & Battjes (1993)
(circles).

be observed with hybrid methods (see Duran & Marche 2017, Tissier et al. 2012), presumably
caused by numerical instabilities propagating in the neighbourhood of the breaking area (see
also Kazolea & Ricchiuto 2018). Wave breaking occurs at the level of Gauge 3. Our results
reflect the ability in capturing accurately the process, with a precision similar to recent hybrid
strategies (Filippini et al. 2016, Kazolea et al. 2014). Gauges 4 and 5 allow to examine the
continuity of the breaking process. We observe an almost perfect reproduction of the wave
transformation, including the free surface inflection at the front side of the waves, which is
difficult to capture by the models mentioned above. The passing at Gauge 6 marks the end
of the breaking process, and is accompanied by a more pronounced manifestation of the wave
decomposition into secondary waves. Up to our knowledge, only the turbulent kinetic energy
model used by Kazolea & Ricchiuto (2018) is able to provide such a level of agreement at this
gauge. As can be seen through Gauges 7 and 8, the model is also able to faithfully describe
the end of the process, more successfully than the switching strategies (Duran & Marche 2017,
Tissier et al. 2012), or ad-hoc viscosity approaches (Klonaris et al. 2013). Note finally that
the presented results appear to be in the same order of quality than those obtained with direct
Computational Fluid Dynamics (CFD) simulations with ad hoc eddy viscosity (Kamath et al.
2015).

6.4 Tsunami wave on a conical island

Based on the laboratory experiments of Liu et al. (1995), we now investigate the evolution
of a solitary wave propagating over a conical island. This test is regularly employed to study
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Figure 11: Test 4 : 3D view of the free surface at t = 3 s; 6 s; 9 s; 10 s; 11.5 s and 12.5 s (from
left to right and top to bottom).

run-up processes and related numerical handling of dry cells with rough topographies in a two-
dimensional environment (see for instance Azerad et al. 2017, Chen et al. 2000, Kazolea et al.
2012, Lynett et al. 2002, Ricchiuto & Bollermann 2009). The experimental set-up implies a
25 m by 30 m basin equipped with a wavemaker calibrated for the generation of solitary waves.
The topography is defined as follows:

b(r) =

{
max

(
0.625, 0.9− r

4

)
if r < 3.6

0 elsewhere
, (92)

r being the distance in m from the center of the island (x0, y0) = (12.96 m, 13.80 m). The
initial water depth is h∗0 = 0.32 m. The flow evolution can be tracked through a serie of gauges
covering the experimental domain, measuring the free surface elevation. Several data sets are
available, implying different initial amplitudes of the incident wave. Here we chose a relative
amplitude of a/h∗0 = 0.2, corresponding to the most important initial non-linearity. In this
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Figure 12: Test 4 : Time evolution of the free surface at reference gauges.
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Figure 13: Test 4 : Time evolution of the virtual enstrophy at reference gauges.

situation, as reported in Titov et al. (1995), wave breaking is observed all around the island.
The phenomenon is however not sufficiently pronounced to threaten the numerical stability and
is generally neglected in this respect. The objective here is to show that the method is able to
capture these small turbulent effects, while highlighting the possible related benefits.

For the numerical simulation we used the third-order scheme on a structured mesh of 49 566
elements, corresponding to a space step ∆x = ∆y = 0.167 m approximately. Still based on the
1D experimental laws, the virtual enstrophy threshold ψ0 is set to 7.8 s−2. As the dimensionless
Reynolds number depends on the topography (91), a local strategy can be adopted to calibrate
the viscosity parameter. However, we did not observe significant differences using a constant
number all over the computational domain corresponding to an intermediate value based on the
lower and higher slopes.

