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Abstract

We consider an infinite dimensional nonlinear controlled system describing age-structured
population dynamics, where the birth and the mortality rates are nonlinear functions of the
population size. The control being active on some age range, we give sharp conditions subject
to the age range and the control time horizon to get the null controllability of the nonlinear
controlled population dynamics. The main novelty is that we use here as a main ingredient the
comparison principle for age-structured population dynamics, and in case of null controllability
we provide a feedback control with a very simple structure, while preserving the nonnegativity
of the state trajectory. Finally, we establish the lack of the null controllability for the linear
Lotka-McKendrick equation with spatial diffusion when the control acts in a subset of the
habitat and we want to preserve the positivity of the state trajectory.

1 Introduction

We shall continue and extend the investigation in Hegoburu, Magal and Tucsnak [8] concerning
the null controllability of the age-dependent population dynamics. More precisely, let p(t, a) be the
distribution of individuals of age a at time t of a biological population. Let a† be the maximal age
of an individual and τ be a positive constant. Consider that the population dynamics is described
by the following nonlinear system, firstly proposed (without control) by Gurtin and MacCamy [7]:

∂p

∂t
(t, a) +

∂p

∂a
(t, a) + µ(t, a, P (t))p(t, a) = χ[a1,a2](a)u(t, a), (t, a) ∈ Qτ

p(t, 0) =

∫ a†

0

β(t, a, P (t))p(t, a) da, t ∈ (0, τ)

p(0, a) = p0(a), a ∈ (0, a†)

P (t) =

∫ a†

0

p(t, a) da, t ∈ (0, τ),

(1.1)

where u is a control function, χ[a1,a2] is the characteristic function of the interval [a1, a2] (where
0 6 a1 < a2 6 a†), p0 is the initial population density and Qτ = (0, τ) × (0, a†). β and µ are the
fertility rate and the mortality rate, respectively. In the following, the nonlocal boundary condition

p(t, 0) =

∫ a†

0

β(t, a, P (t))p(t, a) da, t ∈ (0, τ),

will be refered as the renewal law.

To state our main results, we first recall the standard assumptions, used for instance in Aniţa
[5, p. 30], on the functions µ, β, p0 and u:
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of the Romanian Academy, Iaşi 700506, Romania, E-mail: sanita@uaic.ro
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(H1) for every s > 0, the functions β(·, ·, s) and µ(·, ·, s) belong to L∞(Qτ ) and L1
loc([0, τ ]× [0, a†))

respectively,

(H2) the functions β and µ are locally Lipschitz functions with respect to the third variable, i.e.
for any M > 0, there exists L(M) > 0 such that for almost every (t, a) ∈ Qτ and for every
s1, s2 ∈ [0,M ], we have

|β(t, a, s1)− β(t, a, s2)| 6 L(M) · |s1 − s2|,
|µ(t, a, s1)− µ(t, a, s2)| 6 L(M) · |s1 − s2|,

(H3) for almost every (t, a, s) ∈ Qτ × (0,+∞), we have

β(t, a, s) > 0 and µ(t, a, s) > 0,

(H4) for almost every (t, a) ∈ Qτ , the function β(t, a, ·) is nonincreasing,

(H5) for almost every (t, a) ∈ Qτ , the function µ(t, a, ·) is nondecreasing,

(H6) p0 ∈ L2(0, a†), p0(a) > 0 a.e. a ∈ (0, a†),

(H7) the control function u belongs to L2(Qτ ).

By a solution to (1.1), we mean a function p ∈ L∞(0, τ ;L2(0, a†)), absolutely continuous along
almost every characteristic line of equation t− a = c (with c ∈ (−a†, τ)), which satisfies

Dp(t, a) + µ(t, a, P (t))p(t, a) = χ[a1,a2](a)u(t, a) a.e. (t, a) ∈ Qτ

lim
ε→0+

p(t+ ε, ε) =

∫ a†

0

β(t, a, P (t))p(t, a)da a.e. t ∈ (0, τ)

lim
ε→0+

p(ε, a+ ε) = p0(a) a.e. a ∈ (0, a†),

where P (t) =

∫ a†

0

p(t, a) da for almost every t ∈ (0, τ). Here

Dp(t, a) = lim
ε→0

p(t+ ε, a+ ε)− p(t, a)

ε

is the directional derivative of p at (t, a) for direction (1, 1). The definition of the solution implies
that there is a trace of p on any curve of equation t = c, with c ∈ [0, τ ]. With the above assumptions
system (1.1) has at most one nonnegative solution, and if in addition u(t, a) ≥ 0 a.e. (t, a) ∈ Qτ ,
the existence and uniqueness of a nonnegative solution to (1.1) can be proved via the Banach fixed
point theorem (see, for instance, [5, Chapter 2]).

Notice that actually the control acts only for a ∈ [a1, a2].

For almost every (t, a) ∈ Qτ , denote by β+(t, a) := β(t, a, 0) so that, due to assumption (H4),
for almost every (t, a, s) ∈ Qτ × (0,+∞) we have

β(t, a, s) 6 β(t, a, 0) = β+(t, a) a.e. (t, a, s) ∈ Qτ × (0,+∞). (1.2)

Our first result asserts that, assuming that the age of individuals able to reproduce is bounded
away from zero, given a1 small enough and τ large enough, we are able to bring the solution p of
(1.1) to zero by means of a control function u ∈ L2(Qτ ), preserving the nonnegativity of the state
trajectory. More precisely, we have
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Theorem 1.1. With the above notations and assumptions, suppose that there exists ab ∈ (0, a†)
such that for almost every t ∈ (0, τ), we have

β+(t, a) = 0 a.e. a ∈ (0, ab), (1.3)

where the function β+ is defined in (1.2).

Assume that we have a1 < ab. If τ > a† − a2 + a1, then for every p0 ∈ L2(0, a†) with p0(a) > 0
a.e. a ∈ (0, a†), there exists u ∈ L2(Qτ ) and a corresponding unique nonnegative solution p of
(1.1) such that

p(τ, a) = 0 a.e. a ∈ (0, a†).

The following Theorem 1.2 states that the previous result is sharp, in the sense that if a1
(respectively τ) is bigger or equal than ab (respectively smaller than a†−a2 +a1), the system (1.1)
may not be null controllable by means of controls u ∈ L2(Qτ ) while preserving the nonnegativity
of the controlled state trajectory. More precisely, we have

Theorem 1.2. With the above notations and assumptions,

(i) Assume that there exists ab ∈ (0, a†) and am ∈ (0, a†] with ab < am such that, for almost
every t ∈ (0, τ) we have

β(t, a, s) > 0 a.e. (a, s) ∈ (ab, am)× (0,+∞).

If a1 > ab, then for every τ > 0, there exists p0 ∈ L2(0, a†) with p0(a) > 0 a.e. a ∈ (0, a†)
such that there is no control u and a corresponding nonnegative solution p to (1.1) satisfying

p(τ, a) = 0 a.e. a ∈ (0, a†).

(ii) If τ < a†− a2 + a1, there exists a function β satisfying (H1) - (H4) and an initial population
density p0 ∈ L2(0, a†) with p0(a) > 0 a.e. a ∈ (0, a†) such that there is no control u and a
corresponding nonnegative solution p to (1.1) satisfying

p(τ, a) = 0 a.e. a ∈ (0, a†).

Our third result asserts that condition (1.3) is not necessary to get the null controllability of
system (1.1), provided that we are able to control the very young individuals. More precisely,
provided that a1 = 0 and a2 > 0, for any function β satisfying (H1) - (H4), we are able to
bring the solution p of (1.1) to zero in sufficiently large time τ by means of a control u ∈ L2(Qτ ),
preserving the nonnegativity of the state trajectory:

Theorem 1.3. With the above notations and assumptions,

(i) Assume that a1 = 0 and a2 > 0. If τ > a† − a2, then for every p0 ∈ L2(0, a†) with p0(a) > 0
a.e. a ∈ (0, a†), there exists u ∈ L2(Qτ ) and a unique nonnegative solution p of (1.1) such
that

p(τ, a) = 0 a.e. a ∈ (0, a†).

(ii) Assume that there exists am ∈ (0, a†] such that, for almost every t ∈ (0, τ) we have

β(t, a, s) > 0 a.e. (a, s) ∈ (0, am)× (0,+∞).

If a1 > 0, then for every τ > 0, there exists p0 ∈ L2(0, a†) with p0(a) > 0 a.e. a ∈ (0, a†)
such that there is no control u and a corresponding nonnegative solution p to (1.1) satisfying

p(τ, a) = 0 a.e. a ∈ (0, a†).
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(iii) If τ < a† − a2, there exists an initial population density p0 ∈ L2(0, a†) with p0(a) > 0 a.e.
a ∈ (0, a†) such that there is no control u and a corresponding nonnegative solution p to (1.1)
satisfying

p(τ, a) = 0 a.e. a ∈ (0, a†).

For an overview on age-structured population dynamics models we refer, for instance, to Webb
[19], Iannelli [10], Kunisch et al [13] and the references therein.

In the case where both functions β and µ depend only on the age variable, some null controllabil-
ity results of the age-dependent population dynamics model (without diffusion) were first obtained
by Barbu, Iannelli and Martcheva [6]. Assuming that the control is supported in the age interval
(0, a0), for some a0 < a†, the authors proved that the controlled population may be steered to any
steady state of (1.1), except for a small interval of ages near zero. Recently, Hegoburu, Magal and
Tucsnak [8] proved that this restriction is not necessary, provided individuals do not reproduce at
the age close to zero. They also proved there exists controls which preserves the nonnegativity of
the state trajectory. More recently, Maity [14] proved that null controllability can be achieved by
controls supported in any subinterval [a1, a2] of [0, a†], provided we control before the individuals
start to reproduce. In this case, the author proved that the system is null controllable in sufficiently
large time, i.e. when τ > a1 + max{a1, a† − a2} by means of observability inequalities.

