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PRELIMINARY DESIGN OF AEROSPACE LINEAR ACTUATOR HOUSINGS 
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ABSTRACT 

Purpose - Aerospace actuation systems are currently tending to become more electrical and fluid free. 
Methodologies and models already exist for designing the mechanical and electrical components but the 
actuator housing design is still sketchy. This paper proposes preliminary design models of actuator housing 
that enable various geometries to be compared without requiring detailed knowledge of the actuator 
components. 

Design/methodology/Approach - The approach is dedicated to linear actuators, the most common in 
aerospace. With special attention paid to mechanical resistance to the vibratory environment, simplified 
geometries are proposed to facilitate the generation of an equivalent formal development. The vibratory 
environment imposes the sizing of the actuator housing. Depending on the expected level of details and 
vibration boundary conditions, three levels of modeling have been created. 

Practical Implications - This approach is applied to a comparison of six standard designs of linear actuator 
geometries after validation of the consistency of the different models. Early conclusions can be drawn and 
may lead to design perspectives for the definition of actuator architecture and the optimization of the design. 

Finding - This article shows that the vibrations induced by aircraft environment are not design drivers for 
conventional hydraulic actuators but can be an issue for new electromechanical actuators. The weight of the 
latter can be optimized through a judicious choice of the diameter of the housing. 

Originality/value - This article has demonstrated the importance of the vibratory environment in the design of 
linear actuator housing, especially for electro-mechanical actuators with important strokes. Developed 
analytical models can be used for the overall design and optimization of these new aerospace actuators. 

 

Keywords electro-mechanical actuator, housing, preliminary design, vibration, Modelica, modeling 

Article Classification Research paper 

 
  



 2/26 

INTRODUCTION 

The current technical developments in air transport call for cheaper, safer and more environmentally friendly 
systems, along with ever shorter times to market and an increasing demand for quality and advanced 
functions. This trend is propagating to actuation for landing gears and flight controls, which are often the main 
secondary power consumers. Power-by-wire (PbW) actuation, in particular, is an attractive way to remove 
centralized hydraulic power networks, by distributing power through electric wires to the power users. PbW 
actuators have recently been introduced in the new generation of commercial aircraft (Van den Bossche, 
2001) (Todeschi, 2010), in replacement of conventional servo-hydraulic ones (SHA). For example, the Boeing 
B787 integrates EMA spoiler actuation, as does the Airbus A380 (backup only), and electrical brakes. Space 
launchers are following the same trend for thrust vector control (TVC) as illustrated by various NASA 
projects (Cowan and Weir, 1993) and, more recently, by the European VEGA project (Dée, Vanthuyne and 
Alexandre, 2010) .  

EMAs are currently being carefully considered by aircraft makers and equipment suppliers as they 
completely remove hydraulics, even at the actuator level. Unfortunately, EMAs are still heavier and bulkier 
than their SHA counterparts. Besides their direct impact on the total aircraft mass, they make the actuator 
more sensitive to the vibratory environment and require special attention during preliminary sizing and 
assessment (Grand and Valembois, 2004) (EUROCAE, 2005). In particular, the EMA housing often appears 
as a major contributor to the overall actuator mass (it may represent thirty to forty percent of the mass) and 
also impacts integration and actuator optimization. 

In the early phases of an actuation project, only a few design parameters are available but major technical 
decisions have to be taken (INCOSE, 2004). However, designers still lack simple and expressive (i.e. with an 
adequate level of detail) models that suit the needs of preliminary design. In practice, the housing is generally 
first defined through pure geometrical considerations to integrate the EMA parts while keeping within the 
allocated housing. Resistance to vibration is assessed a posteriori during real vibration tests. It is clear that the 
housing sizing is still poorly addressed in common practice for preliminary design. The definition of actuator 
housing is a complex task because it depends on the geometries of other parts and their relative arrangement. 

The present work aims to offer efficient, simple tools for fast and easy preliminary design of housings for 
linear actuators, considering their resistance to vibrations. It will complete the models for the design of power 
transmission components (electric motors, reducers, bearings, etc.) that are being developed to provide an 
integrated preliminary design process with associated in-house CAE tools (Liscouet et al., 2011) (Budinger et 
al., 2012).  

Section 2 starts with a review of the state of the art in actuator housing design. Then, it introduces the 
different topologies of linear actuators, which leads to a proposal for three generic representations of the 
actuator housing geometry. It ends by reviewing the sizing stresses and addressing the state of the art in 
vibration studies. In section 0, the analytical models related to the first two representations are derived  using 
Rayleigh theory, which allows the mechanical stress versus the geometry to be studied in a single model. 
Section 4 deals with the third representation. In this section, the transfer matrix theory enables a modular 
approach which is implemented as a dedicated tool with the Modelica simulation language. Section 5 starts by 
comparing the accuracy of the three representations. The second part of this section is dedicated to the 
assessment of each method on real cases, considering six common geometries of servo-hydraulic, electro-
hydrostatic and electromechanical actuators. Section 6 uses the results obtained to create surrogate models of 
housings sized to withstand vibration-induced stress. This proposal finally provides an automated way of 
linking the overall actuator mass to the actuator requirements at the very beginning of a project. 
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STATE OF THE ART ON DESIGN DRIVERS AND MODELLING METHODS FOR LINEAR 

