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We propose a robust pressure-correction scheme for the numerical solution of the compressible
Euler equations discretized by a colocated finite volume method. The scheme is based on an
internal energy formulation, which ensures that the internal energy is positive. More generally,
the scheme enjoys fundamental stability properties: without restriction on the time step,
both the density and the internal energy are positive, the integral of the total energy over
the computational domain is preserved thanks to an estimate on the discrete kinetic energy,
and a discrete entropy ineqality is satisfied. These stability properties ensure the existence
of a solution to the scheme. The internal energy balance features a corrective source term
which is needed for the scheme to compute the correct shock solutions: we are indeed able to
prove a Lax-type convergence result, in the sense that, under some compactness assumptions,
the limit of a converging sequence of approximate solutions obtained with space and time
discretization steps tending to zero is an entropy weak solution of the Euler equations. The
obtained theoretical results and the scheme accuracy are verified ny numerical experiments;
in particular, the qualitative behaviour of the scheme is assessed on 1D and 2D Riemann
problems and compared with other schemes.

Keywords: Finite-volume methods, compressible flows, pressure-correction methods.

1. Introduction

In this work we address the numerical solution of the compressible Euler equations:

∂tρ+ div(ρu) = 0, (1a)

∂t(ρu) + div(ρu⊗ u) +∇ p = 0, (1b)

∂t(ρE) + div(ρEu) + div(pu) = 0, (1c)

ρ 󰃍 0, e 󰃍 0, p = ℘(ρ, e), E =
1

2
|u|2 + e, (1d)

where u, ρ, p, E and e denote the velocity, the density, the pressure, the total energy and the
internal energy respectively. The function ℘ is the equation of state for an ideal gas, which we
extend by 0 for negative ρ and e, for the sole purpose of the mathematical study of the scheme:

℘(ρ, e) =

󰀫
(γ − 1)ρe if ρ 󰃍 0 and e 󰃍 0,

0 otherwise.
(2)

The problem is defined over Ω×(0, T ), where Ω is an open polygonal bounded connected subset
of Rd, d = 1, 2 or 3 and (0, T ) is a finite time interval. The system is complemented by initial
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conditions for ρ, e and u, which are denoted by ρ0, e0 and u0, with ρ0 > 0 and e0 > 0. In
the presentation and in the study of the numerical scheme, we shall consider for simplicity the
boundary condition u ·n = 0, where n stands for the outward normal vector to the boundary,
but other conditions are also easily implemented (see Section 5).

The scheme proposed in this paper falls in the class of pressure correction methods. Such
schemes were originally introduced by [2] and [39] for the incompressible Navier-Stokes equa-
tions, see also [15] for a review of most of the variants. They were adapted to compressible flows
in the pioneering works by[16, 17] in an attempt to avoid the stringent stability conditions such
as a CFL condition based on the celerity of the fastest waves; these latter algorithms may be
seen as an extension to the compressible case of the celebrated MAC scheme, introduced some
years before by [18]. Numerous projection schemes followed; many of them used staggered finite
volume space discretizations, we refer to the references in [14]; others were on colocated grids as
the ones we choose here, see [21, 36, 7, 25, 37, 23, 4, 29, 31, 40, 22, 24, 33, 34, 32, 38, 1, 42, 5].
Algorithms proposed in these works may be essentially implicit-in-time, and the pressure cor-
rection step is then an ingredient of a SIMPLE-like iterative procedure such as[35]; conversely,
several of these schemes propose a single (or a limited number of) prediction and correction
step(s), as in the previously mentioned projection methods for incompressible flows.

The scheme which we propose here in the present paper belongs to this latter category,
since only one correction step is implemented. The unknowns associated to the velocity and
the scalars variables are colocated at the center of the meshes. Developed in the spirit of the
recent schemes based on staggered meshes of[19, 20, 14], the proposed algorithm enjoys the
following salient features:

• First, it uses a discretization of an internal energy balance equation rather than of the total
energy balance, which allows by standard upwinding techniques to preserve the positivity
of the internal energy. It is however well known that computing the solution with the
internal energy rather than the total energy yields wrong shock speeds (see e.g.[41]).
To prevent this phenomena, a correction term is added to the discrete internal energy
balance, computed as follows. First, a discrete kinetic energy equation is established from
the discrete momentum and mass balances, and this equation features a positive residual
term. It may be anticipated that this term tends to zero when the space and time steps
tend to zero for regular solutions, but for shock solutions, it subsists as measures borne
by the shocks. The idea is thus to add the opposite of this residual term in the internal
energy balance equation. For colocated discretizations, summing the kinetic and internal
energy balance yields in fine a conservative discrete total energy balance, however with
an unconventional discretization; nevertheless, weak consistency is ensured, which implies
that correct shock speeds are obtained. Note that the situation is simpler here than for
staggered discretizations: in this latter case, the discrete kinetic and internal energy
balance are not associated to the same mesh and it is only at the limit of vanishing time
ans space steps that a weak continuous total energy balance is obtained in [19, 20, 14].

Since the above mentioned residual and corrective terms compensate exactly, the scheme
preserves the energy of the flow, i.e. the integral of the total energy over the compu-
tational domain, which, since the density (see below) and internal energy are positive,
represents an unconditional stability property.

• Second, upwinding is performed equation per equation with respect to the material ve-
locity only. This approximation of the mass balance ensures the positivity of the density.

• In addition, the pressure correction step couples the mass and internal energy balance
equations, which brings two beneficial consequences: first, we recover the structure which
allows to establish an entropy inequality; second, with the specific considered equation of
state (and, more generally, as soon as the product ρe is a function of the pressure only),
the scheme keeps the velocity and pressure constant across the 1D contact discontinuity.



• Finally, stabilization is obtained from the above-mentioned upwinding of the convection
terms with respect to the material velocity only, possibly combined with a nonlinear
viscosity. Consequently, the scheme does not blow up when the celerity of waves tends to
infinity or, in other words, when the Mach number tends to zero.

In the end, we obtain a consistent semi-implicit fractional step scheme, with open This article is

organized as follows. In Section 2, we introduce the cell-centered finite-volume discretization of
the compressible Euler equations, and give the pressure-correction scheme. Section 3 is devoted
to a proof of the positivity of the density and energy, the stability of the scheme. A proof of
existence of a discrete solution in the multi-dimensional case is also given. In Section 4, the
scheme is proven to be consistent in the Lax sense, that is a limit of a converging sequence of
solutions to the scheme obtained with mesh and time steps tending to 0 is shown to satisfy
the weak form of the Euler equations (1). Numerical experiments are performed in Section 5;
the scheme is also compared to an alternative already existing pressure correction scheme [30],
which, for the sake of completeness, is given in Appendix.

2. Space and time discretization

2.1 Finite volume mesh of Ω

Let M be a family of disjoint convex polygonal subsets of Ω, called control volumes, such that
Ω̄ = ∪K∈MK̄. The d-dimensional measure (area if d = 2, volume if d = 3) of a control volume
K is denoted by |K|, its boundary and the (d − 1)-dimensional measure of its boundary by
∂K = K̄ \ K and |∂K|. The edges (d = 2) or faces (d = 3) of all control volumes of M are
included in hyperplanes of the space Rd; for short, they will be referred to as faces in the rest
of the paper, whatever the space dimension. The (d− 1)-dimensional measure of a face σ ∈ E
is denoted |σ|. We define E , Eint, Eext and E(K) as the set of faces of the mesh, the subset of
internal faces, of faces lying on the domain boundary and of faces of the cell K respectively.
Given two neighbouring control volumes K,L ∈ M2, we denote their common face σ = K|L.
The normal vector to a face σ pointing outwards the control volume K is denoted by nK,σ.
Note that 󰁛

σ∈E(K)

|σ| nK,σ = 0. (3)

dK,L

|σ|
K

L

nK,σ

σ

xK
xL

Fig. 1. Cell-centered finite-volume discretization.

We define a family P = (xK)K∈M of points of Ω with, for K ∈ M, xK ∈ K. For a face
σ ∈ Eint separating the cells K and L, the point xσ is defined as the intersection between the
segment xKxL and the hyperplane containing σ.

2.2 Discrete gradient and divergence

The discrete velocity divergence and pressure gradient operators are defined by duality. Indeed,
we look for a discrete equivalent of the classical div-grad duality property : if u : Ω → Rd and
p : Ω → R are sufficiently regular functions such that u · n = 0 on ∂Ω then:

󰁝

Ω

(p divu+ u ·∇ p) dx = 0.



Definition 2.1 (Discrete divergence and discrete gradient) Let K, L ∈ M be two neigh-
bouring cells, separated by the face σ. We set

dK,L = |xK − xL| and dK,σ = |xK − xσ|, (4a)

αK,σ =
dL,σ

dK,L
and αL,σ =

dK,σ

dK,L
, (4b)

where | · | stands for the Euclidean norm in Rd. Let (uK)K∈M be a discrete velocity field,
(pK)K∈M be a discrete pressure field. We define the discrete divergence of the velocity field by:

divK u =
1

|K|
󰁛

σ∈E(K)

|σ| uK,σ, ∀K ∈ M, (5)

where

uK,σ =

󰀫
uσ · nK,σ = (αK,σuK + αL,σuL) · nK,σ for σ = K|L ∈ Eint,
0 for σ ∈ Eext.