The null controllability of systems modelling nonlinear age-structured population dynamics has
been studied by Ainseba and Iannelli [3], in the case when a1 = 0 and a2 ∈ (0, a†), using as a main
ingredient the Kakutani fixed-point theorem. In [3] the main result asserts controllability of the
system (1.1) to zero in time τ > a† by a distributed control, except for a small interval of ages
near zero. In our present paper, we get an exact null controllability result for the system (1.1).
Moreover, the minimal time needed to steer the population to zero (i.e. τ > a†−a2 +a1) seems to
be sharp. Instead of using observability results we use here as a main ingredient the comparison
principle for linear age-structured population dynamics. In case of null controllability we provide
a feedback control with a very simple structure and such that (1.1) admits a unique nonnegative
solution p satisfying p(τ, a) = 0 a.e. a ∈ (0, a†).

As already mentionned, in the present work we use comparison results for age-structured pop-
ulation dynamics and some feedback controls with a simple structure (as a harvesting term) in
order to prove some null-controllability results. Actually, the use of such harvesting term in order
to get the null-controllability in an abstract space is presented in Section 2. Sections 3, 4 and 5
are devoted to prove respectively Theorems 1.1, 1.2 and 1.3 relatively to the linear setting, i.e. the
above mentioned Theorems will be proved in the case where the functions β and µ do not depend
on the third variable. In Section 6 we give two applications to the results obtained in the three
previous Sections: we first show how to steer a population to another one in the linear setting,
preserving the nonnegativity of the population, and we prove Theorems 1.1, 1.2 and 1.3 without
restriction on the functions β and µ (i.e. in the general nonlinear case) using as a main ingredient
the comparison principle for age-structured populations dynamics. In Section 7, we show how the
comparison principle for age-structured population dynamics may be used to prove the lack of
the null controllability for the linear Lotka-McKendrick equation with spatial diffusion when the
control acts in a subset of the habitat.

2 A null-controllability result in an abstract space

Consider the following controlled system:{
y′(t)−Ay(t) = u(t), t ∈ (0, τ)

y(0) = y0,
(2.1)

where A is the generator of a C0 - semigroup (etA)t≥0 of linear and bounded operators in the real
Banach space X and τ is a positive constant. We remind that by a mild solution to (2.1), we mean
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the function y ∈ C([0, τ ];X) given by

y(t) = etAy0 +

∫ t

0

e(t−s)Au(s) ds, for every t ∈ [0, τ ].

If y0 ∈ X and u ∈ L2(0, τ ;X), then (2.1) has a unique mild solution.

The controllability properties of (2.1) have been investigated by Tucsnak and Weiss [18] via the
observability. Here we use a different approach in order to get the null-controllability: we use a
feedback control. Actually, if

u(t) := − 1

τ − t
y(t), t ∈ (0, τ), (2.2)

then (2.1) becomes y′(t)−Ay(t) = − 1

τ − t
y(t), t ∈ (0, τ)

y(0) = y0,
(2.3)

and by a mild solution to (2.3) we mean a function y ∈ C([0, τ ];X) such that

y(t) = etAy0 −
∫ t

0

e(t−s)A
(

1

τ − s
y(s)

)
ds, for every t ∈ [0, τ ].

By Gronwall-Bellman’s inequality we may conclude that there exists at most one mild solution to
(2.3). Let us prove that actually, the function y defined by

y(t) :=
τ − t
τ

etAy0 t ∈ [0, τ ], (2.4)

is a mild solution to (2.3) and that u given by (2.2) belongs to L2(0, τ ;X).

Indeed, y given by (2.4) belongs to C([0, τ ];X) and for any t ∈ [0, τ ] we have

etAy0 −
∫ t

0

1

τ − s
e(t−s)Ay(s) ds

= etAy0 −
1

τ

∫ t

0

1

τ − s
(τ − s)e(t−s)AesAy0 ds

= etAy0 −
t

τ
etAy0 =

τ − t
τ

etAy0 = y(t).

On the other hand, the control u given by (2.2) satisfies

u(t) = − 1

τ − t
y(t) = −1

τ
etAy0, t ∈ [0, τ ],

which indeed belongs to C([0, τ ];X) and consequently to L2(0, τ ;X).

Notice that, assuming that the functions β and µ depend only on the age variable, the formula-
tion of equations (1.1) may be considered using semigroup theory. Indeed, denote by X = L2(0, a†)
and consider the operator A : D(A)→ X defined by

D(A) =

{
ϕ ∈ L2(0, a†); ϕ(0) =

∫ a†

0

β(a)ϕ(a) da, −dϕ

da
− µϕ ∈ L2(0, a†)

}
,

Aϕ = −dϕ

da
− µϕ, ϕ ∈ D(A).

It is well known (see, for instance, Song et al. [16] or Kappel and Zhang [11]) that A generates a
C0 - semigroup of linear and bounded operators in X which we denote by (etA)t>0. If the control
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function u in (1.1) acts in the whole age range (0, a†) (i.e. if a1 = 0 and a2 = a†) and is defined
by the feedback form

u(t) := − 1

τ − t
p(t), t ∈ [0, τ ], (2.5)

where p is the corresponding solution to (1.1), we deduce that p satisfies

∂p

∂t
(t, a) +

∂p

∂a
(t, a) +

(
µ(a) +

1

τ − t

)
p(t, a) = 0, (t, a) ∈ Qτ

p(t, 0) =

∫ a†

0

β(a)p(t, a) da, t ∈ (0, τ)

p(0, a) = p0(a), a ∈ (0, a†),

(2.6)

and so that for every t ∈ [0, τ ] we get from (2.4) that p(t) = τ−t
τ etAp0 in X for any t ∈ [0, τ ],

and p(τ) = 0 in X. It can be seen in (2.6) that, u given in such a feedback form (2.5), it behaves
like an additional mortality (as a harvesting rate) for the age-structured population dynamics. In
Sections 3 and 5 we shall develop this idea in the more general case when the functions β and µ
depend on both time and age variable, and the control u acts in a subinterval of [0, a†].

3 The linear case : a positive null controllability result when the young
individuals do not reproduce

In this section, we shall prove Theorem 1.1 in the case where the functions β and µ do not depend
on the third variable. In other words, we assume that the population dynamics is described by the
following linear system:

∂p

∂t
(t, a) +

∂p

∂a
(t, a) + µ0(t, a)p(t, a) = χ[a1,a2](a)u(t, a), (t, a) ∈ Qτ

p(t, 0) =

∫ a†

0

β0(t, a)p(t, a) da, t ∈ (0, τ)

p(0, a) = p0(a), a ∈ (0, a†),

(3.1)

where τ is a positive constant and Qτ = (0, τ)× (0, a†). For the sake of completeness, let us recall
the classical assumptions on the functions µ0, β0, p0 and u relatively to the linear case:

(L1) the functions β0 and µ0 belong to L∞(Qτ ) and L1
loc([0, τ ]× [0, a†)) respectively,

(L2) for almost every (t, a) ∈ Qτ , we have

β0(t, a) > 0 and µ0(t, a) > 0,

(L3) p0 ∈ L2(0, a†), p0(a) > 0 a.e. a ∈ (0, a†),

(L4) the control function u belongs to L2(Qτ ).

Note that, using the definition of a solution to (3.1), we can obtain, using an integration along
the characteristic lines (see, for instance, [5, p. 16]) that for almost every (t, a) ∈ Qτ with a > t,
we have that the solution p to (3.1) satistfies

p(t, a) = exp

{
−
∫ t

0

µ0(s, a− t+ s) ds

}
p0(a− t)

+

∫ t

0

exp

{
−
∫ t

s

µ0(σ, a− t+ σ) dσ

}
χ[a1,a2](a− t+ s)u(s, a− t+ s) ds,

(3.2)
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and for almost every (t, a) ∈ Qτ with t > a, we have

p(t, a) = exp

{
−
∫ a

0

µ0(t− a+ s, s) ds

}
B(t− a)

+

∫ a

0

exp

{
−
∫ a

s

µ0(t− a+ σ, σ) dσ

}
χ[a1,a2](s)u(t− a+ s, s) ds,

where

B(t) =

∫ a†

0

β0(t, a)p(t, a) da a.e. t ∈ (0, τ).

Notice that, as a consequence of the Banach fixed-point theorem, we get that B ∈ L∞(0, τ) (see,
for instance, [5]).

In this section, we will prove the following Proposition 3.1 which is, roughly speaking, the “linear
version” of Theorem 1.1:

Proposition 3.1. With the above notations and assumptions, suppose that there exists ab ∈ (0, a†)
such that for almost every t ∈ (0, τ), we have

β0(t, a) = 0 a.e. a ∈ (0, ab). (3.3)

Assume that we have a1 < ab. If τ > a† − a2 + a1, then for every p0 ∈ L2(0, a†) with p0(a) > 0
a.e. a ∈ (0, a†), there exists u ∈ L2(Qτ ) and a corresponding unique nonnegative solution p of
(3.1) such that

p(τ, a) = 0 a.e. a ∈ (0, a†).

In this whole section, we suppose that there exists ab > 0 such that (3.3) is satisfied, with
a1 < ab and τ > a† − a2 + a1.

We may divide our proof in two cases, since the shapes of the controls functions driving the
initial population to zero in time τ may be slightly different in the two following cases, depending
on the order relationship of a2 and ab:

Case 1 : τ > a† − a2 + a1 and a1 < a2 6 ab,

Case 2 : τ > a† − a2 + a1 and a1 < ab < a2.

The two following subsections are devoted to prove Proposition 3.1 in the two above mentioned
cases.

3.1 The first case : τ > a† − a2 + a1 and a1 < a2 6 ab

This subsection is devoted to prove Proposition 3.1, in the case where τ > a† − a2 + a1 and
a1 < a2 6 ab.