ACTUATOR HOUSINGS 

Various candidate topologies can meet the requirements of a given actuator. As far as linear actuators are 
concerned, the most common design involves a screw/nut to transform rotation into translation. Although the 
actuator housing depends strongly on how the internal components are arranged, it can be represented by a 
simplified model for vibration studies, as described in section 2.1. However, the actuator housing also has to 
meet its own requirements and design constraints. This particularly concerns its resistance to the static and 
dynamic stresses that propagate from the actuated load through various load paths within the actuator, as 
explained in section 2.2. The stresses induced by the vibratory environment are addressed in section 2.3. 

TOPOLOGICAL ARCHITECTURES OF LINEAR ACTUATOR HOUSINGS IN AEROSPACE 

The major mechanical components used in aerospace EMAs, as seen Figure 1 on several examples of 
applications, are summarised in (Budinger et al., 2012). Different classes of generic components are pointed 
out, such as brushless motors (cylindrical or annular), mechanical power transmission and transformation (e.g. 
gearboxes or nut-screw), mechanical bearings and joints (e.g. thrust bearings or spherical end bearings) and 
possibly mechanical power management (e.g. clutches or brakes). It is observed that among all the candidate 
topologies of components arrangements, the parallel axis design is widely used. That is why it will be 
considered in the following sections. 

As presented in (Karam and Maré, 2006), standard assemblies of in-line linear actuators and their 
housings are generally similar. Four generic designs can be associated with the transformation of rotation into 
translation: rotating nut or translating nut, standard or inverted screw. A sample of aerospace linear actuator 
cross sections is represented in Figure 1. 

 
FIGURE 1 Different architectures and scales of standard EMA compared with a hydraulic actuator 

 

Long and wide EMA type, main stage TVC of VEGA launcher  
(Dée, Vanthuyne and Alexandre, 2010) (Vanthuyne, 2009) 

 

Translating screw type EMA of F-18 
(Jensen, Jenney and Dawson, 2000) 

 

Long and thin EMA type nose landing gear actuator (Chevalier, 
Grac and Liegois, 2010) 

 

Hybrid type EBMA of A400M landing gear doors (Chevalier, 
Grac and Liegois, 2010) 

 

Short EMA type spoiler (Davis, 1984) 

 

Hydraulic type SHA, Airbus A320 Aileron 
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In each case, the shape of the actuator housing can be modelled with the same geometry. For this reason 
and similarly to the hydraulic actuator, modelling the linear actuator housing is proposed with different levels 
of details as follows: 

• In the simplest representation of  

• Figure 2 - a, the rod and the body are considered as a single hollow cylinder while an equivalent 
mass is introduced as a global lumped inertial effect coming from the mechanical transmission 
components. 

• In the middle representation of  
• Figure 2 - b, the rod is dissociated from the housing, each body being considered as a single 

cylinder. 
• In the more realistic representation of  
• Figure 2 - c, the rod and the body are made of an assembly of cylinders whose masses are 

representative of the actuator integrated components. 
For any model, the mass of the cylinder is distributed assuming a constant density. 
This proposal enables analytical approaches to be used that take advantage of beam theory. In the 

particular case of “hybrid” actuators (Maré, 2011), that is to say EMA coupled with hydraulic actuators in the 
same physical unit, the mass of the fluid is added into the model. All the vibration studies were conducted on 
totally deployed actuators to perform the sizing in the most critical situation in terms of mechanical stresses. 
 
FIGURE 2 PROPOSED MODELS OF A STANDARD LINEAR ACTUATOR HOUSING 

 
 

 
 
 
 

 
 
 
 
 

 

 

B – Two-body model 

A – Single-body model 

C - Realistic model 
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HOUSING FUNCTIONS AND MAIN DESIGN DRIVERS 

The main functions of the housing of actuators are the following (Boubet, 1998): Integration (joints and 
bearings) of the actuator components, Sealing towards the outside for lubricant, Sealing towards the inside for 
humidity or dust (breath phenomena), Thermal dissipation of energy losses towards the environment, 
Protection of internal components against shocks and vibrations, Anchorage to the airframe. 

From a purely mechanical point of view, the design of the EMA housing has to focus on the elementary 
forces acting on the housing, which can be divided into two categories: the mechanical stresses induced by the 
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power transmission to the load, which are low frequency (static), and the vibratory induced stresses, which are 
very dynamic: 

• Static load sizing generated by: 

− Tensile/compressive/buckling forces that are transmitted through the rod to the nut and the screw, 
then to the thrust bearing and finally to the housing. The high number of cycles generally requires 
the fatigue limits of materials to be taken into account. 

− Shearing and bending stresses that are due to the masses of components and friction torques in 
spherical bearings or anchorage points. 

− Torsion stresses induced by friction and reaction torques of motor / reducers / nut screw.  