(6)

Note that, despite the interpolation formula (6), the divergence operator is generally not con-
sistent (i.e. the discrete and continuous divergence does not coincide for affine velocity fields)
since, in general, the point xσ is not the mass center of σ. This is however true for rectangles
and simplices in two space dimensions (of course, with a specific choice for xK , namely if xK

is chosen as the mass center of K for rectangles and the circumcenter of K for simplices) and
for rectangular parallelepipeds in three space dimensions (with xK the mass center of K). Next
we define the discrete gradient of the pressure field by

∇K p =
1

|K|
󰁫 󰁛

σ=K|L
|σ| (αL,σpK + αK,σpL) nK,σ +

󰁛

σ∈Eext∩E(K)

|σ| pK nK,σ

󰁬
, (7)

for all K ∈ M, where the notation
󰁓

σ=K|L means that we sum over the neighbouring cells of

K, each neighbouring cell being denoted by L, and that σ stands for the common face K|L of
K and L.

Lemma 2.2 Under the assumptions of Definition 2.1, the discrete divergence and gradient
operators satisfy:

∇Kp =
1

|K|
󰁛

σ=K|L
|σ|αK,σ (pL − pK) nK,σ, (8)

󰁛

K∈M
|K| (uK ·∇K p+ pK divK u) = 0. (9)

Furthermore,

uK ·∇K p+ pK divK u = divK(pu) =
1

|K|
󰁛

σ∈E(K)

|σ| (pu)σ · nK,σ

with (pu)σ =

󰀫
αK,σpLuK + αL,σpKuL for σ = K|L ∈ Eint,

0 if σ ∈ Eext.

(10)

Proof 1 The equality (8) is a direct consequence of (3) and the fact that αK,σ + αL,σ = 1.
From the definition of the discrete divergence operator given by Equation (5), we have

󰁛

K∈M
|K| pK divK u =

󰁛

K∈M
pK

󰁛

σ=K|L
|σ| αK,σ uK ·nK,σ+

󰁛

K∈M
pK

󰁛

σ=K|L
|σ| αL,σ uL·nK,σ.



Reordering the second sum of the right hand side as:

󰁛

K∈M
pK

󰁛

σ=K|L
|σ| αL,σ uL · nK,σ =

󰁛

σ∈Eint

σ=K|L

|σ|
󰀃
αL,σ pK uL · nK,σ + αK,σ pL uK · nL,σ

󰀄

=
󰁛

K∈M

󰁛

σ=K|L
|σ| αK,σ pL uK · nL,σ,

we get 󰁛

K∈M
|K| pK divK u =

󰁛

K∈M
uK ·

󰁛

σ=K|L
|σ| αK,σ (pK − pL) nK,σ,

which, thanks to (8), concludes the proof of (9). Let us now turn to the proof of (10). By
definition, using once again (8), we get:

|K| (uK ·∇K p+ pK divK u) =
󰁛

σ=K|L
|σ|

󰁫
αK,σ (pL − pK)uK + pK (αK,σuK + αL,σ)uL

󰁬
· nK,σ

=
󰁛

σ=K|L
|σ|

󰁫
αK,σ pLuK + αL,σ pKuL

󰁬
· nK,σ

which concludes the proof.

2.3 Upwind choice and discrete convection operators

We need to discretize the term div(ρu) in the mass balance equation (1a) and div(ρeu) in the
momentum balance equation (1b). If ρ : Ω → R, e : Ω → R, and u → Rd are regular functions
on the cells of a given mesh M of Ω, the Stokes formula yields, invoking the fact that the
normal velocity vanishes on the domain boundaries:

󰁝

Ω

div(ρu) dx =
󰁛

K∈M

󰁛

σ∈E(K)

󰁝

σ

ρu · nK,σ dγ = 0,

where dx and dγ denote the integration with respect to the d-dimensional and (d − 1)-
dimensional Lebesgue measure, respectively.

Consider now as discrete unknowns functions ρ, e : Ω → R and u : Ω → Rd which are
piecewise constant on the cells of a given mesh M of Ω (so the scheme under consideration
falls in the class of colocated schemes, in the sense that the locations associated to the discrete
unknowns are the same for scalar unknowns and for the velocity). The numerical flux associated
with the normal flux integral

󰁕
σ
ρu · nK,σ dγ takes the general form:

FK,σ = |σ| ρσuK,σ, (11)

where ρσ and uK,σ are approximations of the density and the velocity at the face σ. We choose
here for uK,σ the definition given by Equation (6) and for the face value ρσ the upwind value
of ρ on σ. We recall that, for a given piecewise constant function a, the upwind choice aσ on a
face σ = K|L ∈ Eint with respect to u is defined by:

aσ = ζK,σ aK + (1− ζK,σ) aL with ζK,σ =

󰀫
1 if uK,σ > 0,

0 otherwise.
(12)

We may thus define a discrete divergence operator of the functions ρu and ρeu as:

divK(ρu) =
1

|K|
󰁛

σ∈E(K)

FK,σ and divK(ρeu) =
1

|K|
󰁛

σ∈E(K)

eσFK,σ, (13)



where eσ is the upwind value of e at the face σ with respect to FK,σ.

Let us turn to the discretization of the non linear convection term div(ρu⊗u) in equation
(1b). We set

divK(ρu⊗ v) =
1

|K|
󰁛

σ∈E(K)

FK,σ vσ,cv, (14)

where vσ,cv is defined componentwise as either the upwind face value of v (δup = 1) or its
centered value (δup = 0):

vσ,cv = εK,σ vK + (1− εK,σ)vL with εK,σ =

󰀫
(1 + δup)/2 if FK,σ > 0,

(1− δup)/2 otherwise.
(15)

All the theoretical results presented hereafter apply for δup = 0 and δup = 1.

2.4 Time discretization

For the sake of clarity, we start with an implicit-in-time scheme. Let δt be a time discretization
step, which we assume to be constant. Let N ∈ N be the number of time discretization steps
and δt = T/N the time step. The discrete time is defined as tn = nδt for n ∈ 󰌻0, N󰌼. The
discrete unknowns are the discrete density, internal energy and velocity fields {ρnK , enK ,un

K ;K ∈
M, n ∈ 󰌻1, N󰌼}. Assuming a given initial state (ρ0K ,u0

K , e0K)K∈M and p0K = (γ − 1)ρ0Ke0K , the
implicit-in-time discretization of problem (1) reads:

∀K ∈ M, ∀n ∈ 󰌻0, N − 1󰌼,

1

δt
(ρn+1

K − ρnK) + divK(ρn+1un+1) = 0, (16a)

1

δt
(ρn+1

K un+1
K − ρnKun

K) + divK(ρn+1un+1 ⊗ un+1) +∇K pn+1 = 0, (16b)

1

δt
(ρn+1

K en+1
K − ρnKenK) + divK(ρn+1en+1un+1) + pn+1

K divK un+1 = Sn+1
K , (16c)

pn+1
K = (γ − 1) ρn+1

K en+1
K , (16d)

where divK is the discrete divergence operator defined by (5) and (13), divK stands for its
vector-valued extension defined by (14), and ∇K is the discrete gradient operator defined by
(7). Note that, as announced in the introduction, a balance equation for the internal energy
has been substituted to the total energy balance (Equation (16c)), with a corrective term Sn+1

K

at the right hand side needed for consistency. For the implicit scheme, this term reads

Sn+1
K =

1

2δt
ρnK |un+1

K − un
K |2 + δup

4|K|
󰁛

σ=K|L

󰀏󰀏un+1
K − un+1

L

󰀏󰀏2 (|Fn+1
K,σ |− Fn+1

K,σ ).

It is built so as to compensate the numerical dissipation term appearing in the derivation of
the kinetic energy balance, as detailed in Section 3. As shown in the sequel, the positivity of
the term Sn+1

K is a sufficient condition for the positivity of the internal energy.

In real-life applications, the implicit scheme is expensive in terms of memory and CPU
requirements, and semi-implicit schemes are generally preferred. We choose here a class of
pressure-correction schemes recently developed for staggered finite volumes in [20]. In the same
spirit as projection schemes for incompressible Navier-Stokes equations, a tentative velocity is
computed using the momentum balance (18), with a scaling of the pressure introduced so as
to recover a discrete kinetic inequality, see Remark 3.5. Then a non-linear problem is solved in
order to update the pressure, internal energy and density and correct the velocity (Equation
(20a) below) such that the mass balance (20b) and the internal energy balance (20c) are verified.