One can observe some 3D snapshots of the solution during the propagation in Figure 11,
exhibiting a good reproduction of the flow characteristics. In particular, the passing of the
emerged part of the island is well resolved, as well as the junction of the two resulting lateral
waves at the rear side of the cone. Time series of the free surface are given in Figure 12 at
gauges number 6, 9, 16 and 22, respectively located at (9.36 m, 13.80 m), (10.36 m, 13.80 m),
(12.96 m, 11.22 m) and (15.56 m, 13.80 m). We observe a good agreement with the experimental
data. In particular, as reported in Kazolea et al. (2012) and Lannes & Marche (2015) for
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Wave Gauges ADV’s

No 1 2 3 4 5 6 7 8 9 1 2 3

x(m) 7.5 13 21 7.5 13 21 25 25 25 13 21 21
y(m) 0 0 0 5 5 5 0 5 10 0 0 5

Table 1: Test 5 : Wave gauges and ADV’s locations.

instance, slight overestimations of the leading wave amplitude at WG 9 and 22 can be observed
when wave breaking is not accounted for (see also Fuhrman & Madsen 2008). Injecting enstrophy
in the system seems to slightly reduce these discrepancies, especially for WG 22 and the minimum
run-down amplitude of the reflected wave at WG 9. As confirmed in Figure 13, the method is
able to identify wave breaking at the vicinity of the island during the passing of the wave.
Note that similar results were obtained with a mesh of 150 000 elements to confirm that these
amplitude corrections are not due to under-resolution.

6.5 Tsunami wave propagation over a 3D reef

This last test case is extracted from the laboratory experiments described in Swigler (2009).
The set-up implies the study of a solitary wave evolving within a realistic coastal configuration,
including a three-dimensional fringing reef. This is a quite demanding test case, implying highly
nonlinear transformations, wave breaking and treatment of shoreline motions in the presence
of steep bottom variations. These mechanisms entail complex turbulent dynamics that make
this benchmark in the line of the targeted applications of the proposed model. Recent two-
dimensional Boussinesq-type models used this set of data to validate their ability to describe
the complexity of surf-zone mechanisms such as wave breaking and bore propagation driven by
strongly varying bathymetries (see for instance Kazolea et al. 2014, Roeber et al. 2010, Shi et
al. 2012).

The experimental basin is 48.8 m long and 26.5 m wide. The bottom geometry reproduces a
planar beach with a triangular flat reef surmounted by an idealized island located at the center,
as can be seen in Figure 14 for instance. The offshore water depth is set to h∗0 = 0.78 m, and the
beach slopes extend from x = 10 m to x = 32.5 m, so that a flat bottom is recovered shortly after
the shoreline. The triangular shelf has a maximum elevation of 0.71 m and is linearly connected
to the beach, with steeper slopes as we get closer to the shelf edge. The island is represented by
a 6 m diameter cone of 0.45 m height centred at x = 12.6 m along the y-direction centreline. The
flow motion is followed by means of a measurement device composed of nine wave gauges, where
the free surface was recorded, supplemented by three Acoustic Doppler Velocimeters (ADV) to
capture the velocity field. Their location is indicated in Table 1.

The relative amplitude of the incoming wave is a/h∗0 = 0.5, making this test highly nonlinear.
The computational domain was extended at the inlet and outlet boundaries for the generation
and the absorption of the solitary wave. The presented results were obtained with the second-
order scheme on a mesh of approximatively 200 000 elements, refined in the vicinity of the
apex, leading to maximum and minimum areas maxT∈Th hT = 7.23×10−2 m2 and minT∈Th hT =
6.57×10−4 m2 respectively. Following the empirical laws recalled in (91), the breaking threshold
is fixed to ψ0 = 1 s−2 and we set Re = 3.5, which corresponds to an intermediate value based
on the maximum and minimum slopes. Naturally, other reasonable choice can be made for this
parameter (with a definition depending on the local slopes for instance), but these variations
did not had a significant influence on the numerical results.

The Figure 14 presents several snapshots of the numerical simulation of the propagation of a
solitary wave towards the coast. The color maps the value of trϕ, which is the turbulent energy
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Figure 14: Test 5 : Snapshots of the free surface during the run-up process. Color mapping with
respect to the quantity trϕ = ϕ11 + ϕ22 in s−2.
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Figure 15: Test 5 : Time evolution of the surface elevation at reference gauges.

of the system times 2/h2, from deep blue (almost no turbulence) to red (highly turbulent). The
red parts correspond to the foamy parts of breaking waves with strong vortices and rollers.