• Dynamic stress sizing generated by: 
− Transversal vibrations due to the vibratory environment which can generate important 

mechanical bending stresses. 

− Transient rotational, longitudinal and transversal loads (e.g. at stop-end). 
The tensile/compressive/buckling stress is the most significant static load that the actuator receives. Other 

static loads are often considered as unimportant and stemming from parasitic efforts. The path of the various 
static or dynamic loads is represented for a generic actuator on FIGURE 3. It has to be noticed that spherical 
end-bearings can, in some cases, perform an anti-rotation function through the actuator’s mechanical 
connections (making a gimbal link at the actuator mechanical interfaces). 

FIGURE 3 LOADS PATH IN A GENERIC EMA 

 

 Static loads: tensile/compressive 

 Static loads: bending, shearing, torsion 

 Dynamic loads: transversal vibrations, shocks 

 

STATE OF THE ART OF MECHANICAL HOUSING DESIGN IN HARSH VIBRATORY ENVIRONMENT 

Previous actuator studies and experiment feedback have shown that the stresses induced by the vibratory 
environment can be much more significant than “static” loading, especially for linear actuators that are very 
slender (slenderness λ=L/D, ratio of the extended length to the average diameter). For this reason, the state of 
the art focuses on the design of housings of mechanical structures in a harsh vibratory environment with 
special reference to aerospace. 

Current methods for the design of housings in vibratory environments In the literature, few publications 
dealing with the design of housings are available. The most common methods used can be divided into two 
categories. On the one hand, empirical methods (Morgado, Branco and Infante, 2008) (Rebbechi, 1999) use 
experimental results for fatigue calculations. On the other hand, finite element methods (FEM) (Samuelson, 
Holm and Esping, 1991) (Topaç, Günal and Kuralay, 2009) detect numerically critical points in fixed 
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conditions and for a given geometry. However, it must be pointed out that the proposed methods also apply to 
housing geometries that are very different from the EMA geometries. Experimental methods are often used 
because they provide reliable results. Unfortunately, they only apply to particular geometries of existing 
hardware. Similarly, FEM studies also require the 3D geometry to be defined. In a model-based process, the 
preliminary design of an actuator should take advantage of fast definition of housings to meet the integration 
requirements and to assess the candidate concepts and topologies, without detailed knowledge of the housing 
geometry. As the above-mentioned approaches cannot meet this need, developing simple analytic methods is 
of great interest. Although these methods require marked simplifications, it will be shown below that they can 
provide useful predictions. 

Aerospace vibratory environment simplification through sinus excitation In aerospace, the performance 
requirements concerning vibrations generally refer to the DO160E standard (EUROCAE, 2005), which 
considers two aspects: resistance to impact and crash, and resistance to vibrations. The test curves of vibratory 
levels versus frequency depend on the type of aircraft, the device location and the test category (standard, high 
level and short duration, robust). Two different excitations can be performed: sinusoidal test procedure or 
random test procedure with a given acceleration power spectral density. In this paper, a sinusoidal acceleration 
excitation within the [5 Hz, 2000 Hz] frequency range will be considered. The acceleration magnitude 
depends mainly on the location of the device on the aircraft and on the type of aircraft. In some cases, a power 
spectral density over a narrow frequency interval can be translated into an equivalent sinusoidal excitation. 

ANALYTIC MODEL WITH RAYLEIGH THEORY 

In this section, a linear hybrid EMA filled with oil will be assumed to be equivalent to the two simplified 
geometries of  

FIGURE 2 - A and  

FIGURE 2 - B: 

• The single-body model composed of one hollow cylinder, of interior diameter d, thickness e, and 
length L, with spherical joint on its ends. 

• The two-body model composed of two perfectly embedded hollow cylinders 1 and 2, each with a 
length L/2; d1 / d2 and e1 / e2 being the interior diameter and thickness of cylinders 1 and 2 
respectively. 

For these two geometries, two effects can be taken into account for the vibratory sizing of actuators: the 
inertial effect of the embedded mass of the power transmission mechanical components (especially the 
roller/screw) with a mass Mcomp ( 

FIGURE 2) and the inertial effect of the hydraulic fluid of density ρh. 

MODELLING ASSUMPTIONS AND EQUIVALENT SYSTEM 

The geometries of FIGURE 1 or  
FIGURE 2 can be seen as continuous structures with distributed mass and compliance effects with an infinite 
number of resonance modes. However, the magnitude of the displacements of the first natural frequency is 
generally higher than those of the other resonance modes. Consequently, as the maximum stress is 
proportional to displacement (Harris and Piersol, 2001), only the first mode will be studied here. The damped 
mass-spring system presented on  
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FIGURE 4 is the most usual way to study mechanical system vibrations through an equivalent lumped 
parameter model. In this scheme, the notations and assumptions are the following: 

− u0 the displacement of the system mass Meq from its equilibrium position;  

− Keq the stiffness of the system (perfect spring with zero mass); 
− Ceq the equivalent structural damping coefficient (perfect damper with zero mass); 

− F the excitation force. 
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FIGURE 4 MASS SPRING SYSTEM WITH DAMPING 

 