Initialization: for K ∈ M,

ρ−1
K =

1

|K|

󰁝

K

ρ0 dx, u0
K =

1

|K|

󰁝

K

u0 dx, e0K =
1

|K|

󰁝

K

e0 dx, (17a)

1

δt
(ρ0K − ρ−1

K ) + δt divK(ρ0u0) = 0, (17b)

p0K = (γ − 1) ρ0K e0K . (17c)

Iterations: for n ∈ 󰌻0, N − 1󰌼,

- Prediction: compute ũn+1
K by solving for all K ∈ M,

1

δt
(ρnKũn+1

K − ρn−1
K un

K) + divK(ρnun ⊗ ũn+1) + 󰁩∇K pn = 0, (18)

with 󰁩∇K pn =

󰁶
ρnK
ρn−1
K

∇K pn. (19)

- Correction: compute un+1
K , pn+1

K , en+1
K and ρn+1

K by solving the non-linear system of
equations obtained by writing, for all K ∈ M,

1

δt
ρnK

󰀃
un+1
K − ũn+1

K

󰀄
+
󰀃
∇K pn+1 − 󰁩∇K pn

󰀄
= 0, (20a)

1

δt
(ρn+1

K − ρnK) + divK(ρn+1un+1) = 0, (20b)

1

δt
(ρn+1

K en+1
K − ρnKenK) + divK(ρn+1en+1un+1)

+ pn+1
K divK un+1 = Sn+1

K , (20c)

pn+1
K = (γ − 1)ρn+1

K en+1
K . (20d)

Note that the face value ũn+1
σ in the divergence operator in (19) is constructed according

to (15) using Fn
K,σ as advecting mass flow rate, while the advected quantities ρn+1

σ and en+1
σ

in the divergence terms of (20b) and (20c) use Fn+1
K,σ . For stability reasons, these two latter

equations, namely mass balance and internal energy equation need to be coupled, see [33, 34],
[14, Section 4] and Section 3 below; this is the reason why the mass balance is included in the
correction step. The corrective term Sn+1

K for the semi-implicit scheme reads:

Sn+1
K =

1

2δt
ρn−1
K |ũn+1

K − un
K |2 + δup

4|K|
󰁛

σ=K|L

󰀏󰀏ũn+1
K − ũn+1

L

󰀏󰀏2 (|Fn
K,σ|− Fn

K,σ). (21)

As in the case of the implicit scheme, it is built so as to compensate the numerical dissipation
terms appearing in the derivation of the kinetic energy balance (see Section 3). For such an
equation to hold, a compatibility condition must hold between the mass balance and the time
derivative and convection terms in the momentum balance equation (this condition may be
formulated as the fact that the sum of these two terms vanishes for constant velocity fields).
Since the mass balance solution is part of the correction step, it is only satisfied at time tn−1

when dealing with the momentum balance at time tn; hence the backward shift in time on the
density and the advective mass flux in the momentum balance and the definition of ρ−1

K .

3. Stability of the scheme and existence of a solution

Let us first recall a result on the transport operator [13] which is used to prove the positivity
of the approximate density and internal energy. Here and in the sequel, for a ∈ R, we set
a+ = max(a, 0) and a− = −min(a, 0). Therefore |a| = a+ + a− and 2a− = |a|− a.



Lemma 3.1 (see [13, Lemma 2.2]) Let (ρK)K∈M ⊂ R+, (ρ
∗
K)K∈M ⊂ R+ and (uK,σ)σ∈E(K),K∈M ⊂

R be three families of real numbers satisfying:

∀K ∈ M,
1

δt
(ρK − ρ∗K) + divK(ρu) = 0.

Let us assume that, for any internal face σ = K|L, uK,σ = −uL,σ and that, for any external
face σ ∈ E(K), uK,σ = 0. Then, for any families (yK)K∈M ⊂ R and (y∗K)K∈M ⊂ R, we have:

−
󰁛

K∈M
|K| (yK)−

󰁫 1

δt
(ρKyK−ρ∗Ky∗K)+divK(ρyu)

󰁬
󰃍 1

2

󰁛

K∈M

|K|
δt

󰁫
ρK [(yK)−]2−ρ∗K [(y∗K)−]2

󰁬
.

Proposition 3.2 (Positivity) Let n ∈ 󰌻0, N−1󰌼. Assume that enK 󰃍 0, Sn+1
K 󰃍 0 and ρnK > 0

for any K ∈ M, and let ρn+1
K and en+1

K satisfy the correction step (20). Then

∀K ∈ M, ρn+1
K > 0 and en+1

K 󰃍 0.

Proof 2 The positivity of the density is a consequence of the upwind discretization of the mass
balance equation (20b), see for instance [13, Lemma 2.1]. Let us then show that the internal
energy remains non-negative as long as the corrective term Sn+1

K of the internal energy balance
is non-negative. Multiplying the internal energy equation (20c) by −|K| (en+1

K )−, we get:

T1 + T2 + T3 = 0, where

T1 = −
󰁛

K∈M
|K| (en+1

K )−
󰁫 1

δt
(ρn+1

K en+1
K − ρnKenK) + divK(en+1ρn+1un+1)

󰁬
,

T2 = −
󰁛

K∈M
|K| pn+1

K (en+1
K )− divK(un+1),

T3 =
󰁛

K∈M
|K| (en+1

K )−Sn+1
K .

The term T2 is equal to zero, thanks to the form of the equation of state (2) and to the fact that
(en+1

K )− = −min(0, en+1
K ). Since Sn+1

K > 0, we have T3 󰃍 0. Applying Lemma 3.1 on T1 we
get:

T1 󰃍 1

2

󰁛

K∈M

|K|
δt

󰁫
ρn+1
K [(en+1

K )−]2 − ρnK [(enK)−]2
󰁬
=

1

2

󰁛

K∈M

|K|
δt

ρn+1
K

󰀅
(en+1

K )−
󰀆2
,

thanks to the fact that enK 󰃍 0. Gathering all terms yields

󰁛

K∈M

|K|
δt

ρn+1
K [(en+1

K )−]2 󰃑 0.

As a result, for all K ∈ M, min(en+1
K , 0) = 0 and therefore en+1

K 󰃍 0.

Proposition 3.3 (Discrete kinetic energy balance) Let (ρnK , enK , un
K , ũn

K , pnK)K∈M, n∈󰌻0,N󰌼
be a solution to (18)-(20). Then the following local discrete kinetic energy balance equation holds
for all K ∈ M, n ∈ 󰌻0, N − 1󰌼:

1

2δt

󰀃
ρnK |un+1

K |2−ρn−1
K |un

K |2
󰀄
+

1

2 |K|
󰁛

σ=K|L
ũn+1
σ,K ·ũn+1

σ,L Fn
K,σ+un+1

K ·∇K pn+1 = Rn+1
K −Pn+1

K ,

(22)

with
ũσ,K = ũK , ũσ,L = ũL in the centered case (δup = 0),

ũσ,K = ũσ,L = ũσ,cv in the upwind case (δup = 1).
(23)



and

Rn+1
K = − 1

2δt
ρn−1
K

󰀏󰀏ũn+1
K − un

K

󰀏󰀏2 − δup

2 |K|
󰁛

σ=K|L

󰀏󰀏ũn+1
L − ũn+1

K

󰀏󰀏2 󰀃Fn
K,σ

󰀄−
, (24)

Pn+1
K =

δt

2ρnK

󰀏󰀏∇K pn+1
󰀏󰀏2 − δt

2ρn−1
K

󰀏󰀏∇K pn
󰀏󰀏2. (25)

Proof 3 As in [20], we copy the derivation of the kinetic energy equality in the continuous
case: we multiply the momentum balance by the velocity and use the mass balance twice. The
momentum balance (18) at time tn reads:

1

δt

󰀃
ρnKũn+1

K − ρn−1
K un

K

󰀄
+

1

|K|
󰁛

σ=K|L
ũn+1
σ,cvF

n
K,σ + 󰁩∇K pn = 0.

The mass balance (20b) written at time tn−1 reads

1

δt

󰀃
ρnK − ρn−1

K

󰀄
+

1

|K|
󰁛

σ=K|L
Fn
K,σ = 0. (26)

Multiplying this relation by ũn+1
K and subtracting from the momentum balance yields:

1

δt
ρn−1
K

󰀃
ũn+1
K − un

K

󰀄
+

1

|K|
󰁛

σ=K|L
(ũn+1

σ,cv − ũn+1
K ) Fn

K,σ + 󰁩∇K pn = 0.

Multiplying by
1

2
ũn+1
K and using the identity 2(a− b)a = a2 − b2 + (a− b)2, we have:

1

2δt
ρn−1
K

󰀓󰀏󰀏ũn+1
K

󰀏󰀏2 −
󰀏󰀏un

K

󰀏󰀏2
󰀔
+

1

2δt
ρn−1
K

󰀏󰀏ũn+1
K −un

K

󰀏󰀏2 + 1

2 |K|
󰁛

σ=K|L

󰀓󰀏󰀏ũn+1
σ,cv

󰀏󰀏2 −
󰀏󰀏ũn+1

K

󰀏󰀏2
󰀔
Fn
K,σ

− 1

2 |K|
󰁛

σ=K|L

󰀏󰀏ũn+1
σ,cv − ũn+1

K

󰀏󰀏2Fn
K,σ + 󰁩∇K pn · ũn+1

K = 0.