The first important steps of the propagation, corresponding to the passing of the central
cone, can be observed on Figure 14 (a), (b), (c) and (d). As it can be seen through the color
mapping, wave breaking is well captured by the model since the enstrophy is triggered at this
stage. In accordance with the experiments and the works mentioned above, we observe a total
submersion of the island. The shoaling and breaking processes seem to be well reproduced. In
particular, just after the first breaking event at the arrival of the apex, one can see the enstrophy
propagating from the center of the cone to the lateral boundaries, which clearly highlights a
progressive transmission of the turbulent structures along the y-direction.

Figure 14 (e), (f) and (g) focuses on the termination of the breaking process and the wave
propagation over the flat part of the beach. It can be seen that the enstrophy is progressively

31



−2

−1

0

1

2

u
(m

/s
)

ADV1 numeric

experimental

−2

−1

0

1

2

u
(m

/s
)

ADV2

−2

−1

0

1

2

u
(m

/s
)

ADV3

0 5 10 15 20 25 30 35 40
t(s)

−2

−1

0

1

2

v(
m
/s

)

ADV3

Figure 16: Test 5 : Time evolution of the velocity components at ADVs.

dissipated, while some residual turbulence can still be observed around the apex. The advancing
wave front is well captured, without appearent numerical instabilities.

Figure 14 (h), (i) and (j) proposes snapshots corresponding to the run-down process occuring
towards the end of the simulation. Again the scheme is able to detect the formation of a hydraulic
jump near the shoreline, which can be seen as the two-dimensional counterpart of what has been
observed in 1D with Test 2. Comparisons with experimental data at wave gauges are displayed in
Figure 15 for the free surface. They exhibit the capability of the model to predict accurately the
arrival times of incident and reflected waves and to provide the correct amplitudes throughout
the computational domain. Similar observations can be made with the time series of the velocity
obtained by ADV proposed in Figure 16.

7 Conclusion

We derived a new two-dimensional depth-averaged model for coastal waves. This is an extension
of the one-dimensional model of Kazakova & Richard (2018). The subdepth large-scale turbu-
lence is resolved and taken into account by a tensor quantity called enstrophy. This tensor gives
an anisotropic character to the model in accordance with the anisotropy of the three-dimensional
subdepth large-scale turbulence. This tensor is also a source of vorticity of the mean flow and
is responsible for transfers in both directions between the large two-dimensional horizontal ed-
dies with a vertical vorticity and the three-dimensional subdepth turbulence. The small-scale
turbulence is modelled with a turbulent viscosity hypothesis.

The three equations of the model consist of a scalar equation representing the mass con-
servation, a vector equation expressing the momentum balance and a tensor equation for the
enstrophy tensor. The equation for the trace of this tensor is equivalent to the depth-averaged
kinetic energy equation. The eddy viscosity and the turbulent dissipation are obtained by anal-
ogy with classical empirical laws. The presence of viscosity and dispersion implies the absence
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of discontinuities in the solution.
The model is fully nonlinear and its dispersive properties are equivalent to those of the

Green-Naghdi equations. These properties were further improved by the method of Bonneton et
al. (2011) which can be directly extended to our model. The numerical resolution was obtained
by an asymptotically equivalent formulation of the model equations according to the constant
diagonal method of Lannes & Marche (2015) and by the Discontinuous Galerkin scheme of Duran
& Marche (2017). It is noteworthy that the methods developed for the Green-Naghdi equations
can be readily adapted to this model since the dispersive terms are identical. The tensor equation
includes no dispersive terms nor terms due to the variable bottom. The additional equations
are only transport equations with source terms without high-order derivatives, not even of
second order. Consequently the numerical resolution complexity is not significantly increased
by comparison with the Green-Naghdi equations. Compared to the hybrid or switching methods,
there is no problem of mesh grid sensitivity nor of nonphysical oscillations.

A breaking criterion is not always needed. When it is needed, the breaking criterion of
Kazakova & Richard (2018) can be taken directly as well as the values for the parameters of
the model. There is no need for a breaking termination criterion. There is a low sensitivity to
the precise values of these parameters and also to the discretization parameters, which gives an
appreciable robustness to the model. These improvements are attributable to the presence in
the model of a quantity representing explicitly the turbulence, namely the enstrophy tensor.