Newton’s second law applied to the moving body enables the Laplace function between the displacement 
u0(t) and the excitation load F(t) to be calculated: 
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 Considering a sinusoidal excitation of the mass with a force of magnitude F0 (which means 
F(t)=F0.sin(ωt)), the magnitude of the displacement becomes: 
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Tests performed on industrial prototypes show a wide range of practical values for the damping 
coefficient ξ or the equivalent mechanical quality coefficient Q. Experiments give typical values for Q 
between 10 and 50, depending on the application and boundary conditions. For structural dynamic models, in 
the absence of better information, it is normally acceptable to assume a value of Q=30 (Agency, 2007). A 
theoretical study carried out in the laboratory but not presented in this article, has shown that the quality 
coefficient depends strongly on test conditions, in particular on the excitation accelerations. This is due to 
nonlinear effects (e.g. contact compliance, dry friction, etc.). That is why particular attention should be paid to 
this coefficient. 

MODELING PRINCIPLES   

Wave equation The bending vibrations of a metallic tube can be studied using a beam model of the strength of 
materials. To establish the wave equation, an elementary volume of the beam is isolated, with cross-section S 
and second area moment I. The orthogonal and rotational displacements are noted u and Ψ respectively. The 
internal efforts are expressed as the bending moment Tf and to the shear force FT respectively. The bending 
moment, shear force and rotation displacement are obtained by derivation of the orthogonal displacement. 

Newton’s second law applied to this elementary volume allows the wave equation to be written (Gerardin 
and Rixen, 1993) (Hatch, 2001). The solution is generally noted in complex variables, assuming a sinusoidal 
shape of the form: 

[ ]tjjexAtxU ω−= ).(Re),(  
( 3 ) 

Thus, the differential equation of elastic wave propagation admits equation (6) as solution. 

)cosh(.)sinh(.)cos(.)sin(.)( kxdkxckxbkxaxA +++=  ( 4 ) 

where k is a coefficient depending on the pulsation and geometry and where a, b, c and d are parameters 
associated with the boundary conditions. 
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Single body model In the geometry of FIGURE 5, displacements U(x,t) are written as a function of the 
displacement of the center of the beam (U(0,t)=u0(t)). The boundary conditions allow the unknown 
coefficients a, b, c and d to be defined. Finally, the displacement expression is: 
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As exact expressions can quickly become too heavy to handle when the model has more than one 
body, it is possible and common to approximate the displacement with a polynomial function.  

FIGURE 5 PARAMETERIZING THE SINGLE BODY MODEL DEFORMATION 

 
According to the Lagrangian approach, and considering the assumptions of part 3.2.1, Meq, the equivalent 

mass and Keq the equivalent stiffness can be calculated from the kinetic energy and the energy of elastic 
deformation (Gerardin and Rixen, 1993) (Lagrange, 1853). In the present case, if the inertial torque and the 
deformations due to shearing are neglected, the expressions become: 
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where ρ is the housing density and L its length, the other parameters being described in section 3.2.1.  

Bending vibration tests are performed by applying the same displacement to the beam anchorage points 
with a given acceleration magnitude. Thus the problem is similar to a fixed beam subjected to a given 
acceleration (a(t)=a0.sin(ωt)). By writing the equation of the total work, it is possible to extract the excitation 
force applied to the center of the beam F(t): 
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If the fluid effect and the mass of power transmission components are added, then expressions (6) and (8) 
become: 

comphheq M
L

S
L

SM ++=
2

.
2

. ρρ
      








 ++=⇒ comp
hh M

π

L.S.ρ.

π

L.S.ρ.
.aF

22
00

 ( 9 ) 

where Sh is the hydrostatic area and Mcomp the components of mechanical transmission mass. 

With mass and stiffness expressions, it is possible to calculate the first resonance frequency of the 
housing subjected to its own weight. At this resonance, the maximum deformation and the maximum stress 
under vibrations are thus expressed as a function of the acceleration magnitude, quality coefficient and 
housing geometry. The maximum stress is therefore linked to the resonance frequency. Materials, quality 
coefficient and acceleration amplitude depend on the testing conditions and on the excitation input. 

Thus, σmax maximum mechanical stress can be evaluated using:  
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where ymax is the position along the y axis on the section area in which the stress is calculated . 

Two-body model In the geometry of FIGURE 6, displacements Ui(x,t) are written as a function of the 
displacement of the center of the beam ∆u(t). Two hollow cylinders are assumed to represent the left hand side 
(cylinder 1 with displacement U1(x,t)) and the right hand side (cylinder 2 with displacement U2(x,t)) of the 
housing. 

FIGURE 6 PARAMETERIZING THE TWO-BODY MODEL DEFORMATION 

 
To simplify the development analysis, a polynomial approximation of the displacement of each side may 

be preferred to the exact sinusoidal expression. For the single body geometry, such an approximation gives 
results with a 4% error compared with the cosine beam shape of equation (5). In the two-body model, the 
displacement of each side is a function of x and the five constants ai, bi, ci, di, ei of the polynomial 
representation.   
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The boundary conditions define all the constants of polynomial expressions U1 and U2 except one. That is 
why the final expressions of deformations are parameterized by the remaining coefficient b. 
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with r=E2I2/(E1I1); E1 , E2 being the Young’s modulus of the two housing cylinders; I1 , I2  the second 
area moments. 

