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Introduction

Piezoelectric actuators have many well-known advantages compared with other technologies. They provide a high torque-mass ratio, they can lock when the supply is switched off and they ensure increased comfort of use [START_REF] Sashida | An introduction to ultrasonic motors[END_REF] [START_REF] Ueha | Ultrasonic Motors[END_REF]. Cylindrical type ultrasonic motors have interesting characteristics for a good electromechanical energy conversion and have a very simple structure which is adapted to millimetric sizes. However there is litte in literature which deals with modelling and theoretical analysis. The objective of this paper is to supplements the kinematics analysis done by [START_REF] Lu | A kinematic analysis of cylindrical ultrasonic micromotors[END_REF]. The analytical modelling presented here is based on electric equivalent circuit and gives a global but simple model of the motor.

II. Modeling of the rotating-mode motor stator

Cylindrical ultrasonic micromotor has a cylindrical stator and two rotors. The stator consists of a titanium tube, a layer of PZT thin film and electrodes as shown in fig. n° 1. The poling direction of the PZT film is in the thickness direction. The fundamental bending vibration is generated by the piezoelectric length-extension effect.
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Figure n° 1 :

The structure of the stator transducer [START_REF] Morita | Design of a cylindrical ultrasonic micromotor to obtain mechanical output[END_REF] The stator of the rotating-mode motor presents a structure which resembles a Langevin type transducer. The difference comes from the level of the excited modes; modes of flexion for rotating-mode motor and longitudinal vibration modes for the Langevin type transducer.

Equivalent electric circuit modeling of Langevin type actuator

The Langevin type transducer is modeled in a classic way with Mason equivalent electric circuits [START_REF] Ikeda | Fundamentals of Piezoelectricity[END_REF]. From the transducer geometry, they make it possible to get a relatively precise model of the electro-mechanical conversion based on an analogy between longitudinal vibratory speed and current (the counterpart of effort in one section is then voltage).

According to this approach, a non piezoelectric rod in traction/compression can be modeled by the equivalent circuit of 
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Figure n° 2 : Non piezoelectric rod modeling

Modeling by equivalent circuits of the stator

Following this approach, the model of the stator of a rotating-mode motor has been developed, which, in this case, lends itself to the calculation of the characteristic bending magnitudes and hence the angular vibratory speed and moment at a section.

Stator's equivalent diagram in flexion

A flexural vibration system can be modeled with a transfer matrix which connects vibratory efforts and speeds in these two ends [START_REF] Zhou | The performance and design of ultrasonic vibration system for flexural mode[END_REF]. It is also possible to represent this matrix by an electric circuit. For that, an elementary cross-section of a beam of section A and of moment of inertia I is isolated in Fig. n° 3.
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Figure n° 3 : Elementary cross-section of a beam in flexion

Displacement is orthogonal displacement (u) or rotation angle (Ψ). Effort is shearing (T) or moment (M). By applying the fundamental principle of dynamics to this elementary volume, we get:

x T t u A ∂ ∂ - = ∂ ∂ 2 2 ρ (1)
And

T x M t I - ∂ ∂ = ∂ Ψ ∂ 2 2 ρ (2)
The equations of the resistance of the materials give:

cI M x = ∂ ∂ψ (3) 
And

x u AG a T T ∂ ∂ = - ψ (4)
The beams studied here are relatively short: the moment of inertia will not be neglected [START_REF] Timoshenko | Résistance des matériaux[END_REF]. We finally get: 
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For steady-state, sinusoidal excitation and vibration the following complex notation can be adopted:

t j Ue u ω =
. The differential equation of propagation of the elastic wave then becomes:
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This has a solution of the form:
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The structure of the motor is excited by ceramics, which only excite moments of flexion. It can be supposed that for a length L of non piezoelectric rod, only pure moments M 1 and M 2 are applied at the extreme sections S 1 and S 2 (shearing efforts T 1 and T 2 are then null).Starting from the general expression [START_REF] Timoshenko | Résistance des matériaux[END_REF] of the orthogonal displacement U, the expression of the moments is:
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the expression of the angles is given by :
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and the expression of the efforts is written :
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By applying boundary conditions at the end sections S 1 and S 2 (shearing efforts T 1 and T 2 null) coefficients A, B, C and D can be determined as functions of angles ψ 1 and ψ 2 . Once these coefficients are determined, the expression of the moments can be written:
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They can also be rewritten in the form of:
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These equations can be put in the form of an electric equivalent circuit (Fig. n° 4) as for a Langevin type transducer. On the end surface of the stator, motion components in a cylindrical coordinate reference can be written as [START_REF] Lu | A kinematic analysis of cylindrical ultrasonic micromotors[END_REF] :

          + - + + =           ) cos( ) sin( ) cos( 0 0 0 θ ω ψ θ ω θ ω θ t R t U t U U U U x r
There is a travelling wave on the circumference of the stator. It is made up of two elliptic movements : a first, tangential and driving component, a second, radial and undesirable component. This undesirable component can be eliminated by inclining the contact zone (Fig. n° 5). The previous model is able to calculate this angle with geometrical parameters of the stator. To determine the value of ϕ, relation between ψ 0 and U 0 should be given. By taking again the equations described previously, one can show that:
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And thus :
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For the geometry of stator of the Fig. n° 1, the angle of inclination calculated is nearly 24.5° (value close to the 25.5° calculated by finite elements [START_REF] Morita | Design of a cylindrical ultrasonic micromotor to obtain mechanical output[END_REF]).