The model was used to simulate various cases of wave propagation, such as the run-up and
run-down of a wave over a beach, the propagation of a wave train over a bar and the two-
dimensional waves propagation around an island or around a reef and on a sloping beach. The
agreement with the experimental measures is very good in all cases. In particular the breaking
phenomenon, including the hydraulic jump appearing in a run-down phase, are better described
than in previous depth-averaged models. The numerical simulations show that this new model
is numerically robust and that it has a predictive character and a high physical content without
significant increase in numerical complexity. Further developments will include particle and
sediment transport for applications in coastal erosion.

Acknowledgments. The work was supported by the Service Hydrographique et Océanographique
de la Marine (SHOM).

A Conventions used in tensor calculus

For any vector (first-order tensor) V = Viei , second-order tensors A = Aijei ⊗ ej and A′ =
A′ijei⊗ej and third-order tensor B = Bijkei⊗ej⊗ek (using Einstein notation), the dot product
is defined as

A ·A′ = AikA
′
kjei ⊗ ej , (93)

the double dot product is defined as

A : A′ = AijA
′
ji, (94)

the divergence operator is defined as

divU =
∂Ui

∂xi
, div A =

∂Aij

∂xj
ei , divB =

∂Bijk

∂xk
ei ⊗ ej , (95)

and the gradient of a vector is defined as

gradU =
∂Ui

∂xj
ei ⊗ ej . (96)
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B Equations of the model

The complete system of equations can be written

∂h

∂t
+
∂hU

∂x
+
∂hV

∂y
= 0 (97)

∂hU

∂t
+

∂

∂x

(
hU2 + h3ϕ11 + Π + Π′

)
+

∂

∂y

(
hUV + h3ϕ12

)
= −gh ∂b

∂x
+

∂

∂x

(
4νTh

∂U

∂x
+ 2νTh

∂V

∂y

)
+

∂

∂y

(
νTh

∂U

∂y
+ νTh

∂V

∂x

)
− f ′x (98)

∂hV

∂t
+

∂

∂x

(
hUV + h3ϕ12

)
+

∂

∂y

(
hV 2 + h3ϕ22 + Π + Π′

)
= −gh∂b

∂y
+

∂

∂x

(
νTh

∂V

∂x
+ νTh

∂U

∂y

)
+

∂

∂y

(
2νTh

∂U

∂x
+ 4νTh

∂V

∂y

)
− f ′y (99)

∂hϕ11

∂t
+
∂hUϕ11

∂x
+
∂hV ϕ11

∂y
= 2hϕ11

∂V

∂y
− 2hϕ12

∂U

∂y

+
νT
h

[
8

(
∂U

∂x

)2

+ 4
∂U

∂x

∂V

∂y
+ 2

∂U

∂y

∂V

∂x
+ 2

(
∂U

∂y

)2
]
− Crhϕ11

√
ϕ11 + ϕ22 (100)

∂hϕ12

∂t
+
∂hUϕ12

∂x
+
∂hV ϕ12

∂y
= hϕ12

(
∂U

∂x
+
∂V

∂y

)
− hϕ11

∂V

∂x
− hϕ22

∂U

∂y
+

νT
h

[
3

(
∂U

∂x

∂U

∂y
+
∂V

∂x

∂V

∂y

)
+ 5

(
∂U

∂x

∂V

∂x
+
∂U

∂y

∂V

∂y

)]
− Crhϕ12

√
ϕ11 + ϕ22 (101)

∂hϕ22

∂t
+
∂hUϕ22

∂x
+
∂hV ϕ22

∂y
= 2hϕ22

∂U

∂x
− 2hϕ12

∂V

∂x

+
νT
h

[
8

(
∂V

∂y

)2

+ 4
∂U

∂x

∂V

∂y
+ 2

∂U

∂y

∂V

∂x
+ 2

(
∂V

∂x

)2
]
− Crhϕ22

√
ϕ11 + ϕ22 (102)

where

Π =
gh2

2
+
h2ḧ

3
(103)