In the Lagrangian approach (Lagrange, 1853), the equivalent mass and the equivalent stiffness are 
expressed as a function of the unknown coefficient b. It is then possible to determine it by adding this 
coefficient in the unknowns of the Lagrangian of the system: 
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In the case of sinusoidal displacement u0(t) at a pulsation ω, the Lagrange’s equations become: 
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which gives two equations with two unknowns: b and ω. The expressions for the coefficients αi, βi, γi are 
given in appendix A. Meq and Keq have the following form: 
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Lagrange’s equations can be written in a different way in order to solve the problem. And b is the 
solution of the quadratic equation that maximizes the displacement: 
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As for the one-body model, the bending vibration consist in applying a given acceleration 
(a(t)=a0.sin(ωt)) to a fixed beam. Writing the equation of the total work, the excitation force can be extracted: 
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Once the coefficient b is known, the maximum stresses in cylinder 1 and in cylinder 2 are obtained at 
x=0 from the following equations:  
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where u0,max is calculated from equation (2). 

In conclusion, with either the single- or the two-body model, the maximum stress in the housing can be 
calculated analytically as a function of the chosen geometry and the acceleration fixed for the ends. 

TRANSFER MATRIX MODEL 

This model constitutes an additional step towards a more realistic representation while working with 
simplified geometries and using formal approaches. Transfer matrices (Zhou, 2000) (Lin, 1969) can be used to 
represent body and rod as an assembly of embedded cylinders. This method makes it possible to assemble a 
finite number of cylinders representing the main part of a linear actuator. Another big advantage is that this 
method allows major local phenomena that influence sizing to be observed and studied. 

HYPOTHESIS AND METHODOLOGY 

The EMA housing is assumed to be made of embedded cylinders. The first step of the method is to calculate 
the frequency response of the entire model in response to the forced excitation at its ends. Thus, the 
mechanical stress can be drawn as a function of the frequency and the first resonant frequency can be 
determined. 

The second step is to study the maximum mechanical stresses in each cylinder for a given frequency (in 
particular the first resonant frequency) from the values of bending moment and shear force. 

The displacement, the rotation, the shear force and the bending moment in each section are calculated 
with the transfer matrix method, often adopted in the vibratory problems, in particular in acoustics and 
ultrasonic applications. U, Ψ, F and T the transversal, the angular deformation, the shear force and the bending 
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moment respectively, can be written in a vector of transversal and rotational flow Ω. The vectors of the two 
ends surfaces of a rod (with fixed cross section S and length L) can be linked with a transfer matrix [Γ]:  
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 ( 19 ) 

Constituents of transfer matrix [Γ] are developed in appendix B. 

The method uses the complex expression of the displacement that is the solution of the wave equation of 
bending. For each pulsation ω, the magnitude of the displacement is given by equation (3). The quantities Ψ, 
F, T are calculated from the derivatives of U. 

A discretization inside the rod with sections of length x ( [ ]Lx ;0∈  ) is possible and the vector of flow can 

be noted:  
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 ( 20 ) 

Whatever the number of cylinders, a global matrix of the entire assembly can be obtained from the 
product of the matrices associated with any section. It is then possible to use the boundary conditions at both 
extremities of the housing to calculate the initial vector Ω1(0). Once this initial vector has been determined, 
each of the other vectors Ωi(x) is calculated. This process is repeated for each frequency of excitation. The 
frequency response of the entire structure can be drawn, choosing the shear force at the extremity as the 
output. Then, the displacement, the shear force and the bending moment are presented as a function of x in 
order to calculate the stress in each section of the model, at the resonance frequency. 

MATRIX IMPLEMENTATION IN A MODELICA LIBRARY 

Modelica models (Mattsson, Elmqvist and Otter, 1998) were elaborated with an object-oriented view that 
facilitated the study of various arrangements and more localized phenomena, such as viscous friction at the 
anchorage points. For frequency domain studies, a complex representation was used. To solve this type of 
dynamic problem, in particular vibratory, acoustic or electronic, the use of standard Modelica libraries enables 
considering variables and equations using complex numbers (Kûlhnelt, Baüml and Haumer, 2009) (Haumer et 
al., 2008). Consequently, the tools of the Modelica library created in the laboratory were extended from other 
types of applications (Otter, 2006) (Olsson et al., 2009). Furthermore, as previously mentioned, object-
oriented models targeting critical points in the actuator can be implemented in Modelica language in order to 
study different candidate designs quickly. The library is made of several types of generic elements which can 
be combined to model most types of linear actuators. Each element transmits signals of vibrations from a 
source: acceleration, speed and strength. To simplify and to decrease the number of library components, a 
generic model source was implemented, including the various inputs for the boundary conditions. The model 
presented in   
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FIGURE 7 is an actuator defined as a combination of cylinders. This model is the most complete of the library 
because it integrates the tools for calculating an assembly of many tubes and useful tools for visualization 
during the sizing of the housing. The elementary models of beams, stiffness and mass, which can have 
transverse or rotational displacements, were also implemented to isolate other relevant effects if required. 
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FIGURE 7 MODELICA/DYMOLA MODELS AND RESULTS OF TRANSFER MATRIX MODEL FOR THE EXAMPLE OF EMA 