Multiplying the mass balance (26) by
1

2

󰀏󰀏ũn+1
K

󰀏󰀏2 and adding to this latter equation yields:

1

2δt

󰀓
ρnK

󰀏󰀏ũn+1
K

󰀏󰀏2 − ρn−1
K

󰀏󰀏un
K

󰀏󰀏2
󰀔
+

1

2 |K|
󰁛

σ=K|L

󰀏󰀏ũn+1
σ,cv

󰀏󰀏2Fn
K,σ + 󰁩∇K pn · ũn+1

K

= − 1

2δt
ρn−1
K

󰀏󰀏ũn+1
K − un

K

󰀏󰀏2 + 1

2 |K|
󰁛

σ=K|L

󰀏󰀏ũn+1
σ,cv − ũn+1

K

󰀏󰀏2Fn
K,σ. (27)

The velocity update (20a) in the correction step can be rewritten as:

1

δt

󰁳
ρnKun+1

K +
1󰁳
ρnK

∇K pn+1 =
1

δt

󰁳
ρnKũn+1

K +
1󰁳
ρnK

󰁩∇K pn.

Taking the square of this equality and multiplying by
δt

2
, we get:

1

2δt
ρnK

󰀏󰀏ũn+1
K

󰀏󰀏2 + ũn+1
K · 󰁩∇K pn =

1

2δt
ρnK

󰀏󰀏un+1
K

󰀏󰀏2 + un+1
K ·∇K pn+1 + Pn+1

K , (28)

where Pn+1
K is defined by (25). Using this relation in (27) yields the following discrete kinetic

energy balance:

1

2δt

󰀓
ρnK

󰀏󰀏un+1
K

󰀏󰀏2 − ρn−1
K

󰀏󰀏un
K

󰀏󰀏2
󰀔
+

1

2 |K|
󰁛

σ=K|L

󰀏󰀏ũn+1
σ,cv

󰀏󰀏2Fn
K,σ +∇K pn+1 · un+1

K

= − 1

2δt
ρn−1
K

󰀏󰀏ũn+1
K − un

K

󰀏󰀏2 + 1

2 |K|
󰁛

σ=K|L

󰀏󰀏ũn+1
σ,cv − ũn+1

K

󰀏󰀏2Fn
K,σ − Pn+1

K .



In the centered case, 2ũn+1
σ,cv = ũn+1

K + ũn+1
L , and the flux terms on the left and the right hand

side can be combined to yield:

1

2δt

󰀓
ρnK

󰀏󰀏un+1
K

󰀏󰀏2−ρn−1
K |un

K |2
󰀔
+

1

2 |K|
󰁛

σ=K|L
ũn+1
K ·ũn+1

L Fn
K,σ+∇K pn+1·un+1

K = Rn+1
ctr,K−Pn+1

K

with

Rn+1
ctr,K = − 1

2δt
ρn−1
K

󰀏󰀏ũn+1
K − un

K

󰀏󰀏2 .

In the upwind case, i.e. ũn+1
σ,cv = ũn+1

K if Fn
K,σ > 0 and ũn+1

σ,cv = ũn+1
L if Fn

K,σ 󰃑 0, the flux at
the right-hand side simplifies to give:

1

2δt

󰀓
ρnK

󰀏󰀏un+1
K

󰀏󰀏2−ρn−1
K

󰀏󰀏un
K

󰀏󰀏2
󰀔
+

1

2 |K|
󰁛

σ=K|L

󰀏󰀏ũn+1
σ,cv

󰀏󰀏2Fn
K,σ+∇K pn+1·un+1

K = Rn+1
upw,K−Pn+1

K ,

with:

Rn+1
upw,K = − 1

2δt
ρn−1
K

󰀏󰀏ũn+1
K − un

K

󰀏󰀏2 − 1

2 |K|
󰁛

σ=K|L

󰀏󰀏ũn+1
L − ũn+1

K

󰀏󰀏2󰀃Fn
K,σ

󰀄−
.

We conclude the proof by recasting Rn+1
K under the form of (24).

Remark 3.4 (Well posedness of the prediction step) The momentum balance (18)-(19)
of the prediction step yields a linear system for the unknowns (󰁨un+1

K )K∈M. The corresponding
homogeneous system reads

1

δt
ρnK ũn+1

K + divK(ρnun ⊗ ũn+1) = 0.

Estimate (27) established in the above proof applied to this system (i.e. setting un
K and 󰁩∇K pn

to zero) yields, multiplying by |K| and summing over K ∈ M,

1

δt

󰁛

K∈M
|K| ρnK

󰀏󰀏ũn+1
K

󰀏󰀏2 + 1

2

󰁛

K∈M

󰁛

σ=K|L

󰀏󰀏ũn+1
σ,cv

󰀏󰀏2Fn
K,σ =

1

2

󰁛

K∈M

󰁛

σ=K|L

󰀏󰀏ũn+1
σ,cv − ũn+1

K

󰀏󰀏2Fn
K,σ.

Thanks to the conservativity of the fluxes, the second term of the left-hand side vanishes, while
the right-hand side is zero in the centered case and non-positive in the upwind case. Hence,

1

δt

󰁛

K∈M
|K| ρnK

󰀏󰀏ũn+1
K

󰀏󰀏2 󰃑 0,

which, since the density is positive, shows that the solution of this system is the null vector.
The prediction step is thus well-posed.

Remark 3.5 (On the scaling of the pressure gradient) The scaling of the pressure gra-
dient (20a) appearing in the momentum balance (18) (and subsequently in the velocity update)
is chosen such that the term Pn

K defined by (25) appears to be the difference of a same quantity
written at to successive time steps; this allows in the following of this paper to get an estimate,
summing over the time steps, from the discrete equivalent of the total energy equation and to
prove that this term tends to zero in a ditributional sense. To explain this choice, let us write

the scaling (19) as 󰁩∇K pn = anK ∇K pn with anK ∈ R. Then the term PK appearing in (28)
becomes:

PK =
δt

2 |K|

󰀗
1

ρnK󰁿󰁾󰁽󰂀
bn+1
K

|∇K pn+1|2 − (anK)2

ρnK󰁿 󰁾󰁽 󰂀
bnK

|∇K pn|2
󰀘
.



which takes the desired form if bnK = 1/ρn−1
K = (anK)2/ρnK , that is anK =

󰁳
ρnK/

󰁴
ρn−1
K , hence

the choice of the scaling (19). This technique is quite general (in the sense that it does not
depend on the discretization), and its use for the derivation of a discrete kinetic energy balance
was already exposed in the time semi-discrete setting in Appendix A of [14].

The pressure correction scheme on staggered grids was proven to preserve the overall total
energy balance [19, 20] (i.e. the integral of this relation over the space domain), but no local
discrete total energy balance could be derived, since the kinetic energy balance is posed on the
staggered mesh while the internal energy balance is posed on the primal one. On the opposite,
thanks to the colocated feature of the present scheme, the total energy balance is conserved
locally, as we now prove.

Proposition 3.6 (Local total energy balance) Assume that ℘ is given by (2), that ρ0 > 0
and e0 󰃍 0, and that {ρnK , enK ,un

K , K ∈ M, n ∈ 󰌻0, N󰌼} is a solution to the scheme (17)–(20).
Then the following local total energy balance holds for all K ∈ M and n ∈ 󰌻0, N − 1󰌼:

1

δt

󰀃
(󰁩ρKEK)n+1 − (󰁩ρKEK)n

󰀄
+ divK(ρn+1en+1un+1)

+
1

2 |K|
󰁛

σ=K|L
ũn+1
σ,K · ũn+1

σ,L Fn
K,σ + divK(pn+1un+1) + Pn+1

K = 0, (29)

where ũn+1
σ,K and ũn+1

σ,L are defined by (23), divK(pn+1un+1) is defined by (10), Pn+1
K is defined

by (25) and

(󰁩ρKEK)n = ρnKenK +
1

2
ρn−1
K |un

K |2. (30)

Proof 4 From the definition of the terms Rn+1
K and Sn+1

K , summing the kinetic energy balance
given by (22) with the internal energy balance (20c) and using the property (10) yields the total
energy balance.

Remark 3.7 (Presentation of the scheme as a discretization of the conservative equations)
Instead of discretizing the internal energy balance, we could have equivalently introduced the
scheme by stating the discrete total energy balance (29), and thus presenting the algorithm as
a conservative approximation of the (conservative) Euler equations. Then, deriving the kinetic
energy balance and substracting yields a discrete internal energy balance, the expression of which
ensures that this latter quantity remains positive. This computation justifies the definition (30)
of the discrete total energy and the expression of the convective fluxes in (29), both being rather
non-standard.

An entropy for the Euler system with a perfect gas EOS is given by the function η : R∗
+ ×

R∗
+ → R defined by

η(ρ, e) = ρ ln(ρ)− 1

γ − 1
ρ ln e. (31)

Indeed, formally, the following entropy inequality holds

∂tη(ρ, e) + div
󰀅
η(ρ, e)u

󰀆
󰃑 0.

The scheme satisfies an analogous entropy inequality, stated in the following lemma; this
result is an immediate consequence of [12, Theorem 2.3].

Lemma 3.8 (Discrete entropy inequality) Any solution of the scheme (16) or (20) satis-
fies, for any K ∈ M and 0 󰃑 n 󰃑 N − 1:

|K|
δt

(ηn+1
K − ηnK) +

󰁛

σ∈E(K)

|σ| ηn+1
σ un+1

K,σ 󰃑 0, (32)

with ηmK = ρmK ln(ρmK)− 1
γ−1ρ

m
K ln emK , m = n, n+1, and ηn+1

σ = ρn+1
σ ln(ρn+1

σ )− 1
γ−1ρ

n+1
σ ln en+1

σ .