Proof of Proposition 3.1 with a2 6 ab. Suppose that τ > a† − a2 + a1 and a1 < a2 6 ab. Without
loss of generality, we may assume that τ < a†. Let us prove that there exists a feedback control u
and a corresponding unique nonnegative solution p of (3.1) such that

p(τ, a) = 0 a.e. a ∈ (0, a†).

Denote by ε := 1
2 (τ − (a† − a2 + a1)). For almost every (t, a) ∈ Qτ , let us consider the feedback

control u(t, a) := −v(t, a)p(t, a), where v is a control itself and acts as a harvesting rate, and is
given by

v(t, a) :=



1

a2 − a
if

{
ε− a2 6 t− a < τ − a2,
a ∈ [a1, a2],

1

τ − t
if

{
τ − a2 6 t− a 6 τ − (a1 + ε),

a ∈ [a1, a2],

0 otherwise.

(3.4)
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Figure 1: The structure of the control v when τ > a† − a2 + a1 and a1 < a2 6 ab.

The structure of v is given in Figure 1. The solution to (3.1) with u = −vp exists, is unique
and nonnegative (see Aniţa [5]), and via the comparison principle for age-dependent population
dynamics (see [5, Theorem 2.1.2]) we get that

0 6 p(t, a) 6 p̃(t, a) a.e. (t, a) ∈ Qτ , (3.5)

where p̃ is the solution to
∂p̃

∂t
(t, a) +

∂p̃

∂a
(t, a) + v(t, a)p̃(t, a) = 0, (t, a) ∈ Qτ

p̃(t, 0) =

∫ a†

ab

β0(t, a)p̃(t, a) da, t ∈ (0, τ)

p̃(0, a) = p0(a), a ∈ (0, a†).

(3.6)
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Integrating along the characteristic lines, we get that the solution p̃ of (3.6) satisfies

p̃(t, a) =



p0(a− t) exp

(
−
∫ a

a−t

ds

a2 − s

)
if

{
ε− a2 6 t− a 6 −a1,
a ∈ [a1, a2],

p0(a− t) exp

(
−
∫ a

a1

ds

a2 − s

)
if

{
− a1 6 t− a 6 0,

a ∈ [a1, a2],

p̃(t− a, 0) exp

(
−
∫ a

a1

ds

a2 − s

)
if

{
0 < t− a < τ − a2,
a ∈ [a1, a2],

p̃(t− a, 0) exp

(
−
∫ t

t−a+a1

ds

τ − s

)
if

{
τ − a2 6 t− a 6 τ − (a1 + ε),

a ∈ [a1, a2],

so that we have

p̃(t, a) =



a2 − a
a2 − (a− t)

p0(a− t) if

{
ε− a2 6 t− a 6 −a1,
a ∈ [a1, a2],

a2 − a
a2 − a1

p0(a− t) if

{
− a1 6 t− a 6 0,

a ∈ [a1, a2],

a2 − a
a2 − a1

p̃(t− a, 0) if

{
0 < t− a < τ − a2,
a ∈ [a1, a2],

τ − t
τ − (t− a+ a1)

p̃(t− a, 0) if

{
τ − a2 6 t− a 6 τ − (a1 + ε),

a ∈ [a1, a2].

(3.7)

We may conclude from the above formula that we have{
p̃(t, a2) = 0 if t ∈ (ε, τ),

p̃(τ, a) = 0 if a ∈ (a1 + ε, a2).
(3.8)

Integrating on the characteristic lines the equation satisfied by p̃, we get from (3.8) that

p̃(t, a) = 0 if (t, a) ∈ [τ − (a1 + ε), τ ]× [a2, a†]. (3.9)

Since ab > a2, we obviously get from the above equation that

p̃(t, a) = 0 if (t, a) ∈ [τ − (a1 + ε), τ ]× [ab, a†].

Since p̃ satisfies the renewal law, we may infer that

p̃(t, 0) = 0 if t ∈ [τ − (a1 + ε), τ ],

and integrating along the characteristic lines we get that

p̃(τ, a) = 0 if a ∈ [0, a1 + ε]. (3.10)

By (3.8), (3.9) and (3.10) we may conclude that

p̃(τ, a) = 0 a.e. a ∈ (0, a†).

It remains to prove that the control u = −vp belongs to L2(Qτ ). For almost every (t, a) ∈ Qτ ,
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from (3.4) and (3.7) we have

v(t, a)p̃(t, a) =



p0(a− t)
a2 − (a− t)

if

{
ε− a2 6 t− a 6 −a1,
a ∈ [a1, a2],

p0(a− t)
a2 − a1

if

{
− a1 6 t− a 6 0,

a ∈ [a1, a2],

p̃(t− a, 0)

a2 − a1
if

{
0 < t− a < τ − a2,
a ∈ [a1, a2],

p̃(t− a, 0)

τ − (t− a+ a1)
if

{
τ − a2 6 t− a 6 τ − (a1 + ε),

a ∈ [a1, a2].

0 otherwise,

and this implies that

|v(t, a)p̃(t, a)| 6



|p0(a− t)|
ε

if

{
ε− a2 6 t− a 6 −a1,
a ∈ [a1, a2],

|p0(a− t)|
a2 − a1

if

{
− a1 6 t− a 6 0,

a ∈ [a1, a2],

|p̃(t− a, 0)|
a2 − a1

if

{
0 < t− a < τ − a2,
a ∈ [a1, a2],

|p̃(t− a, 0)|
ε

if

{
τ − a2 6 t− a 6 τ − (a1 + ε),

a ∈ [a1, a2].

0 otherwise.

(3.11)

Since p̃ ∈ L2(Qτ ), we may infer from the renewal law that we have p̃(·, 0) ∈ L2(0, τ), so that from
(3.11) we have vp̃ ∈ L2(Qτ ). Given (3.5), it follows that we have vp ∈ L2(Qτ ), which concludes
the proof of Proposition 3.1 in the case where a2 6 ab.

3.2 The second case : τ > a† − a2 + a1 and a1 < ab < a2

This subsection is devoted to prove Proposition 3.1, in the case where τ > a† − a2 + a1 and
a1 < ab < a2.

Proof of Proposition 3.1 with ab < a2. Suppose that τ > a† − a2 + a1 and a1 < ab < a2. Without
loss of generality, we may assume that τ < a†. We may also assume, without loss of generality,
that we have ab ∈ (a1, τ): indeed, in the case when there exists ab > 0 satisfying (3.3) such that
ab > τ , we may consider ãb such that ãb ∈ (a1, τ) and replace ab by ãb, noting that ãb also satisfies
(3.3) since ãb < ab.

For any ε > 0, denote by θ(ε) := τ − (a† − a2 + a1) − ε. Let us introduce ε > 0 small enough
such that we have a1 + ε < ab and θ(ε) > 0 (this is possible, since a1 < ab and τ > a† − a2 + a1).

Let us prove that there exists a feedback control u and a corresponding unique nonnegative
solution p of (3.1) satisfying

p(τ, a) = 0 a.e. a ∈ (0, a†).
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For almost every (t, a) ∈ Qτ , let us consider the feedback control u(t, a) := −v(t, a)p(t, a), where

v(t, a) :=



1

a2 − a
if

{
θ(ε)− a2 6 t− a < τ − a1 − a2 − ε,
a ∈ [a1, a2],

1

τ − (a1 + ε)− t
if

{
τ − a1 − a2 − ε 6 t− a < τ − a1 − ab − ε,
a ∈ [a1, a2],

1

ab − a
if

{
τ − a1 − ab − ε 6 t− a < τ − ab,
a ∈ [a1, ab],

1

τ − t
if

{
τ − ab 6 t− a < τ − (a1 + ε),

a ∈ [a1, ab],

0 otherwise.

(3.12)

The structure of v is given in Figure 2. The solution to (3.1) with u = −vp exists, is unique

Figure 2: The structure of the control v when τ > a† − a2 + a1 and a1 < ab < a2.

11



and nonnegative (see Aniţa [5]), and via the comparison principle for age-dependent population
dynamics (see [5, Theorem 2.1.2]) we get that

0 6 p(t, a) 6 p̃(t, a) a.e. (t, a) ∈ Qτ , (3.13)

where p̃ is the solution to
∂p̃

∂t
(t, a) +

∂p̃

∂a
(t, a) + v(t, a)p̃(t, a) = 0, (t, a) ∈ Qτ

p̃(t, 0) =

∫ a†

ab

β0(t, a)p̃(t, a) da, t ∈ (0, τ)

p̃(0, a) = p0(a), a ∈ (0, a†).

(3.14)

We may discuss three subcases, depending on the order relationship of τ−a1−ab−ε, τ−a1−a2−ε
and 0 (since the expression of the solution p̃ of (3.14) may be different in each subcase). The first
subcase (see below) is shown in Figure 2.

Subcase 1 : assume that τ − a1 − ab − ε 6 0. Integrating along the characteristic lines, we
get that the solution p̃ of (3.14) satisfies

p̃(t, a) = p0(a− t) exp

(
−
∫ a

max(a−t,a1)

ds

a2 − s

)

if θ(ε)− a2 6 t− a < τ − a1 − a2 − ε, a ∈ [a1, a2],

p̃(t, a) = p0(a− t) exp

(
−
∫ t

max(t−a+a1,0)

ds

τ − (a1 + ε)− s

)

if τ − a1 − a2 − ε 6 t− a < τ − a1 − ab − ε, a ∈ [a1, a2],

p̃(t, a) = p0(a− t) exp

(
−
∫ a

max(a−t,a1)

ds

ab − s

)

if τ − a1 − ab − ε 6 t− a 6 0, a ∈ [a1, ab],

p̃(t, a) = p̃(t− a, 0) exp

(
−
∫ a

a1

ds

ab − s

)
if 0 < t− a 6 τ − ab, a ∈ [a1, ab],

p̃(t, a) = p̃(t− a, 0) exp

(
−
∫ t

t−a+a1

ds

τ − s

)
if τ − ab < t− a 6 τ − (a1 + ε), a ∈ [a1, ab], so that we have

p̃(t, a) =
a2 − a

a2 −max(a− t, a1)
p0(a− t)

if θ(ε)− a2 6 t− a < τ − a1 − a2 − ε, a ∈ [a1, a2],

p̃(t, a) =
τ − (a1 + ε)− t

τ − (a1 + ε)−max(t− a+ a1, 0)
p0(a− t)

if τ − a1 − a2 − ε 6 t− a < τ − a1 − ab − ε, a ∈ [a1, a2],

p̃(t, a) =
ab − a

ab −max(a− t, a1)
p0(a− t)
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if τ − a1 − ab − ε 6 t− a 6 0, a ∈ [a1, ab],

p̃(t, a) =
ab − a
ab − a1

p̃(t− a, 0)

if 0 < t− a 6 τ − ab, a ∈ [a1, ab],

p̃(t, a) =
τ − t

τ − (t− a+ a1)
p̃(t− a, 0)

if τ − ab < t− a 6 τ − (a1 + ε), a ∈ [a1, ab].