 
For stress analysis, the first two natural frequencies were studied. They are schematically presented in 

FIGURE 1  with an example made of 8 cylinders having dimensions inspired by the EMA of FIGURE 1 - B. The 
cylinders that contain the lumped mass of the internal mechanical parts have a higher density than the one 
representing the housing since their cross sections do not vary but density has to represent distribution of both 
masses : 

• Based on the model of the actuator, the normed stress (stress divided by admissible stress) response 
graph is drawn versus frequency. 

• To point out the critical zones where these stresses apply, a second tool is introduced to visualize the 
stress or the displacement of the actuator with the chosen resonant frequency. A better display of the 
stress locations is provided by dividing each of the cylinders of the model into portions. The 
resolution is chosen by the designer according to the simulation time constraints. A gray scale is used 
to represent the qualitative magnitude of stress within the cylinder portions. The lighter the color, the 
higher the stress. The more numerous the portions of cylinder, the better the localization of dominant 
effects. When the unitary stress representation shows a totally white zone, the elastic limit of the 
material has been exceeded. 

APPLICATIONS TO DIFFERENT HOUSINGS 

In this section, the consistency of the single-body, two-body and realistic model results are shown in TABLE 1. 
Different housing geometries are modeled and compared in TABLE 2. Then, for “hybrid” actuators, 
conclusions are drawn on the influence of the hydraulic fluid and of the mass of the mechanical transmission 
components. 

VALIDATION OF THE THREE MODELLING APPROACHES 
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Different models were applied to the example of an actuator. For each of those models, stress was calculated 
for vibration conditions set to a 10 g magnitude considering three different scenarios: only housing mass 
considered, additional fluid mass (housing full of oil), and vibrations of both components’ mass and fluid 
mass. The dimensions were inspired by one of the real actuators presented in Figure 1.  

The results summarized in TABLE 1 show the global consistency of the methods. It can be seen that the 
calculated stresses and natural frequency increase when considering a dissymmetric housing is considered 
while deformation decreases. This can be explained by the fact both equivalent mass and equivalent stiffness 
increase while the rod (smallest cylinder) stay the same and, therefore, its maximum stress increases. Finally, 
the inertial effect of the hydraulic fluid is relatively small compared with that of the components of the 
mechanical transmission. This emphasizes the need to take more additional precautions for the EMA housing 
than for those of SHA. 

Those results have to be compared with the experimental measurements communicated by our industrial 
partners that gave a first natural frequency of 120Hz while the maximum stress was equal to 1300MPa. 

TABLE 1 COMPARISON OF RESULTS FOR DIFFERENT HOUSING MODELING AND CALCULATION METHOD 

 Parameters 
Single body Two bodies 8 bodies 

Sinusoidal 
approach 

Polynomial 
approach 

Transfer 
matrix 

Polynomial 
approach  

Transfer 
matrix 

Transfer 
matrix 

Case Geometry 
Length L=0.74m; diameter d=0.026m; 

thickness e=0.005m. 

Lengths L1=L2=0.37m; 
diameters d1=0.080m, 

d2=0.026m; thicknesses 
e1=e2=0.005m. 

Closest to 
reality. 

No 
additional 

mass 

Maximum displacement  
(10-3m) 

3.5 3.5 3.4 3.4 3.3 2.9 

Maximum stress (MPa) 237 229 237 426 427 502 

1st resonance frequency 
(Hz) 

165 165 164 182 175 187 

Additional 
fluid mass 
(ρh=800kg/

m3) 

Maximum displacement  
(10-3m) 

3.9 3.9 3.8 4.3

 

4.3 3.2 

Maximum stress (MPa) 263 255 263 560 561 567 

1st resonance frequency 
(Hz) 

155 157 156 161 155 177 

Additional 
fluid mass 

and 
component

s mass 
(4kg) 

Maximum displacement  
(10-3m) 

11.6 11.6 11.5 8.8

 

8.7

 

6.9 

Maximum stress (MPa) 793 765 926 1146 1225 1254 

1st resonance frequency 
(Hz) 

83 83 82 104 101 122 
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COMPARISON OF DIFFERENT CURRENT ARCHITECTURES OF EMA HOUSINGS  

In the preliminary phase, choices have to be made in order to define the actuator architecture and its housing 
geometry, assessing different candidate solutions. To illustrate these studies, the different cases for a standard 
geometry of actuator housing, presented in FIGURE 1, were compared, under the following assumptions: 

− Components of mechanical power transmission are not considered in the calculation of equivalent 
stiffness but have an influence on the equivalent mass. 

− In the same way, the hydraulic fluid does not influence the equivalent stiffness yet it has an influence 
on the mass through its density of ρh=800 kg/m3. 