Even though this inequality is not an estimate on the approximate solution, it is useful in
order to prove that if a sequence of approximate solutions to the implicit scheme (16) or the
pressure correction scheme (20) converges, then its limit is an entropy weak solution of the
Euler system, see theorem 4.5 below.

The proof of existence of a solution to the non-linear projection step relies on the topological
degree theory, see e.g. [6] for the theory and [9, chapter 6], for an application to finite volume
discretizations of PDEs. We proceed here as in [9, section 6.4.1].

Theorem 3.9 (Existence of a solution to the scheme) Under the assumptions of Propo-
sition 3.6, there exists a solution to the scheme (18)–(20d).

Proof 5 We proceed by induction. Let us assume the existence of a solution up to tn, i.e.
the existence of (ρkK , pkK , ũk

K ,uk
K , ekK)K∈M for 0 󰃑 k 󰃑 n, and let us prove the existence of

(ρn+1
K , pn+1

K , ũn+1
K ,un+1

K , en+1
K )K∈M. We already showed in Remark 3.4 the well-posedness of

the prediction step. Let us now prove the existence of a solution (ρn+1
K , pn+1

K ,un+1
K , en+1

K )K∈M
to (20a)–(20d). Let λ be a real number in [0, 1]. We consider the following non-linear system
of equations:

Un+1
M + λF(Un+1

M ) = V n
M (33)

where Un+1
M and V n

M are vectors of RM , M = (2 + d) card(M), defined by

Un+1
M =

󰀅
(un+1

K )tK∈M, (ρn+1
K )K∈M, (ρn+1

K en+1
K )K∈M

󰀆t
,

V n
M =

󰀅
(ũn+1

K )tK∈M, (ρnK)K∈M, (ρnKenK)K∈M
󰀆t
,

and

F(Un+1
M ) = δt

󰀵

󰀹󰀹󰀷

1

ρn+1
K

󰀓
∇Kpn+1 − 󰁩∇Kpn

󰀔

divK(ρn+1un+1)

divK(ρn+1en+1un+1) + pn+1
K divK un+1 − Sn+1

K

󰀶

󰀺󰀺󰀸

with pn+1
K = (γ − 1) ρn+1

K en+1
K and Sn+1

K defined by (21). For λ = 1, the system (33) is the
original projection-correction step. For λ = 0, it is a (trivially) invertible linear system. By
the same arguments as in the proof of Proposition 3.2, we get that ρn+1

K > 0 and en+1
K 󰃍 0, for

any λ ∈ [0, 1]. Moreover, multiplying the second equation of (33) by |K| and summing over all
K ∈ M, we get by conservativity:

󰁛

K∈M
|K| ρn+1

K =
󰁛

K∈M
|K| |ρn+1

K | =
󰁛

K∈M
|K| ρnK , (34)

which yields a uniform (in λ) estimate on ρn+1
K . Let us then take the inner product of the first

equation of (33) with |K| ρn+1
K un+1

K , to get:

|K| ρn+1
K |un+1

K |2 + λ

δt
|K|∇Kpn+1 · un+1

K = |K| ρn+1
K ũn+1

K · un+1
K +

λ

δt
|K| 󰁩∇Kpn · un+1

K .

By Young’s inequality, we thus get:

1

2
|K| ρn+1

K |un+1
K |2 + λ

δt
|K|∇Kpn+1 · un+1

K 󰃑 CK

where CK only depends on quantities which are known at this stage. Summing with the third
equation of (33) multiplied by |K| and then summing the resulting relation over the mesh and
invoking the discrete ∇− div duality and the conservativity, we obtain the following uniform
(in λ) estimate:

󰁛

K∈M
|K|

󰀓
|ρn+1

K en+1
K |+ 1

2
ρn+1
K |un+1

K |2
󰀔
󰃑 C, (35)



where C 󰃍 0 once again only depends on known quantities. The mapping H(λ, ·) = Id − λF
defines a homotopy between the mapping H(1, ·) associated with the original system Un+1

M +
F(Un+1

M ) = V n
M and the identity function H(0, ·). Thanks to the uniform estimates (34) and

(35), we can then define a closed ball B of RM with radius large enough so that the possible
solutions of Problem (33) (including V n

M which is obtained for λ = 0) lie in the interior of B.
Let us consider the topological degree deg(H(λ, ·),B, V n

M) of the map H(λ, ·) on the set B. Using
the invariance of the topological degree for a homotopy, we have:

deg(H(1, ·),B, V n
M) = deg(H(0, ·),B, V n

M) = deg(Id,B, V n
M) = 1.

As a result, the non-linear problem obtained for λ = 1 has at least one solution in B, which
concludes the proof.

4. Passing to the limit in the scheme

In this section, we show that any possible limit of a sequence of discrete solutions to the
pressure-correction scheme obtained with a sequence of meshes and time steps such that the
space and time steps tend to zero satisfies the weak form of the continuous problem. In some
respect, it means that the shocks are correctly computed by the pressure-correction scheme,
since the Rankine-Hugoniot conditions can be readily derived from the weak form of the Euler
equations. Furthermore, we also show that any such possible limit satisfies a weak entropy
inequality. For the convergence analysis, we need to define the space step, which, for a given

finite volume mesh M, is denoted by hM and given as usual by:

hM = sup
K∈M

hK , with hK = diam(K).

Discrete unknown functions and norms – Let M be a finite volume mesh of Ω as
defined in Section 2.1. To a set of control-volume values (zK)K∈M, we associate the piecewise
constant function zM defined by:

zM(x) =
󰁛

K∈M
zK 1K(x), ∀x ∈ Ω,

where, for any set A ⊂ Rd, the function 1A is the characteristic function of A defined by
1A(x) = 1 if x ∈ A, 1A(x) = 0 otherwise. We denote by LM the set of piecewise constant
functions on M. We define a BV discrete semi-norm of a function zM ∈ LM by:

|zM|BVx =
󰁛

σ∈Eint

σ=K|L

|σ| |zL − zK |. (36)

Let (M, δt) be a space-time discretization. To a set of discrete values {znK , K ∈ M, n ∈
󰌻0, N󰌼}, we associate the following piecewise constant function of time and space:

zM,δt(x, t) =

N−1󰁛

n=0

󰁛

K∈M
zn+1
K 1K(x) 1n(t), ∀x ∈ Ω, ∀t ∈ [0, T ),

where, for short, 1n stands for the characteristic function of the time interval [tn, tn+1). We
define the following BV discrete semi-norm:

|zM,δt|L1(BVx) =

N󰁛

n=0

δt |znM,δt|BVx ,

Given a solution {ρnK ,un
K , enK , K ∈ M, n ∈ 󰌻0, N󰌼} of the scheme (17)–(20), we may thus

define the piecewise constant functions ρM,δt, pM,δt, uM,δt, eM,δt and their BV semi-norm.
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K
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Fig. 2. A dual mesh and cell.

Interpolates and discrete derivative operators – Let ϕ ∈ C∞
c (Ω× [0, T )) be a given

test function. We denote by ϕM,δt its interpolate for the space–time discretization (M, δt),
defined by:

ϕM,δt(x, t) =

N−1󰁛

n=0

󰁛

K∈M
ϕn
K 1K(x) 1n(t), with ϕn

K = ϕ(xK , tn), ∀K ∈ M, ∀n ∈ 󰌻0, N−1󰌼.

(37)

The interpolate ϕM,δt of a vector-valued test function ϕ ∈ C∞
c (Ω × [0, T ))d is then the vector

valued function whose components are the interpolates of the components of ϕ. We may then
define a discrete time-derivative operator ðt by:

ðtϕM,δt(x, t) =

N−1󰁛

n=0

󰁛

K∈M

ϕn+1
K − ϕn

K

δt
1K(x) 1n(t), ∀x ∈ Ω, ∀t ∈ [0, T ).

Owing to the regularity of ϕ, the quantity ðtϕM,δt converges uniformly to ∂tϕ as the space
and time steps tend to 0. It is also convenient in the convergence analysis to define a discrete
gradient of ϕM,δt on a dual mesh which is composed of the so called “diamond cells”, represented
on Figure 2 and defined as follows. For a control volume K ∈ M, σ ∈ E(K), we define the
half-diamond cell DK,σ as the cone with basis σ and vertex xK :

DK,σ =
󰀋
txK + (1− t)y, t ∈ [0, 1], y ∈ σ

󰀌
. (38)

We then define the diamond cells Dσ as

Dσ =

󰀫
DK,σ ∪DL,σ if σ = K|L ∈ Eint,
DK,σ if σ ∈ Eext and σ ∈ E(K).