Subcase 2 : assume that τ − a1 − a2 − ε 6 0 < τ − a1 − ab − ε. Integrating along the
characteristic lines, we get that the solution p̃ of (3.14) satisfies

p̃(t, a) = p0(a− t) exp

(
−
∫ a

max(a−t,a1)

ds

a2 − s

)

if θ(ε)− a2 6 t− a < τ − a1 − a2 − ε, a ∈ [a1, a2],

p̃(t, a) = p0(a− t) exp

(
−
∫ t

max(t−a+a1,0)

ds

τ − (a1 + ε)− s

)

if τ − a1 − a2 − ε 6 t− a 6 0, a ∈ [a1, a2],

p̃(t, a) = p̃(t− a, 0) exp

(
−
∫ t

t−a+a1

ds

τ − (a1 + ε)− s

)
if 0 < t− a 6 τ − a1 − ab − ε, a ∈ [a1, a2],

p̃(t, a) = p̃(t− a, 0) exp

(
−
∫ a

a1

ds

ab − s

)
if τ − a1 − ab − ε < t− a 6 τ − ab, a ∈ [a1, ab],

p̃(t, a) = p̃(t− a, 0) exp

(
−
∫ t

t−a+a1

ds

τ − s

)
if τ − ab < t− a 6 τ − (a1 + ε), a ∈ [a1, ab], so that we have

p̃(t, a) =
a2 − a

a2 −max(a− t, a1)
p0(a− t)

if θ(ε)− a2 6 t− a < τ − a1 − a2 − ε, a ∈ [a1, a2],

p̃(t, a) =
τ − (a1 + ε)− t

τ − (a1 + ε)−max(t− a+ a1, 0)
p0(a− t)

if τ − a1 − a2 − ε 6 t− a 6 0, a ∈ [a1, a2],

p̃(t, a) =
τ − (a1 + ε)− t

τ − (a1 + ε)− (t− a+ a1)
p̃(t− a, 0)

if 0 < t− a 6 τ − a1 − ab − ε, a ∈ [a1, a2],

p̃(t, a) =
ab − a
ab − a1

p̃(t− a, 0)
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if τ − a1 − ab − ε < t− a 6 τ − ab, a ∈ [a1, ab],

p̃(t, a) =
τ − t

τ − (t− a+ a1)
p̃(t− a, 0)

if τ − ab < t− a 6 τ − (a1 + ε), a ∈ [a1, ab].

Subcase 3 : assume that τ − a1 − a2 − ε > 0. Integrating along the characteristic lines, we
get that the solution p̃ of (3.14) satisfies

p̃(t, a) = p0(a− t) exp

(
−
∫ a

max(a−t,a1)

ds

a2 − s

)

if θ(ε)− a2 6 t− a 6 0, a ∈ [a1, a2],

p̃(t, a) = p̃(t− a, 0) exp

(
−
∫ a

a1

ds

a2 − s

)
if 0 < t− a 6 τ − a1 − a2 − ε, a ∈ [a1, a2],

p̃(t, a) = p̃(t− a, 0) exp

(
−
∫ t

t−a+a1

ds

τ − (a1 + ε)− s

)
if τ − a1 − a2 − ε < t− a 6 τ − a1 − ab − ε, a ∈ [a1, a2],

p̃(t, a) = p̃(t− a, 0) exp

(
−
∫ a

a1

ds

ab − s

)
if τ − a1 − ab − ε < t− a 6 τ − ab, a ∈ [a1, ab],

p̃(t, a) = p̃(t− a, 0) exp

(
−
∫ t

t−a+a1

ds

τ − s

)
if τ − ab < t− a 6 τ − (a1 + ε), a ∈ [a1, ab], so that we have

p̃(t, a) =
a2 − a

a2 −max(a− t, a1)
p0(a− t)

if θ(ε)− a2 6 t− a 6 0, a ∈ [a1, a2],

p̃(t, a) =
a2 − a
a2 − a1

p̃(t− a, 0)

if 0 < t− a 6 τ − a1 − a2 − ε, a ∈ [a1, a2],

p̃(t, a) =
τ − (a1 + ε)− t

τ − (a1 + ε)− (t− a+ a1)
p̃(t− a, 0)

if τ − a1 − a2 − ε < t− a 6 τ − a1 − ab − ε, a ∈ [a1, a2],

p̃(t, a) =
ab − a
ab − a1

p̃(t− a, 0)

if τ − a1 − ab − ε < t− a 6 τ − ab, a ∈ [a1, ab],

p̃(t, a) =
τ − t

τ − (t− a+ a1)
p̃(t− a, 0)

if τ − ab < t− a 6 τ − (a1 + ε), a ∈ [a1, ab].
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In the three subcases, we may conclude that we have
p̃(t, a2) = 0 if t ∈ (θ(ε), τ − (a1 + ε)),

p̃(τ − (a1 + ε), a) = 0 if a ∈ (ab, a2),

p̃(t, ab) = 0 if t ∈ (τ − (a1 + ε), τ),

p̃(τ, a) = 0 if a ∈ (a1 + ε, ab).

(3.15)

Integrating on the characteristic lines the equation satisfied by p̃, we get that

p̃(t, a) = 0 if (t, a) ∈ [τ − (a1 + ε), τ ]× [ab, a†]. (3.16)

Since p̃ satisfies the renewal law, we may infer that

p̃(t, 0) = 0 if t ∈ [τ − (a1 + ε), τ ],

and integrating along the characteristic lines we get that

p̃(τ, a) = 0 if a ∈ [0, a1 + ε]. (3.17)

By (3.15), (3.16) and (3.17) we get that

p̃(τ, a) = 0 a.e. a ∈ (0, a†).

It remains to prove that, for each subcase, the control u = −vp belongs to L2(Qτ ). In order to
avoid repetitive arguments, we prove that u ∈ L2(Qτ ) only in the first subcase. In this subcase,
for almost every (t, a) ∈ Qτ , from (3.12) and the corresponding expression of p̃ we have that

v(t, a)p̃(t, a) =



p0(a−t)
a2−max(a−t,a1) if

{
θ(ε)− a2 6 t− a < τ − a1 − a2 − ε,
a ∈ [a1, a2],

p0(a−t)
τ−(a1+ε)−max(t−a+a1,0) if

{
τ − a1 − a2 − ε 6 t− a 6 τ − a1 − ab − ε,
a ∈ [a1, a2],

p0(a−t)
ab−max(a−t,a1) if

{
τ − a1 − ab − ε < t− a 6 0,

a ∈ [a1, ab],

p̃(t−a,0)
ab−a1 if

{
0 < t− a 6 τ − ab,
a ∈ [a1, ab],

p̃(t−a,0)
τ−(t−a+a1) if

{
τ − ab < t− a 6 τ − (a1 + ε),

a ∈ [a1, ab],

0 otherwise,

and it follows that we have

|v(t, a)p̃(t, a)| 6



|p0(a−t)|
min(θ(ε),a2−a1) if

{
θ(ε)− a2 6 t− a < τ − a1 − a2 − ε,
a ∈ [a1, a2],

|p0(a−t)|
min(τ−(a1+ε),ab−a1) if

{
τ − a1 − a2 − ε 6 t− a 6 τ − a1 − ab − ε,
a ∈ [a1, a2],

|p0(a−t)|
min(τ−(a1+ε),ab−a1) if

{
τ − a1 − ab − ε < t− a 6 0

a ∈ [a1, ab],

|p̃(t−a,0)|
ab−a1 if

{
0 < t− a 6 τ − ab,
a ∈ [a1, ab],

|p̃(t−a,0)|
ε if

{
τ − ab < t− a 6 τ − (a1 + ε),

a ∈ [a1, ab],

0 otherwise.

Since p̃ ∈ L2(Qτ ), we may infer from the renewal law that we have p̃(·, 0) ∈ L2(0, τ), so that we
have vp̃ ∈ L2(Qτ ). Given (3.13), it follows that we have vp ∈ L2(Qτ ), which concludes the proof
of Proposition 3.1 in the case where a2 > ab.
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4 The linear case : negative null controllability results when the young
individuals do not reproduce

This section is devoted to prove that the results obtained in Proposition 3.1 in the linear setting
are sharp, in the sense that if we do not control before the individuals start to reproduce or if the
control time horizon τ is too small, then system (3.1) may not be null controllable. In this whole
section, we consider the linear controlled system (3.1) subject to assumptions (L1) - (L4) stated
in Section 3. We will prove the following Proposition 4.1 which is the “linear version” of Theorem
1.2:

Proposition 4.1. With the above notations and assumptions,

(i) Assume that there exists ab ∈ (0, a†) and am ∈ (0, a†] with ab < am such that, for almost
every t ∈ (0, τ) we have

β0(t, a) > 0 a.e. a ∈ (ab, am). (4.1)

If a1 > ab, then for every τ > 0, there exists p0 ∈ L2(0, a†) with p0(a) > 0 a.e. a ∈ (0, a†)
such that there is no control u and a corresponding nonnegative solution p to (3.1) satisfying

p(τ, a) = 0 a.e. a ∈ (0, a†).