− Test conditions are the same for all cases: 10 g acceleration and quality coefficient equal to 30. 
 

TABLE 2 COMPARISON OF CALCULATED STRESS AND FIRST FREQUENCY FOR STANDARD ACTUATOR HOUSING 

GEOMETRY 

Comparison Standard model 

Theoretical maximum stress 
(MPa) 

Theoretical 
frequency 

(Hz) 

Theoretical 
maximum 

displacement 
(10-3 m) 

Polynomial 
approach  

Transfer matrix 

Hydraulic / 
EMA 

EMA   

 

349 367 179 3.1 

EMA   

 

1178 1310 73 15.8 

EHA     

 
181 188 280 1.1 

Long / Short 
actuator 

Long EMA  

   

1178 1310 73 15.8 

Short EMA     

 

161 180 660 0.2 

Large / 
Small 

diameter 

EBMA1   

 

1146 1254 122 6.9 

EBMA2  

 

209 238 256 1.3 

 
These results suggest the following conclusions: 

• The maximum stresses and the displacement are greater in EMA than in SHA. Moreover, these 
stresses are close to the elastic limit of the material or even greater in some cases. Thus, vibration 
induced stress is a sizing factor for EMA whereas in hydraulic actuators, it remains low in comparison 
with pressure-induced stress. This comes from the added mass of components of the mechanical 
power transmission, which strongly impacts mechanical stresses. 

• Stresses are directly related to the length of the actuator. Compact actuators are stiffer than long 
actuators which, consequently, have a higher maximum displacement and induced stress. 
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• Increasing diameter strongly decreases the maximum stress and the displacement of the housing. To 
design actuator housings, it is better to choose large diameter rather than large thickness as long as the 
actuator fits into the on-board compartment. 
 

Concerning the methods, the mean simulation time required to generate these outputs is greater for 
transfer matrix method than for the two-body method. They both give similar results with good accuracy 
compared with experimental results. But the transfer matrix method necessitates good knowledge of the 
housing geometry which is often not available at the preliminary design phase. Therefore, it can be concluded 
that the two-body model is a sufficiently good approximation to calculate the housing stress early on and 
efficiently. 

EXPLORATION DESIGN OF EMA HOUSINGS  

In the aim of comparing and making choices for actuator housing geometry early in design phases, a rapid 
design exploration of housings is very useful. Nevertheless at preliminary sizing level, components geometries 
and mass, useful for housing design, are not fully specified although they can be roughly scaled considering 
the mission profile’s sizing criterion.  

DESIGN EXPLORATION OF SINGLE-BODY MODEL 

If we consider the single body equations (6;7;9) for the housing, under the assumption of small thickness with 
regard to diameter and a large additional mass, it is possible to say that for small changes in the thickness, 
diameter and length, the equivalent mass and stiffness become proportional to: 

,csteM eq ∝

 
3

3.

L

de
K eq ∝  ( 21 ) 

Furthermore, under these same assumptions, the variations of the housing mass, the maximum constraint 
and the first natural frequency can be expressed: 

,.. LdeM ∝ ,
. 2max
de

L∝σ
3

3

0

.

L

de
f ∝  ( 22 ) 

This means that, to lower the stress, it is more interesting to increase the diameter than to increase the 
thickness. Equations (21; 22) also mean that the length has a huge effect on the stress and natural frequency. 

Now, if the assumptions change and there is no additional mass or this mass is negligible with regard to 
the housing equivalent mass, the equivalent mass is now proportional to: 

LdeM eq ..∝

 

 ( 23 ) 

and the variations of the maximum constraint and the first natural frequency become: 

,
2

max d

L∝σ 20
L

d
f ∝  ( 24 ) 

Here, the thickness has hardly any effect on the stress or natural frequency and the length has more effect 
than the diameter. 

Globally, it is observed that frequencies decrease while maximum stress increases when the actuator 
length increases. That is why, in aerospace applications, particular attention has to be paid to long housings 
having their first mode in the excitation frequency range. Concerning EMA housing, it seems more efficient to 
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choose higher diameters than thicknesses design to decrease internal maximum stress. For the multiple-body 
model, it is not so easy to study the effect of diameter or thickness variations. 

DESIGN EXPLORATION OF TWO-BODY MODEL 

As described in (Budinger et al., 2012) (Maré, 2011), the mass and geometry of a roller-screw technology can 
be estimated considering either the maximum force or the fatigue force applied to it but also the stroke needed 
for the application. Taking maximum force Fmax and stroke ∆x as definition parameters, nut diameter dnut, nut 
mass Mnut, screw diameter dscrew and screw mass Mscrew can be estimated using scaling laws: 

,2/1
maxFdnut ∝ ,2/3

maxFM nut ∝ ,2/1
maxFdscrew ∝ xFM screw ∆∝ .max

 ( 25 ) 

For all other components the process is the same but most of the time only the roller-screw component is 
important for housing vibrations sizing. The reason is that the roller-screw mass has a huge impact on the 
kinetic energy and the equivalent mass because of its location (in the middle of the actuator, where 
displacement magnitude is maximum). This additional embedded mass is not directly the roller-screw mass 
since the whole screw mass is not centered but is considered to be homogeneously distributed along the 
actuator like the fluid in equation (9): 

nutscrewcomp MMM += π.2  ( 26 ) 

It will be considered that the mounting of the screw nut or the thrust bearing allows some rotational 
degrees of freedom like as for a ball joint. Thus mechanical components do not have an impact on the 
equivalent stiffness.  