(39)

We denote by |DK,σ| and |Dσ| the d-dimensional measure of DK,σ and Dσ, respectively. The
dual mesh regularity is defined by:

ηM = max
󰁱 |Dσ|
|DK,σ|

, K ∈ M, σ ∈ E(K)
󰁲
. (40)

A discrete gradient operator ∇EzM of a piecewise constant function zM ∈ LM may then be
defined as the following piecewise constant function on the dual mesh:

∇EzM =
󰁛

σ∈Eint

σ=K|L

|σ|
|Dσ|

(zL − zK)nK,σ 1Dσ . (41)

This discrete gradient is not consistent in general, in the sense that, applied to the interpolate
of a smooth function, it converges only weakly in Lr(Ω× (0, T )) with r < +∞; this result may
be related to the weak convergence of a discrete gradient proven in [8, Lemma 2] for meshes
satisfying an orthogonality condition in the case r = 2 and of [27, Lemma 6.2] for quadrangular
and hexahedral meshes, and any r. It is in fact valid for any kind of mesh under a regularity
assumption, as stated below.



Lemma 4.1 (Weak consistency of the face gradient) Let ϕ ∈ C∞
c (Ω) be a given func-

tion and 1 󰃑 r < ∞. Let (M(m))m∈N be a sequence of meshes in the sense of Section 2.1, such

that hM(m) → 0 as m → +∞. Denote by ϕ
(m)
M =

󰁓
K∈M(m) ϕ(xK) 1K the interpolate of the

function ϕ on the mesh M(m), which tends to ϕ uniformly as m → +∞.
Assume that the sequence of meshes (M(m))m∈N satisfies the following “uniform transver-

sality condition”:

There exists α > 0 and ε > 0 :
xKxL

|xKxL|
· nK,σ 󰃍 α(hM(m))1−ε,

for all σ = K|L ∈ E(m)
int , and for all m ∈ N. (42)

Then ∇E(m)ϕ
(m)
M converges to ∇ϕ in L∞(Ω)d weak 󰂏.

Proof 6 Let ϕ ∈ C∞
c (Ω)d, and let ψ ∈ C∞

c (Ω)d; let ψE (resp. 󰁨ψE) be the piecewise constant
function from Ω to Rd whose value on each dual cell Dσ is ψσ, the mean value of ψ on σ (resp.
󰁨ψσ, the mean value of ψ on Dσ); by Definition 7, ∇E(m)ϕ

(m)
M is piecewise constant on the dual

meshes, and therefore
󰁝

Ω

∇E(m)ϕ
(m)
M ·ψ dx = T

(m)
1 + T

(m)
2 , with T

(m)
1 =

󰁝

Ω

∇E(m)ϕ
(m)
M ·ψE dx,

and (m) =

󰁝

Ω

∇E(m)ϕ
(m)
M · (󰁨ψE −ψE) dx.

Now

T
(m)
1 =

󰁛

σ=K|L∈Eint

|σ|(ϕ(xL)−ϕ(xK))nK,σψσ = −
󰁝

Ω

ϕM(m) divψ dx →
󰁝

Ω

∇ϕ·ψ dx as m → +∞.

Furthermore, thanks to the regularity of ϕ and ψ,

|T (m)
2 | 󰃑

󰁛

σ=K|L∈Eint

|σ||ϕ(xL)− ϕ(xK)||󰁨ψσ −ψσ| 󰃑 ||Dϕ||∞||Dψ||∞
󰁛

σ=K|L∈Eint

|σ| d2K,L.

Therefore, thanks to the uniform transversality condition (42),

|T (m)
2 | 󰃑 2||Dϕ||∞||Dψ||∞

d|Ω|
α

(hM(m))ε → 0 as m → +∞,

which concludes the proof.

Boundedness assumptions for sequences of approximate solutions – Let (M(m), δt(m))m∈N
be a sequence of space-time discretizations of Ω × [0, T ). For m ∈ N, let us denote by

(ρ(m), p(m), e(m), ũ(m), u(m)) the piecewise constant functions reconstructed from the so-
lutions of the scheme (17)–(20) for (M, δt) = (M(m), δt(m)). Let us introduce the following
notation:

󰀂 1

ρ(m)
󰀂∞ = max{ 1

(ρ(m))nK
, K ∈ M(m), n ∈ 󰌻−1, N (m)󰌼},

󰀂p(m)󰀂∞ = max{(p(m))nK , K ∈ M(m), n ∈ 󰌻0, N (m)󰌼}.
In any other ocurrence, the notation 󰀂z󰀂∞ stands for the usual L∞ norm of the function z. For
the consistency result stated above, we need to assume that there exists C > 0 such that, for
all m ∈ N,

󰀂(ρ(m))0󰀂∞ + |(ρ(m))0|BVx + 󰀂(u(m))0󰀂∞ + |(u(m))0|BVx 󰃑 C, (43)

󰀂 1

ρ(m)
󰀂∞ + 󰀂p(m)󰀂∞ + |p(m)|L1(BVx) 󰃑 C. (44)

Note that the assumptions on the unknowns at the first time step imply that the BV-norm of
the initial data for the density and the velocity is bounded.



Reconstruction of discrete functions – In order to alleviate the consistency proofs,
some stability and convergence results on the reconstruction of approximate solutions on dual
meshes are first introduced; these results are a rather straightforward extension to general
meshes of those presented in [11, Lemmas 3.3 and 3.9].

Lemma 4.2 (Dual mesh reconstruction: definition and stability) Let M be a finite vol-
ume mesh of Ω as defined in Section 2.1 and let T be its dual mesh, formed with the dual cells
defined by (38)-(39). Let a reconstruction operator RM be an operator from the set LM of
piecewise constant functions on M to the set LT of piecewise constant functions on T , defined
as follows:

RM : LM → LT

zM 󰀁→ RMzM =
󰁛

σ∈E
󰁥zσ 1Dσ

,

where 󰁥zσ is a convex combination of the values of the neighbouring cells, i.e.

󰁥zσ = µσ zK + (1− µσ) zL if σ = K|L ∈ Eint,
󰁥zσ = zK if σ ∈ Eext,σ ∈ E(K),

with 0 󰃑 µσ 󰃑 1. Then, for any r ∈ [1,+∞), there exists CηM 󰃍 0, depending only on r and
on the regularity of the mesh ηM defined by (40), and non-decreasing with respect to ηM, such
that, for any zM ∈ LM,

󰀂RMzM󰀂Lr(Ω) 󰃑 CηM 󰀂zM󰀂Lr(Ω).

Proof 7 Let r ∈ [1,+∞) and zM ∈ LM; by definition,

󰀂RMzM󰀂rLr(Ω) =
󰁛

σ∈E
|Dσ| |󰁥zσ|r =

󰁛

σ∈Eint

σ=K|L

|Dσ|
󰀏󰀏µσzK + (1− µσ)zL

󰀏󰀏r +
󰁛

σ∈Eext

σ∈E(K)

|Dσ|
󰀏󰀏zK

󰀏󰀏r.

Since |µσ| 󰃑 1 and (a+ b)r 󰃑 2r−1(ar + br), for a, b ∈ [0,+∞), we get:

󰀂RMzM󰀂rLr(Ω) 󰃑 2r−1
󰁛

σ∈Eint

σ=K|L

|Dσ|
󰀓
|zK |r + |zL|r

󰀔
+

󰁛

σ∈Eext

σ∈E(K)

|Dσ| |zK |r

󰃑 2r−1
󰁛

K∈M

󰁫 󰁛

σ∈E(K)

|Dσ|
󰁬
|zK |r 󰃑 2r−1ηM

󰁛

K∈M
|K| |zK |r,

thanks to the definition (40) of ηM, which concludes the proof.

The following lemma states that if a sequence of piecewise constant functions of the primal
mesh tends to some function in Lr, then a sequence of reconstructions also converges to the
same function in Lr. It can be proven exactly in the same way as in [11, Lemmas 3.3 and 3.9].

Lemma 4.3 (Convergence of the dual mesh reconstructions) Let (M(m))m∈N be a se-
quence of finite volume meshes such that hM(m) → 0 as m → +∞, and which is supposed to
satisfy the following regularity assumption:

There exists η > 0 such that ηM(m) 󰃑 η, for any m ∈ N. (45)

with ηM(m) defined by (40). Let 1 󰃑 r < +∞. Let z̄ ∈ Lr(Ω), and let (z
(m)
M )m∈N be such that

z
(m)
M ∈ LM(m) for any m ∈ N and z

(m)
M converges to z̄ as m → +∞ in Lr(Ω). Let RM(m) be a

reconstruction operator on the dual mesh, in the sense of Lemma 4.2.

Then RM(m)z
(m)
M → z̄ in Lr(Ω) as m → +∞.



The consistency result – To pass to the limit in the scheme, we use an assumption linking
the mesh and the time step which we now state. For a finite volume mesh M, let hM be defined
by:

hM = min
K∈M

|K|
|∂K| .

Note that the fact that the ratio hM/hM is small detects the presence of ”flat” control volumes
in the mesh (in other words, |K|/|∂K| is significantly lower than diam(K) when the control
volume K is flat). Let us now consider a sequence of meshes (M(m))m∈N and times steps
(δt(m))m∈N. Then the consistency proof given below requires the following condition:

lim
m→∞

(δt(m))2

hM(m)

= 0. (46)

This latter relation combines a regularity assumption on the sequence of meshes (interdiction
of the appearance of increasingly flatter control volumes when m → +∞) with a CFL-like
condition, however less restrictive than the standard one (it involves δt2 instead of δt), and
rather natural in practice. It is used in the present analysis to control the residual terms of the
discrete kinetic energy balance equation taking the form of the square of a discrete pressure
H1-norm (terms denoted by Pn+1

K in (25), see the proof of Lemma 4.6 below).