(ii) If τ < a† − a2 + a1, then there exists a function β0 satisfying (L1) - (L2) and an initial
population density p0 ∈ L2(0, a†) with p0(a) > 0 a.e. a ∈ (0, a†) such that there is no control
u and a corresponding nonnegative solution p to (3.1) satisfying

p(τ, a) = 0 a.e. a ∈ (0, a†).

Proof of Proposition 4.1 - (i). Suppose that there exists ab ∈ (0, a†) and am ∈ (0, a†] with ab < am
such that (4.1) holds. Assume, first, that a1 = ab and let τ > 0. Since a1 > 0, note that there
exists m ∈ N and r ∈ [0, a1) such that τ = ma1 + r. We may suppose, without loss of generality,
that m > 2. Let p0 ∈ L2(0, a†) such that

p0(a) > 0 a.e. a ∈ (0, a1 − r). (4.2)

Suppose that there exists a control function u ∈ L2(Qτ ) and a corresponding nonnegative solution
p of (3.1) such that

p(τ, a) = 0 a.e. a ∈ (0, a†).

Since p(τ, a) = 0 for almost every a ∈ (0, a1), integrating along the characteristic lines we have
that

p(t, 0) = 0 a.e. t ∈ (τ − a1, τ). (4.3)

Since p satisfies the renewal law, for almost every t ∈ (τ − a1, τ) we have that

p(t, 0) =

∫ a†

ab

β0(t, a)p(t, a) da =

∫ am

ab

β0(t, a)p(t, a) da+

∫ a†

am

β0(t, a)p(t, a) da. (4.4)

Since p(t, a) > 0 for almost every (t, a) ∈ Qτ , using (4.3) and (4.4) we have, for almost every
t ∈ (τ − a1, τ), ∫ am

ab

β0(t, a)p(t, a) da = 0. (4.5)

Using the assumptions on the function β0 and the fact that p(t, a) > 0 for almost every (t, a) ∈ Qτ ,
together with the above equality (4.5) we have that

p(t, a) = 0 a.e. (t, a) ∈ (τ − a1, τ)× (ab, am).
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Figure 3: In this figure, we have τ = 3a1 + r with r ∈ [0, a1). If we suppose that the population
vanishes in time τ , we may deduce that the population vanishes in the whole blue dashed domain,
so that the initial population has to be null in the age interval (0, a1 − r).

Integrating along the characteristic lines we have that

p(t, 0) = 0 a.e. t ∈ (τ − 2a1, τ − a1).

Using and induction argument, we may infer that

p(t, 0) = 0 a.e. t ∈ (τ − (m− 1)a1, τ −ma1).

Recall that τ −ma1 = r. Using again the renewal law, it follows from the above equality that

p(t, a) = 0 a.e. (t, a) ∈ (τ − (m− 1)a1, r)× (ab, am),

and integrating along the characteristic lines we have that

p(0, a) = 0 a.e. a ∈ (0, a1 − r),

which is a contradiction with (4.2) (see Figure 3).

Since it is not possible to bring the population to zero in any time τ in the case where a1 = ab,
we may infer that it is not possible to bring the population to zero in the case where a1 > ab, so
that Propositon 4.1 - (i) is proved.
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Proof of Proposition 4.1 - (ii). Let τ < a† − a2 + a1. Suppose that there exists a control function
u ∈ L2(Qτ ) and a corresponding nonnegative solution p of (3.1) such that

p(τ, a) = 0 a.e. a ∈ (0, a†).

We may divide this proof in two cases.

Case 1 : suppose that τ < a†−a2. Then, for almost every (t, a) ∈ Qτ with a2 6 a−t 6 a†−τ ,
we have that∫ t

0

exp

{
−
∫ t

s

µ0(σ, a− t+ σ) dσ

}
χ[a1,a2](a− t+ s)u(s, a− t+ s) ds = 0,

so that from (3.2), for almost every (t, a) ∈ Qτ with a2 6 a− t 6 a† − τ we have that

p(t, a) = exp

{
−
∫ t

0

µ0(s, a− t+ s) ds

}
p0(a− t),

and it follows from the above equality that we have that

p(τ, a) = exp

{
−
∫ τ

0

µ0(s, a− τ + s) ds

}
p0(a− τ) a.e. a ∈ (τ + a2, a†),

so that from the above equation the condition p(τ, ·) = 0 cannot be fulfilled in the case where
p0(a) 6= 0 for almost every a ∈ (a2, a† − τ).

Case 2 : suppose that τ > a† − a2. Since p(τ, a) = 0 for almost every a ∈ (0, a1), integrating
along the characteristic lines we have that

p(t, 0) = 0 a.e. t ∈ (τ − a1, τ). (4.6)

Note that, since τ < a† − a2 + a1, we have τ − a1 < a† − a2 so that from (4.6) and using the fact
that a† − a2 6 τ , we have, in particular,

p(t, 0) = 0 a.e. t ∈ (τ − a1, a† − a2).

Since p satisfies the renewal law, for almost every t ∈ (τ − a1, a† − a2) we have that

p(t, 0) =

∫ a†

0

β0(t, a)p(t, a) da = 0. (4.7)

Since β0(t, a) > 0 and p(t, a) > 0 for almost every (t, a) ∈ (τ − a1, a† − a2) × (0, a†), we deduce
from the above equality (4.7) that we have

β0(t, a)p(t, a) = 0 a.e. (t, a) ∈ (τ − a1, a† − a2)× (0, a†). (4.8)

Define the triangle

T := {(t, a) ∈ Qτ , a2 6 a− t 6 a† − (τ − a1), a > τ − a1 + a2, t > τ − a1}. (4.9)

See Figure 4 for a picture of the triangle position. From (4.8) and (4.9), for almost every (t, a) ∈ T
we have

β0(t, a)p(t, a) = 0. (4.10)

Moreover, for almost every (t, a) ∈ T we have that∫ t

0

exp

{
−
∫ t

s

µ0(σ, a− t+ σ) dσ

}
χ[a1,a2](a− t+ s)u(s, a− t+ s) ds = 0,
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Figure 4: In this figure, we have τ < a†−a2+a1 and τ > a†−a2. If we suppose that the population
vanishes in time τ , because of the renewal law, we may deduce that the population or the function
β has to be null within the blue dashed triangle T (region which is not influenced by the control).
This is not the case in general : we may choose an initial condition which is strictly positive in the
age interval (a2, a† − (τ − a1)) and a strictly positive function β in the blue dashed triangle.

so that from (3.2), for almost every (t, a) ∈ T we have that

p(t, a) = exp

{
−
∫ t

0

µ0(s, a− t+ s) ds

}
p0(a− t),

and using the above equality, the condition (4.10) may be rewritten as

β0(t, a) exp

{
−
∫ t

0

µ0(s, a− t+ s) ds

}
p0(a− t) = 0 a.e. (t, a) ∈ T .

This condition may not be fulfilled in general: take, for instance, β0(t, a) = 1 for almost every
(t, a) ∈ T and p0(a) > 0 for almost every a ∈ (a2, a† − (τ − a1)). This concludes the proof of
Proposition 4.1 - (ii).

5 The linear case with general assumptions on the fertility rate

This section is devoted to prove Theorem 1.3 in the linear case, when no extra assumption on the
function β is assumed (in particular, we may have β > 0 in some interval of ages near zero). In
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this whole section, we consider the linear controlled system (3.1) subject to assumptions (L1) -
(L4) stated in Section 3. We will prove the following Proposition 5.1 which is the “linear version”
of Theorem 1.3:

Proposition 5.1. With the above notations and assumptions,

(i) Assume that a1 = 0 and a2 > 0. If τ > a† − a2, then for every p0 ∈ L2(0, a†) with p0(a) > 0
a.e. a ∈ (0, a†), there exists u ∈ L2(Qτ ) and a corresponding unique nonnegative solution p
of (3.1) such that

p(τ, a) = 0 a.e. a ∈ (0, a†).

(ii) Assume that there exists am ∈ (0, a†] such that, for almost every t ∈ (0, τ) we have

β0(t, a) > 0 a.e. a ∈ (0, am).

If a1 > 0, then for every τ > 0, there exists p0 ∈ L2(0, a†) with p0(a) > 0 a.e. a ∈ (0, a†)
such that there is no control u and a corresponding nonnegative solution p to (3.1) satisfying

p(τ, a) = 0 a.e. a ∈ (0, a†).

(iii) If τ < a† − a2, there exists an initial population density p0 ∈ L2(0, a†) with p0(a) > 0 a.e.
a ∈ (0, a†) such that there is no control u and a corresponding nonnegative solution p to (3.1)
satisfying

p(τ, a) = 0 a.e. a ∈ (0, a†).

Proof of Proposition 5.1 - (i). Suppose that τ > a† − a2. Without loss of generality, we may
assume that τ < a†. Let us prove that there exists a feedback control u and a corresponding
unique nonnegative solution p of (3.1) such that

p(τ, a) = 0 a.e. a ∈ (0, a†).

Denote by ε := 1
2 (τ − (a† − a2)). For almost every (t, a) ∈ Qτ , let us consider the feedback

control u(t, a) := −v(t, a)p(t, a), where

v(t, a) :=



1

a2 − a
if

{
ε− a2 6 t− a < a† − 2a2 + ε,

a ∈ [0, a2],

1

a† − a2 + ε− t
if

{
a† − 2a2 + ε 6 t− a < a† − 2a2 + 2ε,

a ∈ [0, a2],

0 if


a† − 2a2 + 2ε 6 t− a < a† − a2 + ε,

t ∈ [a† − 2a2 + 2ε, a† − a2 + ε],

a ∈ [0, a2 − ε],
1

τ − t
if

{
a† − a2 + ε 6 t 6 τ,

a ∈ [0, a2],

0 otherwise.