Π′ =
h2

2

D

Dt

(
U
∂b

∂x
+ V

∂b

∂y

)
(104)

f ′x =
hḧ

2

∂b

∂x
+ h

∂b

∂x

D

Dt

(
U
∂b

∂x
+ V

∂b

∂y

)
(105)

f ′y =
hḧ

2

∂b

∂y
+ h

∂b

∂y

D

Dt

(
U
∂b

∂x
+ V

∂b

∂y

)
(106)

and

νT =
h2

R

√
ϕ11 + ϕ22. (107)
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C Numerical scheme

We consider a computational domain Ω ⊂ R2, discretized with a conform triangular mesh Th.
Denoting by T a generic element of the triangulation and by ∂T its boundary, we introduce the
broken polynomial space

Pk(Th) :=
{
v ∈ L2 | v|T ∈ Pk(T ) , ∀T ∈ Th

}
, (108)

where Pk(T ) denotes the space of two-variable polynomials in T of degree at most k. The area of
T is denoted |T | and the notations hT , pT will respectively stand for its diameter and perimeter.
In the following, the notation Nk is employed for the number of freedom degrees, equal to

dim(Pk(T )) = (k+ 1)(k+ 2)/2. The approximation space is Xh = Pk(T )×
(
Pk(T )

)2× (Pk(T )
)3

.
The computational time interval is denoted [0, tmax] and discretized in a sequence of intermediate
times (tn)n=0,N with a local time step ∆tn = tn+1−tn. With notations similar to the continuous
frame, we hence seek for an approximate solution W h = (Zh, hU

T
h , hϕ11h, hϕ12h, hϕ22h) of

(79). The resulting semi-discrete formulation can be expressed through the local statement:
find W h ∈ Xh such that:∫

T

d

dt
W hπh dx−

∫
T
F(W h, bh) · gradπh dx+

∫
∂T

F(W h, bh) · n∂T πh ds

+

∫
T
D(W h, bh)πh dx =

∫
T
S(W h, bh)πh dx ,

(109)

for all πh ∈ Pk(Th) and all T ∈ Th. In the formulation above, bh stands for a polynomial
expansion of the topography b on Pk(Th) and n∂T is the unit outward normal to the boundary
∂T . Given a local polynomial expansion basis {φi}Nk

i , the local restriction of the solution on a
given element T can be written as:

W h|T (x, t) =

Nk∑
i=1

W i(t)φi(x) , x ∈ T , t ∈ [0, tmax] , (110)

where {Wi}Nk
i are the local expansion coefficients, so that the formulation (109) leads to

Nk∑
i=1

d

dt
W i(t)

(∫
T
φiφj dx

)
−
∫
T
F(W h, bh) · gradφj dx+

∑
F⊂∂T

∫
F
F̂T,Fφj ds

+

∫
T
D(W h, bh)φj dx =

∫
T
S(W h, bh)φj dx , 1 ≤ j ≤ Nk . (111)

In the above expression, F̂T,F are interface terms approximating the projection of the fluxes
F(W h, bh).nT,F along the unit outward normal corresponding to the face F of T , defined in the
spirit of finite-volume methods. In Duran & Marche (2017), the preservation of motionless steady
states Z = cte, U = 0 is guaranteed for solutions of an arbitrary order based on an adaptation of
the hydrostatic reconstruction (Audusse et al. 2004). As a matter of fact, it can be shown easily
that the pre-balanced formalism allows a trivial treatment of such configurations, as soon as the
line and surface integrals are computed exactly and the topography admits a continuous discrete
representation (which is automatically ensured with nodal expansions). As a consequence, with
the same choice of nodal expansion basis {φi}Nk

i for the bathymetry, there is no need to introduce
modified states or additional correction term in the numerical fluxes. In light of this, classical
Rusanov fluxes are used to evaluate the interface terms:

F̂T,F = Fh(W−,W+, b−, b+,nT,F )

=
1

2

(
F(W−, b−) · nT,F + F(W+, b+) · nT,F

)
− a

(
W+ −W−) , (112)
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where the superscripts “ − / + ” refer to the interior and exterior states respectively and
a = maxT∈Th λT , λT referring to the maximum wave speed at the level of the element T :