Concerning integration parameters, parallel axis architecture will be chosen (as in FIGURE 1 A-E). For 
such architecture, the inner diameters of the housing are limited by the roller-screw geometry (FIGURE 8): 

,2 screwdd ≥ 21 .2edd nut +≥  ( 27 ) 

To simplify the design exploration, and even if the solution can be improved, equations (27) become: 

,2 nutdd = 221 .2 edd +=  ( 28 ) 
FIGURE 8 HOUSING GEOMETRY ASSUMPTIONS 

 

The two-body method needs Lmax the extended length of the actuator, as an input for calculation and this 
parameter is proportional to the useful stroke: 

xL ∆∝max  ( 29 ) 
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Making the assumption of a simplified housing design and using the relations described in equations (25; 
26; 29), it is possible to fix the thickness values in order to minimize mass without exceeding the admissible 
stress under vibration conditions (FIGURE 9). 

FIGURE 9 DESIGN EXPLORATION OF THE ACTUATOR MASS FOR DIFFERENT MISSION PROFILE FEATURES 

 

Calculations were done for a 10 g acceleration magnitude and a quality factor of Q=30. The calculation 
method used was the two-body model with the polynomial deformation. Housing was planned be made of low 
alloyed steel with a maximum elastic shearing stress of Re=700MPa, a Young’s modulus of E=210GPa and a 
density of ρ=7800kg/m3. Considering some radius of curvature on the geometry, stress concentration may 
appear. In addition to that, the embedded mass was an estimation of the real roller-screw mass. Therefore a 
safety factor of 2 was taken and the calculated stress was not allowed to exceed Rpe=350MPa. 

The calculated housing mass is presented in   



 20/26 

FIGURE 10 and FIGURE 11 according to the nut diameter and the extended length of the actuator. The 
equivalent mass was firstly set equal to the embedded component mass alone (FIGURE 11-A) and then the 
housing inertia was added (  
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FIGURE 10-B) to compare the two effects. 

These figures give rise to some important remarks: 

− For a short length, vibration is not the sizing criterion and housing geometry depends on 
mechanical parts integration and consequently on the maximum force. 

− When the length increases, the two mass effects (body and embedded components masses) 
combine in a nonlinear way. 

− For a small diameter, the increase of the mass is strongly dependent on the housing length. 
− For a long actuator, the rod stress reaches admissible stress limits; it appears that an optimal 

diameter can be found to reduce housing weight. This suggests that an optimization loop should 
be implemented taking flexibility on the values of d1 and d2 into account. 
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FIGURE 10 HOUSING MASS ACCORDING TO THE EXTENDED LENGTH AND THE NUT DIAMETER 
 

 
                  A – Housing density is zero                                B – Both housing and components masses are considered 

FIGURE 11 OPTIMAL DIAMETER DETECTION VS. EXTENDED LENGTH INCREASE 

 

 

CONCLUSION 

A methodology and associated models have been proposed in this article which could accelerate the 
preliminary design phase by providing fast and efficient means of sizing actuators housings in a vibratory 
environment. After studying housing stresses in a linear actuator, the impact of the harsh aerospace vibratory 
environment was studied with different representations of the actuator housing. Three analytical models were 
proposed and compared: one considering a single-body for the housing, a second one based on a two-body 
housing and the third a more realistic one with multi-body transfer matrix modeling. Of these three methods, 
the second one appeared to provide the best trade-off between calculation time and precision of results, the 
transfer matrix approach remaining the best way to localize the critical stress zone for variable geometry and 
mass distribution. Comparisons between standard linear actuator geometries were used to explore different 
housing topologies. The models studied showed that vibrations were a key sizing criterion for long EMA 
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(Electro Mechanical Actuator) housing but not for SHA (Servo Hydraulic Actuator) housing (mostly sized by 
the internal pressure strength). This is why such sizing tools are useful for EMA design, which embeds more 
mechanical components, strongly increasing modal mass and inducing strong vibrations. Some exploratory 
studies on the housing geometry were performed to highlight the compromise between diameter, thickness 
and extended length in vibration design. 
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APPENDIX A: TWO-BODY MODEL EXPRESSIONS 
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APPENDIX B: TRANSFER MATRIX EXPRESSIONS 
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NOMENCLATURE 

CAE = Computer Aided Engineering 
EBMA = Electrical Back-up Mechanical Actuator 
EBHA = Electrical Back-up Hydraulic Actuator 
EHA = Electro-Hydrostatic Actuator 
EMA = Electro-Mechanical Actuator 
FEM = Finite Element Method 
PbW  = Power-by-Wire 
SHA = Servo Hydraulic Actuator 
TVC  = Thrust Vector Control 
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