(5.1)

The structure of v is given in Figure 5. The solution to (3.1) with u = −vp exists, is unique
and nonnegative (see Aniţa [5]), and via the comparison principle for age-dependent population
dynamics (see [5, Theorem 2.1.2]) we get that

0 6 p(t, a) 6 p̃(t, a) a.e. (t, a) ∈ Qτ , (5.2)

where p̃ is the solution to
∂p̃

∂t
(t, a) +

∂p̃

∂a
(t, a) + v(t, a)p̃(t, a) = 0, (t, a) ∈ Qτ

p̃(t, 0) = M

∫ a†

0

p̃(t, a) da, t ∈ (0, τ)

p̃(0, a) = p0(a), a ∈ (0, a†),

(5.3)
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Figure 5: The structure of the control v when a1 = 0 and τ > a† − a2.

where M := ‖β0‖L∞(Qτ ).

There may be again three subcases to discuss, depending on the order relationship of a†−2a2+ε,
a†−2a2+2ε and 0 (since the expression of the solution p̃ of (5.3) may be different in each subcase).
Here, we do the proof only in the case when a†−2a2+ε > 0 (namely, the case when a2 is sufficiently
small) which is pictured in Figure 5. In this case, integrating along the characteristic lines, we get
that the solution p̃ of (5.3) satisfies

p̃(t, a) = p0(a− t) exp

(
−
∫ a

a−t

ds

a2 − s

)
if ε− a2 6 t− a 6 0, a ∈ [0, a2],

p̃(t, a) = p̃(t− a, 0) exp

(
−
∫ a

0

ds

a2 − s

)
if 0 < t− a 6 a† − 2a2 + ε, a ∈ [0, a2],

p̃(t, a) = p̃(t− a, 0) exp

(
−
∫ t

t−a

ds

a† − a2 + ε− s

)
if a† − 2a2 + ε < t− a 6 a† − 2a2 + 2ε, a ∈ [0, a2],

p̃(t, a) = p̃(t− a, 0)
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if a†−2a2 + 2ε < t−a 6 a†−a2 + ε, t ∈ [a†−2a2 + 2ε, a†−a2 + ε], a ∈ [0, a2− ε], so that we have

p̃(t, a) =



a2−a
a2−(a−t)p0(a− t) if

{
ε− a2 6 t− a 6 0,

a ∈ [0, a2],

a2−a
a2

p̃(t− a, 0) if

{
0 < t− a 6 a† − 2a2 + ε,

a ∈ [0, a2],

a†−a2+ε−t
a†−a2+ε−(t−a) p̃(t− a, 0) if

{
a† − 2a2 + ε < t− a 6 a† − 2a2 + 2ε,

a ∈ [0, a2],

p̃(t− a, 0) if


a† − 2a2 + 2ε < t− a 6 a† − a2 + ε,

t ∈ [a† − 2a2 + 2ε, a† − a2 + ε],

a ∈ [0, a2 − ε].

(5.4)

We may conclude from the above formulas that we have{
p̃(t, a2) = 0 if t ∈ (ε, a† − a2 + ε),

p̃(a† − a2 + ε, a) = 0 if a ∈ (a2 − ε, a2).
(5.5)

Integrating on the characteristic lines the equation satisfied by p̃, we get from (5.5) that

p̃(t, a) = 0 if (t, a) ∈ [a† − a2 + ε, τ ]× [a2, a†]. (5.6)

By (5.6) we get that

− 1

τ − t
χ[0,a2](a)p̃(t, a) = − 1

τ − t
p̃(t, a)

a.e. (t, a) ∈ [a†− a2 + ε, τ ]× (0, a†), and so we may infer that p̃ is the unique nonnegative solution
to 

∂p̃

∂t
(t, a) +

∂p̃

∂a
(t, a) +

1

τ − t
p̃(t, a) = 0, (t, a) ∈ (a† − a2 + ε, τ)× (0, a†)

p̃(t, 0) = M

∫ a†

0

p̃(t, a) da, t ∈ (a† − a2 + ε, τ)

p̃(a† − a2 + ε, a) = p̃(a† − a2 + ε, a), a ∈ (0, a†).

We may conclude that
p̃(t, a) = h(t)g(t, a)

a.e. (t, a) ∈ [a† − a2 + ε, τ ]× (0, a†) (p̃ is separable), where g is the solution to
∂g

∂t
(t, a) +

∂g

∂a
(t, a) = 0, (t, a) ∈ (a† − a2 + ε, τ)× (0, a†)

g(t, 0) = M

∫ a†

0

g(t, a) da, t ∈ (a† − a2 + ε, τ)

g(a† − a2 + ε, a) = p̃(a† − a2 + ε, a), a ∈ (0, a†),

and h is the solution to h′(t) +
1

τ − t
h(t) = 0, t ∈ (a† − a2 + ε, τ)

h(a† − a2 + ε) = 1.

Hence for every t ∈ [a† − a2 + ε, τ ] we have

h(t) =
1

τ − (a† − a2 + ε)
(τ − t). (5.7)
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By (5.7) we get that p̃(τ, a) = 0 a.e. a ∈ (0, a†) and consequently

p(τ, a) = 0

a.e. a ∈ (0, a†).

It remains to prove that the control u = −vp belongs to L2(Qτ ). For almost every (t, a) ∈
(0, a† − a2 + ε)× (0, a2), from (5.1) and (5.4) we have that

|v(t, a)p̃(t, a)| =



p0(a− t)
a2 − (a− t)

if

{
ε− a2 6 t− a 6 0,

a ∈ [0, a2],

p̃(t− a, 0)

a2
if

{
0 < t− a 6 a† − 2a2 + ε,

a ∈ [0, a2],

p̃(t− a, 0)

a† − a2 + ε− (t− a)
if

{
a† − 2a2 + ε < t− a 6 a† − 2a2 + 2ε,

a ∈ [0, a2],

0 if


a† − 2a2 + 2ε < t− a 6 a† − a2 + ε,

t ∈ [a† − 2a2 + 2ε, a† − a2 + ε],

a ∈ [0, a2 − ε],

(5.8)

and it follows from (5.8) that we have

|v(t, a)p̃(t, a)| 6



|p0(a− t)|
ε

if

{
ε− a2 6 t− a 6 0,

a ∈ [0, a2],

|p̃(t− a, 0)|
a2

if

{
0 < t− a 6 a† − 2a2 + ε,

a ∈ [0, a2],

|p̃(t− a, 0)|
a2 − ε

if

{
a† − 2a2 + ε < t− a 6 a† − 2a2 + 2ε,

a ∈ [0, a2],

0 if


a† − 2a2 + 2ε < t− a 6 a† − a2 + ε,

t ∈ [a† − 2a2 + 2ε, a† − a2 + ε],

a ∈ [0, a2 − ε].

(5.9)

Since p̃ ∈ L2((0, a† − a2 + ε) × (0, a†)), we may infer from the renewal law that we have p̃(·, 0) ∈
L2(0, a† − a2 + ε), so that from (5.9) we have vp̃ ∈ L2((0, a† − a2 + ε) × (0, a†)). Given (5.2), it
follows that we have vp ∈ L2((0, a† − a2 + ε)× (0, a†)).

On the other hand, for almost every (t, a) ∈ (a† − a2 + ε)× (0, a2) we have

|v(t, a)p(t, a)| ≤ |v(t, a)p̃(t, a)| = 1

τ − t
h(t)g(t, a) =

1

τ − (a† − a2 + ε)
g(t, a),

and so that vp ∈ L2((a† − a2 + ε, τ)× (0, a2)), which ends the proof of Proposition 5.1 - (i).

Remark 5.2. Note that actually, in the above proof, the control u defined by u(t) = − 1
τ−t p̃(t) for

every t ∈ (a† − a2 + ε, τ) is the feedback null control as defined by (2.5) (see Section 2) associated
to the Lotka-McKendrick semigroup where the functions β and µ are defined by β(a) := M and
µ(a) := 0 for almost every a ∈ (0, a2).

Proof of Proposition 5.1 - (ii) and (iii). The proof of Proposition 5.1 - (ii) follows the proof of
Proposition 4.1 - (i), taking ab = 0 and a1 > 0, so we omit it. Moreover, the proof of Proposition
5.1 - (iii) is the same as the proof of Proposition 4.1 - (ii), Case 1.
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6 Two applications of the linear controllability results

In this section, we give two applications to the results obtained in Propositions 3.1, 4.1 and 5.1.
Firstly, we show how to steer a population to another one (in the linear case), preserving the
nonnegativity of the population. Secondly, we shall prove Theorems 1.1, 1.2 and 1.3 in the general
nonlinear case, using as a main ingredient the comparison principle for age-structured populations
dynamics.

6.1 From a population to another one

In this subsection, we give an application of Proposition 3.1 and Proposition 5.1 to a linear popula-
tion control problem. The aim of this subsection is, roughly speaking, to steer an initial population
density to another population density in sufficiently large time, dealing with age restriction. More
precisely, let τ be a positive constant and assume that p̃ is solution to the system:

∂p̃

∂t
(t, a) +

∂p̃

∂a
(t, a) + µ0(t, a)p̃(t, a) = χ[a1,a2](a)w(t, a), (t, a) ∈ Qτ

p̃(t, 0) =

∫ a†

0

β0(t, a)p̃(t, a) da, t ∈ (0, τ)

p̃(0, a) = p̃0(a), a ∈ (0, a†),

(6.1)

where the functions µ0 and β0 are assumed to follow (L1) - (L4) (see Section 3), w ∈ L2(Qτ ) is
a nonnegative function and p̃0 ∈ L2(0, a†) is a nonnegative initial population density. We aim to
find a control function u ∈ L2(Qτ ) such that the corresponding unique solution p to (3.1) coincides
with the solution p̃ to (6.1) in time τ , while preserving the nonnegativity of p. Such a problem
has been studied, for instance, in the pioneering work [6] and more recently in [8], assuming that
the functions µ0, β0 and w do not depend on the time, the control function u is supported in the
age interval (0, a0) for some a0 < a† and p̃ is a steady state of (3.1). The main novely we bring
here is that we may be able to steer the solution p of (3.1) to the solution p̃ of (6.1) by means of a
feedback control function u, without considering the above mentioned restrictions. More precisely,
we have

Proposition 6.1. With the above notations and assumptions, assume that at least one of the two
following conditions is fulfilled:

Condition 1: there exists ab ∈ (0, a†) such that (3.3) is satisfied, with a1 < ab and τ >
a† − a2 + a1,

Condition 2: a1 = 0 and τ > a† − a2.

