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Abstract 

 

This paper deals with the global analytical modelling of cylindrical piezoelectric micromotors. The 

modelling, based on an equivalent electric circuit, is established by using geometrical and 

electromechanical parameters for the different parts of the motor. The motor stator is represented 

here in a form very similar to a traditional Mason circuit. The differences occur in the particular 

configurations of movement, namely flexural instead of longitudinal vibrations. In the equivalent 

circuits, contact between rotor and stator is represented by voltages which are functions of vibratory 

speed. Useful results for design can be obtained such as torque/speed curve, no load admittance, 

supply voltage, stress and amplitude of vibrations. This modelling is simple to implement and 

would also lend itself to optimisation by analytical methods because of the relatively small amount 

of computation required. 
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Abstract : This paper deals with the analytical modelling of piezoelectric cylindrical 

micromotors [1] and supplements kinematics analysis done by [2]. The modelling, based on an 

equivalent electric circuit, is established  by using geometrical and electromechanical 

parameters for the different parts of the motor. It gives  electromechanical characteristics and 

other useful values for motor design.  
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I. Introduction 

Piezoelectric actuators have many well-known advantages compared with other 

technologies. They provide a high torque-mass ratio, they can lock when the supply is 

switched off and they ensure increased comfort of use [3][4]. Cylindrical type ultrasonic 

motors have interesting characteristics for a good electromechanical energy conversion and 

have a very simple structure which is adapted to millimetric sizes. However there is litte in 

literature which deals with modelling and theoretical analysis. The objective of this paper is to 

supplements the kinematics analysis done by [2]. The analytical modelling presented here is 

based on electric equivalent circuit and gives a global but simple model of the motor. 
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II. Modeling of the rotating-mode motor stator 

Cylindrical ultrasonic micromotor has a cylindrical stator and two rotors. The stator 

consists of a titanium tube, a layer of PZT thin film and electrodes as shown in fig. n° 1. The 

poling direction of the PZT film is in the thickness direction. The fundamental bending 

vibration is generated by the piezoelectric length-extension effect.  

Stator en titane

Film PZT (7-9 µm)
ElectrodeV.sin(ωt)

-V.cos(ωt) V.cos(ωt)

-V.sin(ωt) ∅ 2.4 mm

∅ 1.9 mm

10 mm

 

Figure n° 1 : The structure of the stator transducer [1] 

 

The stator of the rotating-mode motor presents a structure which resembles a Langevin 

type transducer. The difference comes from the level of the excited modes; modes of flexion 

for rotating-mode motor and longitudinal vibration modes for the Langevin type transducer. 

 

Equivalent electric circuit modeling of Langevin type actuator 

The Langevin type transducer is modeled in a classic way with Mason equivalent 

electric circuits [5]. From the transducer geometry, they make it possible to get a relatively 

precise model of the electro-mechanical conversion based on an analogy between longitudinal 

vibratory speed and current (the counterpart of effort in one section is then voltage). 

According to this approach, a non piezoelectric rod in traction/compression can be modeled 

by the equivalent circuit of Fig. n° 2 where voltage F and current U& represent respectively the 

effort and speed at the extremities of the rod. A transformer which expresses the electro-

mechanical energy conversion is added to the circuit for a piezoelectric ceramic. 
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Figure n° 2 : Non piezoelectric rod modeling 

 

Modeling by equivalent circuits of the stator 

Following this approach, the model of the stator of a rotating-mode motor has been 

developed, which, in this case, lends itself to the calculation of the characteristic bending 

magnitudes and hence the  angular vibratory speed and moment at a section. 

 

Stator’s equivalent diagram in flexion 

A flexural vibration system can be modeled with a transfer matrix which connects 

vibratory efforts and speeds in these two ends [6]. It is also possible to represent this matrix 

by an electric circuit. For that, an elementary cross-section of a beam of section A and of 

moment of inertia I is isolated in Fig. n° 3. 

x x+dx

T+dT

T

u u+du

M

M+dM

Ψ+dΨ
Ψ

 

Figure n° 3 : Elementary cross-section of a beam in flexion 
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Displacement is orthogonal displacement (u) or rotation angle (Ψ). Effort is shearing 

(T) or moment (M). By applying the fundamental principle of dynamics to this elementary 

volume, we get: 
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The equations of the resistance of the materials give: 
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The beams studied here are relatively short: the moment of inertia )/( 22 tIdx ∂Ψ∂ρ  of 

the section and the shearing effect )/( SGaT T  will not be neglected [7]. We finally get: 
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For steady-state, sinusoidal excitation and vibration the following complex notation 

can be adopted: tjUeu ω= . The differential equation of propagation of the elastic wave then 

becomes: 

0
²

1 24

2

2
2

4

4

=







−+

∂
∂









++

∂
∂

US
Ga

I

x

U

Ga

c
I

x

U
cI

TT

ρωρωρω  
(6) 