Piezoelectric effect modeling

The ceramics used are a layer of PZT thin film. The poling direction of the PZT film is in the thickness direction and the bending vibration is generated by the length-extension effect. The electric field component E can be assumed constant along the full length of the ceramic. Stress and strain are thus expressed by : 

III. Modeling of the stator/rotor contact

To obtain the complete characteristics of the motor, it is necessary to add to the stator model, which describes the electromechanical power conversion, an analytical modeling of rotor/stator interaction. This stage has already been carried out for travelling wave actuators [START_REF] Minotti | Moteur piezo-électrique à onde progressive : I. modélisation de la conversion d'énergie mécanique à l'interface stator/rotor[END_REF] [START_REF] Rouchon | The elastic contact area between a sinusoidal indentor and a layered solid : application to calculation of ultrasonic motors performances[END_REF].

Zone of contact

The vibrating stator is assumed to be equivalent to a portion of a cylinder and the rotor to a plane surface. Thus the rotor/stator contact is equivalent to a cylinder/plane contact of length 2a (Fig. n° 7). Hertz's theory provides the length of contact and the distribution of pressure p. Let x be the position on the external perimeter of the stator. The travelling wave deformation y has for formula at t=0:

) / cos( ) cos( 0 0 R x R R y ψ θ ψ = = (36)
The radius of the equivalent cylinder R eq takes then the expression:

0 2 2 / 1 ψ R x y R eq = ∂ ∂ = (37)
The length of contact takes as value:

2 / 1 * 2         = E R L a eq n π (38) with : c F L pres n =
, the linear load ;

rotor rotor stator stator E E E 2 2 * 1 1 1 γ γ - + - =
, the equivalent elasticity constant.

The distribution of pressure p is given by:

2 / 1 2 0 1               - = a x P p with a L P n π 2 0 = (39)
Calculation of the torque/speed curve for a given vibratory speed The rotor speed is deduced from the tangential part U θ of elliptic movement:

) / cos( 0 R x U U v ω θ = = & (40)
In Fig. n° 7, co-ordinate b corresponds to the point for which the local speed of the stator is equal at the tangential speed V r of the rotor :

) / cos( 0 R b U U V r ω θ = = & and ) / ( cos . 0 1 ω U V R b r - = (41)
The efforts transmitted to the rotor depend on relative speed :

• For v>V r or -b<x<+b : positive ;

• For v<V r or -a<x<-b ou +b<x<+a : negative.

By taking a law of friction of the type

dS V v sg p dF r ) ( . . - = µ
, torque C is calculated by: 
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Expression of the mechano/mechanic conversion in the equivalent circuits

For the points corresponding to the b>a part of the characteristic (Figure 21.), the total power P θ developed in the contact for the tangential movement can be written in the following form :
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x is approximated by
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Moreover, another expression of P θ is:

meca perte P P P + = θ θ with Ω = . max C P meca (46) 
In equivalent circuits, the power P θ could be calculated by:
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This expression can be rewritten according to (35), and to :
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M are assumed to be co-phasal, the final expression of M 2 is :
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In the same way for the radial movement, the power P r developed can be written :

dx R x a x P cU P a r ∫             = 0 0 0 sin 2 cos 2 π ω µ 2 2 0 0 2 sin 2 2       -             - = π π ω µ R a R a R a a P cU P r (51)
As for power P θ , this power correspond to a tension M 2 given by expression :
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The equivalent circuit (Fig. n° 6) of the motor can thus be supplemented by adding :

A resistance R to take account of the mechanical losses within the stator (this resistance can be replaced by the use of complex elastic constant [15]) ;

• A voltage E θ to represent the power developed by tangential vibratory movement (Eq. (50));

• A voltage E r to represent the power developed by tangential radial movement (Eq. ( 52)).

IV. Numerical implementation of the model

Let us take the case of a micro motor made up of :

• A stator transducer (Fig. n° 1) ;

• Two rotors hold against the stator transducer at the top and the bottom by a spring.

The equivalent circuit of the motor is as Fig. n°9. 

V. Conclusion

This article has presented a global model for cylindrical piezoelectric micromotor; it takes into account both electromechanical conversion in the stator and mechano-mechanical conversion between stator and rotor. The motor stator is represented here in a form very similar to a traditional Mason circuit. The differences occur in the particular configurations of movement, namely flexural instead of longitudinal vibrations. In the equivalent circuits, contact between rotor and stator is represented by voltages which are functions of vibratory speed. Useful results for design are obtained such as torque/speed curve, no load admittance, supply voltage, stress and amplitude of vibrations. Good agreements between model and numerical or experimental results are observed (on resonance frequency for example). This modeling is simple to implement and would also lend itself to optimisation by analytical methods [START_REF] Messine | Optimal design of electromechanical actuators : a new method based on global optimization[END_REF] because of the relatively small amount of computation required. 
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 2 where voltage F and current U & represent respectively the effort and speed at the extremities of the rod. A transformer which expresses the electromechanical energy conversion is added to the circuit for a piezoelectric ceramic.
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