Suppose that w and p̃ are both nonnegative functions in L2(Qτ ), where p̃ is the solution of (6.1).
Then for every p0 ∈ L2(0, a†) with p0(a) > 0 a.e. a ∈ (0, a†), there exists u ∈ L2(Qτ ) and a unique
nonnegative solution p of (3.1) such that

p(τ, a) = p̃(τ, a) a.e. a ∈ (0, a†).

Proof. Suppose, first, that the Condition 1 of Proposition 6.1 is fulfilled. For almost every (t, a) ∈
Qτ , we set

u(t, a) := w(t, a)− v(t, a)(p(t, a)− p̃(t, a)) a.e. (t, a) ∈ Qτ , (6.2)

where v is defined by (3.4) (resp. by (3.12)) in the case where a2 6 ab (resp. in the case where
ab < a2).
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Denoting by h := p − p̃, using (3.1), (6.1) together with the above definition of the control
function u given by (6.2), we get that h is solution of the following system:

∂h

∂t
(t, a) +

∂h

∂a
(t, a)

+ µ0(t, a)h(t, a) = −χ[a1,a2](a)v(t, a)h(t, a), (t, a) ∈ Qτ

h(t, 0) =

∫ a†

0

β0(t, a)h(t, a) da, t ∈ (0, τ)

h(0, a) = h0(a), a ∈ (0, a†),

(6.3)

where h0(a) := p0(a) − p̃0(a) for almost every a ∈ (0, a†). From the proof of Proposition 3.1, we
get that the solution h of (6.3) satisfies h(τ, ·) = 0, with vh ∈ L2(Qτ ). It follows that we have
p(τ, ·) = p̃(τ, ·) and u = w − vh ∈ L2(Qτ ).

It remains to show that the unique solution p to (3.1) corresponding to u defined by (6.2) is
nonnegative. Since u is defined by (6.2), we get that p is solution to

∂p

∂t
(t, a) +

∂p

∂a
(t, a)

+ µ̃(t, a)p(t, a) = χ[a1,a2](a)(w(t, a) + v(t, a)p̃(t, a)), (t, a) ∈ Qτ

p(t, 0) =

∫ a†

0

β0(t, a)p(t, a) da, t ∈ (0, τ)

p(0, a) = p0(a), a ∈ (0, a†),

(6.4)

where µ̃(t, a) := µ0(t, a) +χ[a1,a2]v(t, a) for almost every (t, a) ∈ Qτ . Noting that, for almost every
(t, a) ∈ Qτ we have

χ[a1,a2](a)(w(t, a) + v(t, a)p̃(t, a)) > 0 a.e. (t, a) ∈ Qτ ,

it follows from the comparison principle for linear age-structured population dynamics (see, for
instance, [5]) that the solution p of (6.4) satisfies p(t, a) > 0 for almost every (t, a) ∈ Qτ .

In the case where the Condition 2 is fulfilled, we may consider v as defined by (5.1) and follow
the above proof to get the desired result.

6.2 From the linear to the nonlinear case

In this subsection, we prove Theorems 1.1, 1.2 and 1.3 in the general case when both functions µ
and β may depend on theirs three variables. The proof of Theorem 1.1 is relied on the comparison
result for age-dependent population dynamics (see, for instance, [5]) and the structure of the
feedback control obtained in Section 3 relatively to the linear case.

Proof of Theorem 1.1. Assume that there exists ab > 0 such that (1.3) holds. Suppose that a1 <
ab, and let τ > a† − a2 + a1. Suppose, first, that a2 6 ab. Denote by v the function defined by
(3.4). The solution p to (1.1) with u := −vp exists, is unique, and via the comparison result for
age-dependent population dynamics, we get that

0 6 p(t, a) 6 p(t, a) a.e. (t, a) ∈ Qτ , (6.5)

where p is solution to the linear system:

∂p

∂t
(t, a) +

∂p

∂a
(t, a)

+ (µ(t, a, 0) + v(t, a)χ[a1,a2](a))p(t, a) = 0, (t, a) ∈ Qτ

p(t, 0) =

∫ a†

0

β+(t, a)p(t, a) da, t ∈ (0, τ)

p(0, a) = p0(a), a ∈ (0, a†).

(6.6)
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From the proof of Proposition 3.1, we get that the solution p of (6.6) satisfies p(τ, ·) = 0, with
vp ∈ L2(Qτ ), so that using (6.5) the solution p to (1.1) with u = −pv satisfies p(τ, ·) = 0 with
u ∈ L2(Qτ ).

The case where ab < a2 is similar, denoting by v the function defined by (3.12). This concludes
the proof of Theorem 1.1.

Let us now prove Theorem 1.2, using again the comparison principle for age-structured popula-
tion dynamics and the results obtained in Section 4.

Proof of Theorem 1.2 - (i). Let τ > 0 and a1 > 0. Assume by contradiction that there exists a
control u and a corresponding unique nonnegative solution p of (1.1) such that p(τ, a) = 0 a.e.
a ∈ (0, a†). We have that P ∈ L∞(0, τ), where P (t) =

∫ a†
0
p(t, a)da. Denote by M = ‖P‖L∞(0,τ)

and by
β−(t, a) := β(t, a,M), µ+(t, a) := µ(t, a, 0), a.e. (t, a) ∈ Qτ .

By the comparison principle for age-structured population dynamics we get that

0 ≤ p̃(t, a) ≤ p(t, a), (t, a) ∈ Q1
τ

(along almost every characteristic line), where Q1
τ = (0, τ) × (0, a1), a1 = min{a1, am}, and p̃ is

the solution to the linear system

∂p̃

∂t
(t, a) +

∂p̃

∂a
(t, a) + µ+(t, a)p̃(t, a) = 0, (t, a) ∈ Q1

τ

p̃(t, 0) =

∫ a1

0

β−(t, a)p̃(t, a) da, t ∈ (0, τ)

p̃(0, a) = p0(a), a ∈ (0, a1).

Since β−(t, a) > 0 a.e. (t, a) ∈ (0, τ)× (ab, a1), we may conclude that for p0 satisfying

p0(a) > 0 a.e. a ∈ (0, a1),

we get that p̃(t, a) > 0 along almost any characteristic line. Since we have p̃(τ, a) > 0 a.e.
a ∈ (0, a1), we get a contradiction with the fact that p(τ, a) = 0 a.e. a ∈ (0, a1).

Proof of Theorem 1.2 - (ii). Let us take β := β0, where β0 is chosen as at the end of the proof of
Proposition 4.1 - (ii), then arguing again by contradiction and using the comparison principle for
age-structured population dynamics we get the conclusion as in Theorem 1.2 - (i).

The proof of Theorem 1.3 follow the above proofs of Theorem 1.1 and 1.2, so we omit it.

7 Lack of null controllability for the Lotka-McKendrick equation with
spatial diffusion and positivity constraints

In this section, we consider a linear controlled age-structured population model with spatial diffu-
sion described by the following system:

∂p

∂t
(t, a, x) +

∂p

∂a
(t, a, x) + µ(t, a)p(t, a, x)−∆p(t, a, x)

= χω(x)u(t, a, x), (t, a) ∈ Qτ , x ∈ Ω

∂p

∂ν
(t, a, x) = 0, (t, a) ∈ Qτ , x ∈ ∂Ω

p(t, 0, x) =

∫ a†

0

β(t, a)p(t, a, x) da, t ∈ (0, τ), x ∈ Ω

p(0, a, x) = p0(a, x), a ∈ (0, a†), x ∈ Ω.

(7.1)

In the above equations:
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• Ω ⊂ RN , N > 1, denotes a smooth connected bounded domain and ∆ is the laplacian with
respect to the variable x;

• ∂

∂ν
denotes the derivation operator in the direction of the unit outer normal to ∂Ω. We thus

have homogeneous Neumann boundary conditions, thus the considered population is isolated
from the exterior of Ω;

• p(t, a, x) denotes the distribution density of the population at time t, of age a at spatial
position x ∈ Ω;

• p0 denotes the initial population distribution;

• a† ∈ (0,+∞) is the maximal age of an individual;

• β and µ are nonnegative functions denoting respectively the birth and death rates;

• ω ⊂⊂ Ω is a nonempty open susbet of Ω and χω denotes the characteristic function of ω.

Let τ be a positive constant. We make the following classical assumptions on β and µ:

(D1) β ∈ L∞(Qτ ), β(t, a) > 0 for almost every (t, a) ∈ Qτ ,

(D2) µ ∈ L1
loc([0, τ ]× [0, a†)) , µ(t, a) > 0 almost every (t, a) ∈ Qτ .

From a controllability view point, system (7.1) has been extensively studied in the past decades.
The particular case when the control acts in the whole space (the case corresponding to ω = Ω)
was investigated by Aniţa (see [5], p 148). The case when the control acts in a spatial subdomain
ω was firstly studied by Ainseba [1], where the author proves the null controllability of the above
system (7.1), except for a small interval of ages near zero. The case when the control acts in a
spatial subdomain ω and also only for small age classes was investigated by Ainseba and Aniţa [2],
for initial data p0 in a neighborhood of the target p̃. Related approximate and exact controllability
issues have also been studied in Ainseba and Langlais [4], Ainseba and Iannelli, Traore [17], Kavian
and Traore [12].