This has a solution of the form: 
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The structure of the motor is excited by ceramics, which only excite moments of 

flexion. It can be supposed that for a length L of non piezoelectric rod, only pure moments M1  
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and M2 are applied at the extreme sections S1 and S2  (shearing efforts T1 and T2 are then 

null).Starting from the general expression (7) of the orthogonal displacement U, the 

expression of the moments is: 

( ) ( ))()()cos()sin()( 2211 xkDchxkCshxkBxkAxM MM +++= βα  (8) 
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the expression of the angles is given by : 
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and the expression of the efforts is written : 

( ) ( ))()()sin()cos()( 2211 xkDshxkCchxkBxkAxT TT ++−= βα  (10) 

with : ( )1kSGaTT −= ψαα   and : ( )2kSGaTT −= ψββ  

 

By applying boundary conditions at the end sections S1 and S2  (shearing efforts T1 and 

T2 null) coefficients A, B, C and D can be determined as functions of angles ψ1 and ψ2. Once 

these coefficients are determined, the expression of the moments can be written: 
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They can also be rewritten in the form of: 
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With : ( )TT
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These equations can be put in the form of an electric equivalent circuit (Fig. n° 4) as 

for a Langevin type transducer. 

β~
α~ α~

M1 M2

1ψ& 2ψ&

 

Figure n° 4 : Electric form equivalent circuit 

 

Stator model validation and application  

This equivalent diagram represents the passive part (titanium) of the stator.  The 

thicknesses of the active parts (PZT) are very small.  The dynamics of the stator is thus rather 

well represented by this diagram.  The engine functions on the first of resonance in free-free 

bending.  This corresponds to null moments on ends of stator (M1=M2=0).One can thus 

calculate the frequency of resonance when is 2/~~ αβ +=Zeq  null .  For the geometry of 

stator of the figure n°2, the calculated frequency is about 104 Khz (value close to the 105 Khz 

measured [1]). 

On the end surface of the stator, motion components in a cylindrical coordinate 

reference  can be written as [2] :   
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There is a travelling wave on the circumference of the stator. It is made up of two 

elliptic movements : a first, tangential and driving component, a second, radial and 

undesirable component. This undesirable component can be eliminated  by inclining the 
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contact zone (Fig. n° 5). The previous model is able to calculate this angle with geometrical 

parameters of the stator. 

Ur

Ux

Vx

Vr

ϕ

ϕ

 

Figure n° 5 : Contact zone geometry 

 

To obtain a pure travelling wave without radial parasitic movement, the Vr component 

of the radial component in a reference mark V , must be null. Angle ϕ  must check the 

following relation:   
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To determine the value of  ϕ, relation between ψ0 and U0 should be given. By taking 

again the equations described previously, one can show that:     
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And thus : 

γ
ϕ eR

=)tan(  

For the geometry of stator of the Fig. n° 1, the angle of inclination calculated is nearly 

24.5° (value close to the 25.5° calculated by finite elements [1]). 

 

Piezoelectric effect modeling 
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The ceramics used are a layer of PZT thin film. The poling direction of the PZT film is 

in the thickness direction and the bending vibration is generated by the length-extension 

effect. The electric field component E can be assumed constant along the full length of the 

ceramic. Stress and strain are thus expressed by : 

3311111 EdTsS E +=  
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Effort T can be rewritten as : 
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By integrating T1.y on the active surface of the ceramic, moment M is deduced: 
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which can equally be written in the form : 
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with: 
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In relation (21), an expression of the form )/( dxdcIM ψ= can be found again, and the 

supplementary terms are equivalent to a moment Γ=NV . The electric equivalent circuit of 

stator (Fig. n° 4) can be completed by a transformer which accounts for the electromechanical 

conversion which takes place at the level of the ceramic. The equivalent electric diagram of 

the stator is given Fig. n° 6 with C0 the electric capacity of the ceramic.  
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Figure n° 6 : Equivalent electric diagram of micromotor  stator 

 

III. Modeling of the stator/rotor contact 

To obtain the complete characteristics of the motor, it is necessary to add to the stator 

model, which describes the electromechanical power conversion, an analytical modeling of 

rotor/stator interaction. This stage has already been carried out for travelling wave actuators 

[8] [9]. 

 

Zone of contact 

The vibrating stator is assumed to be equivalent to a portion of a cylinder and the rotor 

to a plane surface. Thus the rotor/stator contact is equivalent to a cylinder/plane contact of 

length 2a (Fig. n° 7). Hertz’s theory provides the length of contact and the distribution of 

pressure p. 
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Figure n° 7 : Contact Stator/Rotor 

 

Let x be the position on the external perimeter of the stator. The travelling wave 

deformation y has for formula at t=0: 
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The radius of the equivalent cylinder Req takes then the expression: 
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The distribution of pressure p is given by: 
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Calculation of the torque/speed curve for a given vibratory speed 
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The rotor speed is deduced from the tangential part Uθ of elliptic movement: 

)/cos(0 RxUUv ωθ == &  (40) 

In Fig. n° 7, co-ordinate b corresponds to the point for which the local speed of the 

stator is equal at the tangential speed Vr of the rotor : 
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1 ωUVRb r

−=  (41) 

The efforts transmitted to the rotor depend on relative speed :  

• For v>Vr or –b<x<+b : positive ; 

• For v<Vr or –a<x<-b ou +b<x<+a : negative. 