λT = max
∂T

(
U · n∂T ±

√
gh+ 3h2n∂T ·ϕ · n∂T

)
. (113)

Based on the works of Cockburn & Shu (2001), the associated CFL condition is

λT
pT
|T |

∆tn ≤ 1

2k + 1
, ∀T ∈ Th , (114)

but the presence of viscous terms in the model may constrain the time step to a parabolic
stability condition. This point has to be taken into account during our numerical simulations.
An implicit treatment of these terms would allow to get rid of this restriction, but at the price
of partially loose the computational efficiency and the ease of implementation of the method.
Such investigations are left for future works.
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blement pareilles de la surface au fond. J. Mathématiques Pures et Appliquées. Deuxième Série
17, 55–108.

Brocchini, M. 2013 A reasoned overview on Boussinesq-type models: the interplay between
physics, mathematics and numerics. Proc. R. Soc. A 469, 20130496.

do Carmo, J. S. A., Ferreira, J. A., Pinto, L. & Romanazzi, G. 2018 An improved
Serre model: Efficient simulation and comparative evaluation. Appl. Math. Model. 56, 404–423.

Chen, Q., Dalrymple, R. A., Kirby, J. T., Kennedy, A. B. & Haller, M C. 1999
Boussinesq modeling of a rip current system. J. Geophys. Res. 104, 20617–20637.

Chen, Q., Kirby, J. T., Dalrymple, R. A., Kennedy, A. B. & Chawla, A. 2000
Boussinesq modeling of wave transformation, breaking and runup. II: 2D. J. Waterw. Port
Coast. 126, 48–56.

Cienfuegos, R., Barthelemy, E., Bonneton, P. 2010 Wave-breaking model for Boussinesq-
type equations including roller effects in the mass conservation equation. J. Waterway Port
Coast. Ocean Eng. 136, 10–26.

36



Cockburn, B. & Shu, C. W. 1998 The local discontinuous Galerkin method for time-
dependent convection-diffusion systems. SIAM J. Numer. Anal. 141, 2440–2463.

Cockburn, B. & Shu, C. W. 2001 Runge-Kutta discontinuous Galerkin methods for
convection-dominated problems. J. Sci. Comput. 16, 173–261.

Debieve, J. F., Gouin, H. & Gaviglio, J. 1982 Evolution of the Reynolds stress tensor
in a shock wave–turbulence interaction. Indian. J. Technol. 20, 90–97.

Duran, A. & Marche, F. 2015 Discontinuous Galerkin discretization of a new class of
Green-Naghdi equations. Commun. Comput. Phys. 17, 721–760.

Duran, A. & Marche, F. 2017 A discontinuous Galerkin method for a new class of Green-
Naghdi equations on simplicial unstructured meshes Appl. Math. Model. 45, 840–864.

Filippini, A. G., Kazolea, M. & Ricchiuto, M. 2016 A flexible genuinely nonlinear
approach for nonlinear wave propagation, breaking and run-up. J. Comput. Phys. 310, 381–
417.

Fuhrman, D. R. & Madsen, P. A. 2008 Simulation of nonlinear wave run-up with a
high-order Boussinesq model. Coast. Eng. 55, 139–154.

Gavrilyuk, S. & Gouin, H. 2012 Geometrical evolution of the Reynolds stress tensor. Int.
J. Eng. Sci. 59, 65–73.

Green, A. E. & Naghdi, P. M. 1976 A derivation of equations for wave propagation in
water of variable depth. J. Fluid Mech. 78, 237–246.

Hattori, M. & Aono, T. 1985 Experimental study on turbulence structures under break-
ing waves. Coast. Eng. Jpn 28, 97–116.

Higgins, C., Parlange, M. B. & Meneveau, C. 2004 Energy dissipation in large-eddy
simulation: dependence on flow structure and effects of eigenvector alignments. In Atmospheric
turbulence and mesoscale meteorology (ed. E. Fedorovich, R. Rotunno & B. Stevens), pp. 51-69.
Cambridge University Press. Cambridge.
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