In a recent work, Hegoburu and Tucsnak [9] proved that, in the case where both functions
β and µ do not depend on the time variable, the above system (7.1) is null controllable in any
time τ > 0, in the sense that for any p0 ∈ L2((0, a†) × Ω), there exists a control function u ∈
L∞(0, τ ;L2((0, a†)× Ω)) such that the corresponding solution p of (7.1) satisfies

p(τ, a, x) = 0 a.e. (a, x) ∈ (0, a†)× Ω.

This result has been recently improved by Maity, Tucsnak and Zuazua [15], assuming that the
young individuals are not able to reproduce before some age ab > 0 , where the control function u
in system (7.1) has support in some interval of ages [a1, a2], where 0 6 a1 < a2 6 a†. In [15] the
authors proved the null controllability result with this additional age restriction, provided that the
control time τ is large enough, and the age a1 is smaller than ab.

The aim of this section is to prove that, in general, the solution p of the controlled system may
not be positive in the whole time interval [0, τ ]. More precisely, we have:

Proposition 7.1. Let τ > 0. With the above notations and assumptions, suppose that for almost
every t ∈ [0, τ ], we have

β(t, ·) 6= 0L∞(0,a†) a.e. t > 0, (7.2)

and denote by
Et := ess supp β(t, ·) and E+

t := supEt. (7.3)

Suppose that
m := inf

{
E+
t , t ∈ [0, τ ]

}
> 0. (7.4)
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Then there exists p0 ∈ L2((0, a†)× Ω) with p0(a, x) > 0 for almost every (a, x) ∈ (0, a†)× Ω such
that there does not exists a control function u ∈ L2((0, τ);L2((0, a†)× Ω)) such that

p(τ, a, x) = 0 a.e. (a, x) ∈ (0, a†)× Ω,

together with
p(t, a, x) > 0 a.e. (t, a, x) ∈ Qτ × Ω.

In other words, for some well choosed nonnegative initial condition p0 ∈ L2((0, a†) × Ω), it is
not possible to eradicate the whole population in time τ while keeping the nonnegativity of the
state trajectory.

Proof. Let τ > 0, and assume that (7.2) and (7.4) are satisfied. Denote by ωc the complementary
of ω in Ω. Let h0 ∈ L2(Ω) be a nonnegative function such that for almost every x ∈ ωc we have

h0(x) > 0 a.e. x ∈ ωc. (7.5)

For almost every (a, x) ∈ (0, a†)× Ω, we set

p0(a, x) := h0(x). (7.6)

It is clear that the initial condition p0 defined by (7.6) belongs to L2((0, a†)×Ω) and is a nonnegative
function. Let τ > 0. Suppose that there exists a control function u ∈ L2((0, τ);L2((0, a†) × Ω))
such that the two following conditions are fulfilled:

p(τ, a, x) = 0 a.e. (a, x) ∈ (0, a†)× Ω,

and
p(t, a, x) > 0 a.e. (t, a, x) ∈ Qτ × Ω,

where p is the solution of (7.1).

In the subdomain Qτ × ωc, given (7.1) and (7.6), the function p satisfies

∂p

∂t
(t, a, x) +

∂p

∂a
(t, a, x)

+ µ(t, a)p(t, a, x)−∆p(t, a, x) = 0, (t, a) ∈ Qτ , x ∈ ωc

∂p

∂ν
(t, a, x) = 0, (t, a) ∈ Qτ , x ∈ ∂Ω

p(t, 0, x) =

∫ a†

0

β(t, a)p(t, a, x) da, t ∈ (0, τ), x ∈ ωc

p(0, a, x) = h0(x), a ∈ (0, a†), x ∈ ωc.

By the comparison principle, for almost every (t, a, x) ∈ Qτ × ωc, we have that

p(t, a, x) > p̃(t, a, x) > 0, (7.7)

where the function p̃ satisfies the following equation:

∂p̃

∂t
(t, a, x) +

∂p̃

∂a
(t, a, x)

+ µ(t, a)p̃(t, a, x)−∆p̃(t, a, x) = 0, (t, a) ∈ Qτ , x ∈ ωc

p̃(t, a, x) = 0, (t, a) ∈ Qτ , x ∈ ∂ω
∂p̃

∂ν
(t, a, x) = 0, (t, a) ∈ Qτ , x ∈ ∂Ω

p̃(t, 0, x) =

∫ a†

0

β(t, a)p̃(t, a, x) da, t ∈ (0, τ), x ∈ ωc

p̃(0, a, x) = h0(x), a ∈ (0, a†), x ∈ ωc.

(7.8)
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Note that the above system (7.8) is separable, in the sense that the solution p̃ to (7.8) writes as

p̃(t, a, x) = g(t, a)h(t, x) a.e. (t, a, x) ∈ Qτ × ωc, (7.9)

where the functions g ∈ L2((0, τ);L2(0, a†)) and h ∈ L2((0, τ);L2(Ω)) are respectively solutions to
∂g

∂t
(t, a) +

∂g

∂a
(t, a) + µ(t, a)g(t, a) = 0, (t, a) ∈ Qτ

g(t, 0) =

∫ a†

0

β(t, a)g(t, a) da, t ∈ (0, τ)

g(0, a) = 1, a ∈ (0, a†),

(7.10)

and 

∂h

∂t
(t, x)−∆h(t, x) = 0, t ∈ (0, τ), x ∈ ωc

h(t, x) = 0, t ∈ (0, τ), x ∈ ∂ω
∂h

∂ν
(t, x) = 0, t ∈ (0, τ), x ∈ ∂Ω

h(0, x) = h0(x), x ∈ ωc.

Given assumptions (7.2) and (7.4), let us prove that, for every τ > 0, there exists aτ ∈ (0, a†) such
that the solution g of (7.10) satisfies g(τ, aτ ) 6= 0. To this aim, integrating along the characteristics
the equation satisfied by g, for almost every (t, a) ∈ Qτ we have

g(t, a) =


exp

(
−
∫ t

0

µ(s, a− t+ s) ds

)
, a > t,

exp

(
−
∫ a

0

µ(t− a+ s, s) ds

)
B(t− a), a < t,

(7.11)

where

B(t) =

∫ a†

0

β(t, a)g(t, a) da a.e. t ∈ (0, τ).

Suppose that there exists τ > 0 such that for almost every a ∈ (0, a†) we have g(t, a) = 0, where
g satisfies (7.10). Given (7.11), necessarily, we have τ > a†. Assuming that g(τ, a) = 0 for almost
every a ∈ (0, a†) for some τ > a†, from (7.11) we have

B(s) = 0 a.e. s ∈ (τ − a†, τ),

so that, in particular, we have

B(τ − a†) =

∫
Eτ−a†

β(τ − a†, a)g(τ − a†, a) da = 0, (7.12)

where Eτ−a† is defined by (7.3). Since β(τ−a†, a) > 0 for almost every a ∈ Eτ−a† and p is assumed
to be positive, from (7.12) we get that for almost every a ∈ Eτ−a† , we have

g(τ − a†, a) = 0 a.e. a ∈ Eτ−a† . (7.13)

Denote by E(1) := E+
τ−a† , where E+

τ−a† is defined by (7.3). From (7.13), we have

g(τ − a†, E(1)) = 0. (7.14)

If E(1) > τ − a†, the above condition (7.14) gives a contradiction with (7.11). Otherwise, we have
E(1) < τ − a† and integrating along the characteristics, we have

g(τ − a† − E(1), 0) = 0.
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Denote by E(2) = E+
τ−a†−E(1) . Following the previous arguments, we may deduce from the renewal

law that we have
g(τ − a† − E(1), E(2)) = 0. (7.15)

If E(2) > τ − a† − E(1), the above condition (7.15) gives a contradiction with (7.11). Otherwise,
we have E(2) < τ − a† − E(1) and integrating along the characteristics, we have

g(τ − a† − E(1) − E(2), 0) = 0.

Define, recursively, the sequence (E(n))n>1 by E(1) := E+
τ−a† and E(n+1) := E+

τ−a†−E(1)−···−E(n) .

Following the above procedure, me way obtain by induction that for every n > 1 such that
τ − a† − E(1) − · · · − E(n) > 0, we have

g(τ − a† − E(1) − · · · − E(n), E(n+1)) = 0.

Recall that there exists m > 0 such that, for almost every t ∈ [0, τ ] we have E+
t > m > 0. Thus,

denote by l the first integer such that

τ − a† − E(1) − · · · − E(l) − E(l+1) 6 0.

Then, the condition
g(τ − a† − E(1) − · · · − E(l), E(l+1)) = 0,

gives a contradiction with (7.11), since E(l+1) > τ − a† − E(1) − · · · − E(l). It follows that g(τ, ·)
cannot be the null function and there exists aτ ∈ (0, a†) such that g(τ, aτ ) 6= 0.

Let x ∈ ωc. Suppose that p(τ, aτ , x) = 0, where aτ is such that g(τ, aτ ) 6= 0. From (7.7), it
follows that we have p̃(τ, aτ , x) = 0, so that from (7.9) we have

g(τ, aτ )h(τ, x) = 0. (7.16)

Since g(τ, aτ ) 6= 0, from (7.16) we have h(τ, x) = 0, for almost every x ∈ ωc. From the backward
uniqueness for the parabolic equations, we have h0(x) = 0 for almost every x ∈ ωc. This is a
contradiction with (7.5).

Remark 7.2. Using the comparison results for age-structured population dynamics with spatial
diffusion and feedback controls of harvesting type it is possible to obtain null-controllability results
when the control function u acts in the whole habitat Ω, for any t ∈ (0, τ) but only for some age
subinterval.
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