The following result states the weak convergence of the pressure gradient, and will be used
in the proof of consistency of the scheme below.

Lemma 4.4 (Weak consistency of the gradient) Let (M(m), δt(m))m∈N be a sequence of
discretizations such that h(m) = hM(m) and δt(m) tend to 0 when m → ∞ and which satisfy
the regularity assumptions (42) and (45). Let (p(m))m∈N be a sequence of discrete pressures,
associated to the sequence of discretizations (M(m), δt(m))m∈N and let us suppose that (p(m))m∈N
converges to p̄ in Lr(Ω), for 1 󰃑 r < ∞. Let ϕ ∈ C∞

c (Ω × [0, T )) be a given test function and
let us denote its interpolate ϕM(m),δt(m) defined by (37) by ϕ(m). Then:

lim
m→+∞

N(m)−1󰁛

n=0

δt(m)
󰁛

K∈M(m)

|K| ∇K(p(m))n+1(ϕ(m))nK = −
󰁝 T

0

󰁝

Ω

p̄ ∇φ dx dt. (47)

Proof 8 Dropping for short the exponents (m) whenever it does not hinder comprehension, let
T (m) be the quantity at the left-hand side of (47), namely:

T (m) =

N−1󰁛

n=0

δt
󰁛

K∈M
|K| ∇K pn+1ϕn

K .

Using the definition (7) of the discrete gradient and reordering the summation, we get:

T (m) =

N−1󰁛

n=0

δt
󰁛

σ∈Eint

σ=K|L

|σ| pn+1
σ nK,σ (ϕn

K −ϕn
L) =

N−1󰁛

n=0

δt
󰁛

σ∈Eint

σ=K|L

|Dσ| pn+1
σ

|σ|
|Dσ|

(ϕn
K −ϕn

L) nK,σ,

where, for σ = K|L, pn+1
σ = αL,σ p

n+1
K + αK,σ p

n+1
L . We thus obtain that there exists a dual

mesh reconstruction p
(m)
E of the discrete function p(m) such that:

T (m) = −
󰁝 T

0

󰁝

Ω

p
(m)
E ∇E(m)ϕ(m) dx dt.

The conclusion follows by Lemma 4.3 and Lemma 4.1.

We are now in position to state the following consistency result, which is the aim of this
section.



Theorem 4.5 (Consistency of the pressure-correction scheme) Let (M(m), δt(m))m∈N be
a sequence of discretizations such that h(m) = hM(m) and δt(m) tend to 0 when m → ∞, satis-
fying the regularity assumptions (42) and(45) and the CFL-like condition (46).

For m ∈ N, let (ρ(m), p(m), ũ(m),u(m), e(m)) be the piecewise constant functions corresponding
to the solution of the scheme (17)–(20) for (M, δt) = (M(m), δt(m)); we assume that these func-

tions satisfy (43) and (44), and that the sequence (ρ(m), p(m), ũ(m),u(m), e(m))m∈N converges
in Lr(Ω × (0, T ))3+2d for 1 󰃑 r < ∞ to a limit (ρ̄, p̄, ¯̃u, ū, ē) ∈ L∞(Ω × (0, T ))3+2d.

Then ¯̃u = ū and (ρ̄, p̄, ū, ē) is a weak solution of the Euler equations, i.e. satisfies:

∀ϕ ∈ C∞
c (Ω × [0, T )), ∀ϕ ∈ C∞

c (Ω × [0, T ))d,
󰁝 T

0

󰁝

Ω

󰀃
ρ̄ ∂tϕ+ ρ̄ū ·∇ϕ

󰀄
dx dt+

󰁝

Ω

ρ0(x)ϕ(x, 0) dx = 0, (48)

󰁝 T

0

󰁝

Ω

󰀃
ρ̄ū · ∂tϕ+ (ρ̄ū⊗ ū) : ∇ϕ

󰀄
dx dt+

󰁝

Ω

ρ0(x)u0(x) ·ϕ(x, 0) dx = 0, (49)

󰁝 T

0

󰁝

Ω

󰀃
ρ̄Ē ∂tϕ+ (ρ̄Ē + p̄)ū ·∇ϕ

󰀄
dx dt+

󰁝

Ω

ρ0(x)E0(x)ϕ(x, 0) dx = 0, (50)

Ē = ē+
1

2
|ū|2, E0 = e0 +

1

2
|u0|2, p̄ = (γ − 1)ρ̄ē.

Furthermore, (ρ̄, p̄, ū, ē) is an entropy weak solution, in the sense that it satisfies the following
weak entropy inequality:

−
󰁝 T

0

󰁝

Ω

η(ρ̄, ē) ∂tϕ+ η(ρ̄, ē) ū ·∇ϕ dx dt−
󰁝

Ω

η(ρ̄, ē)(x, 0) ϕ(x, 0) dx 󰃑 0,

for any function ϕ ∈ C∞
c

󰀃
[0, T )× Ω̄

󰀄
,ϕ 󰃍 0. (51)

Proof 9 The proof is organized in several steps: we first show that the predicted and the end-of-
step velocity converge to the same limit, then the convergence of the initial data for the density,
and, finally, we pass to the limit in the equations of the scheme and in the discrete entropy
inequality. Throughout the proof, for the sake of simplicity, we shall drop the exponent “(m)”
associated to the sequence of discretizations when it does not hinder comprehension.

Equality of the limits ¯̃u and ū – Using the velocity update (20a) and the definition of
the pressure gradient (8), we have:

󰁝 T

0

󰁝

Ω

|ũ− u| dx dt =

N−1󰁛

n=0

δt
󰁛

K∈M
|K| |un+1

K − ũn+1
K |

=

N−1󰁛

n=0

δt
󰁛

K∈M
|K|

󰀏󰀏󰀏
δt

ρnK
∇K pn+1 − δt󰁴

ρn−1
K ρnK

∇K pn
󰀏󰀏󰀏

󰃑 󰀂1
ρ
󰀂∞

N󰁛

n=0

2 δt2
󰁛

K∈M

󰁛

σ=K|L
|σ| |pnL − pnK |

󰃑 4 δt 󰀂1
ρ
󰀂∞ |p|L1(BVx).

Thanks to the assumption (44), we may pass to the limit in the above inequality and obtain
¯̃u = ū.

Initial condition for ρ – In the prediction-correction algorithm, the discrete initial con-
dition ρ0 is not directly computed from the continuous initial condition ρ0 but rather by the
solution of a discrete mass balance, as specified by (17); thus,

ρ0K − 1

|K|

󰁝

K

ρ0 dx = δt divK(ρ0u0).



Therefore, 󰁝

Ω

|ρ0 − ρ0| dx = δt
󰁛

K∈M

󰀏󰀏󰀏
󰁛

σ∈E(K)

|σ|ρ0σu0
K,σ

󰀏󰀏󰀏 󰃑 δt (T1 + T2)

with:

T1 =
󰁛

K∈M

󰀏󰀏󰀏
󰁛

σ∈E(K)

|σ| (ρ0σ − ρ0K)u0
K,σ

󰀏󰀏󰀏, T2 =
󰁛

K∈M
ρ0K

󰀏󰀏󰀏
󰁛

σ∈E(K)

|σ| (u0
K,σ − u0

K · nK,σ)
󰀏󰀏󰀏.

The first term may be estimated by T1 󰃑 2 ||u0||∞|ρ0|BVx
. Moreover

T2 󰃑
󰁛

K∈M
ρ0K

󰁛

σ=K|L
|σ|

󰀏󰀏(αK,σu
0
K+αL,σu

0
L)−u0

K

󰀏󰀏 󰃑
󰁛

K∈M
ρ0K

󰁛

σ=K|L
|σ|

󰀏󰀏u0
L−u0

K

󰀏󰀏 󰃑 2 ||ρ0||∞ |u0|BVx .

Consequently,

󰁝

Ω

|ρ0 − ρ0| dx → 0 as δt → 0, thanks to assumption (43).

Passage to the limit in the equations of the scheme – Let ϕ ∈ C∞
c (Ω × [0, T )) and

ϕ ∈ C∞
c (Ω × [0, T ))d. For a given discretization (M(m), δt(m)), the interpolates ϕM(m),δt(m)

and ϕM(m),δt(m) of ϕ and ϕ defined by (37) are respectively denoted by ϕ(m) and ϕ(m).

Mass balance – Let us now prove that (ρ̄, ū) satisfies the mass balance equation (48). Mul-

tiplying (20b) by δtϕn
K and summing for n ∈ 󰌻0, N − 1󰌼 and K ∈ M yields T

(m)
1 + T

(m)
2 = 0

with

T
(m)
1 =

N−1󰁛

n=0

󰁛

K∈M
|K|

󰀃
ρn+1
K − ρnK

󰀄
ϕn
K , T

(m)
2 =

N−1󰁛

n=0

δt
󰁛

K∈M

󰁛

σ∈E(K)

Fn+1
K,σ ϕn

K .