By taking a law of friction of the type dSVvsgpdF r )(.. −= µ , torque C is calculated by: 
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And for low speeds ( ab ≥ ), it takes the value: 

RFacRPC presµµπ == 0max 2
 

(43) 

Considering these expressions, the torque/speed characteristic is given by Fig. n° 8. 
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Figure n° 8 : Torque/speed characteristic 

 

Expression of the mechano/mechanic conversion in the equivalent circuits 
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For the points corresponding to the b>a part of the characteristic (Figure 21.), the total 

power Pθ developed in the contact for the tangential movement can be written in the 

following form : 
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Moreover, another expression of Pθ  is: 

mecaperte PPP += θθ  with Ω= .maxCPmeca  (46) 

In equivalent circuits, the power Pθ could be calculated by: 
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This expression can be rewritten according to (35), and to :  
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As 2U& , 2ψ&  and 2M are assumed to be co- phasal, the final expression of M2  is : 
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50) 

In the same way for the radial movement, the power Pr developed can be written : 



 14

dx
R

x

a

x
PcUP

a

r ∫ 














=
0

00 sin
2

cos2
πωµ  

2200

2

sin
2

2








−















−
=

π

π

ωµ

R

a

R

a

R

a

aPcUPr  

(51) 

As for power Pθ , this power correspond to a tension M2 given by expression : 
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The equivalent circuit (Fig. n° 6) of the motor can thus be supplemented by adding : 

A resistance R to take account of the mechanical losses within the stator (this 

resistance can be replaced by the use of complex elastic constant [15]) ; 

• A voltage Eθ  to represent the power developed by tangential vibratory movement 

(Eq. (50)); 

• A voltage Er  to represent the power developed by tangential radial movement (Eq. 

(52)).  

 

IV. Numerical implementation of the model 

Let us take the case of a micro motor made up of : 

• A stator transducer (Fig. n° 1) ; 

• Two rotors hold against the stator transducer at the top and the bottom by a spring. 

 

The equivalent circuit of the motor is as Fig. n°9. 
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Figure n° 9 : Equivalent electric diagram of micromotor 

 

Near frequency resonance, the dynamic part of the circuit can be represented by a RLC 

equivalent circuit (Fig. n° 10).  

C0 ΓV

I

N
 

Figure n° 10 : Equivalent RLC electric diagram of micromotor 

 

The electromechanical characteristics of this motor can be obtained : No load 

admittance of the stator, torque/speed curve, the supply voltage. An example of results is 

presented in fig. n° 11 (No load admittance, Contact pressure , Torque/Speed curve with 

supply voltage). 
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Figure n° 11 : Electromechanical caracteristics 

 

V. Conclusion 

This article has presented a global model for cylindrical piezoelectric micromotor; it 

takes into account both electromechanical conversion in the stator and mechano-mechanical 

conversion between stator and rotor. The motor stator is represented here in a form very 

similar to a traditional Mason circuit. The differences occur in the particular configurations of 

movement, namely flexural instead of longitudinal vibrations. In the equivalent circuits, 

contact between rotor and stator is represented by voltages which are functions of vibratory 

speed. Useful results for design are obtained such as torque/speed curve, no load admittance, 

supply voltage, stress and amplitude of vibrations. Good agreements between model and 

numerical or experimental results are observed (on resonance frequency for example). This 

modeling is simple to implement and would also lend itself to optimisation by analytical 

methods [10] because of the relatively small amount of computation required. 
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Notations 

 
Ψ Rotational angle 
ω Frequency 
ρ Density 
γ Poisson constant 
µ Friction constant 
εS Dielectric constant for constant S 
A Section area 
a Half length of contact (Hertz theory) 

Ta  Timoshenko's coefficient  

C Elastic stiffness 
C0 Clamped capacity 
CD Elastic stiffness for constant-D   
D Electric displacement component along axe x’Ox 
E Electric field component along axe x’Ox 
e Piezoelectric constant 
Eθ   Equivalent voltage for tangential movement 
Er   Equivalent voltage for radiall movement 
Fpres Effort on stator 
G Coulomb modulus 
H Piezoelectric constant 
I Moment of inertia 
I Current  
k Wave number 
k33, k31 Coupling factor 
L Length of rod 
Ln Linear load (Hertz theory) 
M Bending moment 
N Force factor 
p Contact pressure 
Pθ   Power of the tangential movement 
P0 Maximum pressure of contact (Hertz theory) 
Pr Power of the radial movement 
R Cylinder radius 
Req Radius of equivalent cylinder (Hertz theory) 
S Strain 
T Shear force 
U Displacement 
V Supply voltage 

 