Reordering the summation in T
(m)
1 and using the fact that ϕN−1 = 0 at least for m large enough,

we get

T
(m)
1 = −

N−1󰁛

n=0

δt
󰁛

K∈M
|K| ρn+1

K

ϕn+1
K − ϕn

K

δt
−

󰁛

K∈M
|K| ρ0Kϕ0

K

= −
󰁝 T

0

󰁝

Ω

ρ(m)ðtϕ(m) dx dt−
󰁝

Ω

󰀃
ρ(m)

󰀄0
ϕ(m)(x, 0) dx

→ −
󰁝 T

0

󰁝

Ω

ρ̄ ∂tϕ dx dt −
󰁝

Ω

ρ0(x)ϕ(x, 0) dx as m → +∞,

thanks to the convergence assumption on the approximate solutions and to the convergence of
the initial condition for the density (see the corresponding step in this proof). Reordering the

summation in T
(m)
2 and using Fn+1

K,σ = |σ| ρn+1
σ un+1

K,σ yields:

T
(m)
2 = −

N−1󰁛

n=0

δt
󰁛

σ∈Eint

σ=K|L

|Dσ| ρn+1
σ un+1

σ · |σ|
|Dσ|

(ϕn
L−ϕn

K)nK,σ = −
󰁝 T

0

󰁝

Ω

ρ
(m)
E u

(m)
E ·∇Eϕ

(m) dx dt,

where ρ
(m)
E and u

(m)
E are piecewise constant functions on the diamond cells respectively equal

to ρn+1
σ (the upwind choice) and un+1

σ (average value defined by (6)) on each dual cell Dσ and

time interval [tn, tn+1). Thanks to the fact that ηM(m) 󰃑 η and to Lemma 4.3, the function ρ
(m)
E

(respectively u
(m)
E ) converges to ρ̄ (respectively ū ) in Lr(Ω) (respectively Lr(Ω)d), r ∈ [1,+∞);

hence, thanks to the weak convergence of the discrete gradient stated in Lemma 4.1, we get

lim
m→+∞

−
󰁝 T

0

󰁝

Ω

ρ
(m)
E u

(m)
E ·∇Eϕ

(m) dx dt = −
󰁝 T

0

󰁝

Ω

ρ̄ ū ·∇ϕ dx dt.



Momentum balance – Let us then prove that (ρ̄, p̄, ū) satisfies the weak form of the momentum
balance equation (49). Let us add the prediction equation (18) with the velocity correction
equation (20a), and multiply the resulting relation by δt ϕn

K and sum for n ∈ 󰌻0, N − 1󰌼 and

K ∈ M. We obtain T
(m)
1 + T

(m)
2 + T

(m)
3 = 0 with

T
(m)
1 =

N−1󰁛

n=0

󰁛

K∈M
|K|

󰀃
ρnKun+1

K − ρn−1
K un

K

󰀄
·ϕn

K ,

T
(m)
2 =

N−1󰁛

n=0

δt
󰁛

K∈M
|K| divK(ρnun ⊗ ũn+1) ·ϕn

K ,

T
(m)
3 =

N−1󰁛

n=0

δt
󰁛

K∈M
|K| ∇K pn+1 ·ϕn

K .

With arguments similar to those used for the term T
(m)
1 in the mass balance equation, we get

lim
m→+∞

T
(m)
1 = −

󰁝 T

0

󰁝

Ω

ρ̄ū · ∂tϕ dx dt−
󰁝

Ω

ρ0(x)u0(x) ·ϕ(x, 0) dx.

Reordering the summation in T
(m)
2 , we get, denoting by ϕn

K,i (respectively ũn+1
σ,i ) the i-th com-

ponent of ϕn
K (respectively ũn+1

σ ):

T
(m)
2 =

N−1󰁛

n=0

δt
󰁛

K∈M

󰁛

σ∈E(K)

Fn
K,σũ

n+1
σ ·ϕn

K

=

d󰁛

i=1

N−1󰁛

n=0

δt
󰁛

σ∈Eint

σ=K|L

|Dσ| ρnσ ũn+1
σ,i un

σ · |σ|
|Dσ|

(ϕn
K,i − ϕn

L,i) nK,σ

= −
󰁝 T

0

󰁝

Ω

ρ
(m)
E (x, t− δt(m))

󰀃
u
(m)
E (x, t− δt(m))⊗ ũ

(m)
E

󰀄
: ∇Eϕ

(m)(x, t) dx dt

where ρ
(m)
E and u

(m)
E were defined in the mass balance step (and are extended in the previous

relation to the time interval (−δt(m), 0) by the reconstruction of ρ0 and u0 respectively), and

󰁨u(m)
E is defined similarly. Hence, by Lemma 4.3 and Lemma 4.1,

lim
m→+∞

T
(m)
2 = −

󰁝 T

0

󰁝

Ω

(ρ̄ū⊗ ū) : ∇ϕ dx dt.

Finally, by Lemma 4.4, we get:

lim
m→+∞

T
(m)
3 = −

󰁝 T

0

󰁝

Ω

p̄ divϕ dx dt.

Total energy balance – Let us finally prove that the limit (ρ̄, p̄, ū) satisfies a weak form of the
total energy balance (50). Multiplying the local discrete total energy balance (29) by δtϕn

K and

summing over the mesh cells and the time steps, we get T
(m)
1 +T

(m)
2 +T

(m)
3 +T

(m)
4 +T

(m)
5 = 0

with

T
(m)
1 =

N−1󰁛

n=0

󰁛

K∈M
|K|

󰀃
(󰁩ρKEK)n+1 − (󰁩ρKEK)n

󰀄
ϕn
K ,

T
(m)
2 =

N−1󰁛

n=0

δt
󰁛

K∈M

󰁛

σ∈E(K)

|σ| en+1
σ ρn+1

σ un+1
K,σ ϕn

K ,



T
(m)
3 =

N−1󰁛

n=0

δt
󰁛

K∈M
|K| divK(pn+1un+1) ϕn

K ,

T
(m)
4 =

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

1

2

N−1󰁛

n=0

δt
󰁛

K∈M

󰁛

σ∈E(K)

|σ| ũn+1
K · ũn+1

L ρnσu
n
K,σ ϕn

K if δup = 0,

1

2

N−1󰁛

n=0

δt
󰁛

K∈M

󰁛

σ∈E(K)

|σ| |ũn+1
σ |2ρnσun

K,σ ϕn
K if δup = 1,

T
(m)
5 =

N−1󰁛

n=0

δt
󰁛

K∈M
|K| Pn+1

K ϕn
K .

where (󰁩ρKEK)n is defined by(30). By similar arguments as for the mass and momentum balance
equation, we get:

lim
m→∞

T
(m)
1 = −

󰁝 T

0

󰁝

Ω

ρ̄Ē ∂tϕ dx dt−
󰁝

Ω

ρ0(x)E0(x)ϕ(x, 0) dx.

Reordering the summation in T
(m)
2 yields:

T
(m)
2 =

N−1󰁛

n=0

δt
󰁛

σ∈Eint

σ=K|L

|σ| en+1
σ ρn+1

σ un+1
σ ·(ϕn

K−ϕn
L)nK,σ = −

󰁝 T

0

󰁝

Ω

e
(m)
E ρ

(m)
E u

(m)
E ·∇Eϕ

(m) dx,

where ρ
(m)
E and u

(m)
E have already been defined and e

(m)
E is the piecewise constant function on

the dual mesh equal to the upwind choice eσ on each cell Dσ. Thanks to the assumptions of
strong convergence in any Lr, 1 󰃑 r < +∞, of the approximate solutions e(m), ρ(m) and u(m)

and to the weak convergence of the gradient given by Lemma 4.1, we thus get, invoking Lemma
4.3, that

lim
m→+∞

T
(m)
2 = −

󰁝 T

0

󰁝

Ω

ēρ̄ū ·∇ϕ dx.

Using the definition (10) and reordering the summation, we may write the term T
(m)
3 as

T
(m)
3 =

N−1󰁛

n=0

δt
󰁛

K∈M

󰁛

σ=K|L
|σ| (󰁩pu)σ · nK,σ ϕn

K

=

N−1󰁛

n=0

δt
󰁛

σ∈Eint

σ=K|L

|Dσ| (󰁩pu)n+1
σ · |σ|

|Dσ|
(ϕn

K − ϕn
L)nK,σ

= −
󰁝 T

0

󰁝

Ω

(󰁩pu)(m) ·∇Eϕ
(m) dx dt,

where (󰁩pu)(m) is the piecewise constant function on the dual mesh defined by:

(󰁩pu)(m)(x, t) = (󰁩pu)n+1
σ for x ∈ Dσ and t ∈ [tn, tn+1),

with (󰁩pu)σ defined by (10), i.e. (󰁩pu)σ = αK,σ pL uK + αL,σ pK uL for any face σ ∈ Eint,
σ = K|L. Remarking that, since pL and pK are positive, the quantity (󰁩pu)σ/(αK,σ pL+αL,σ pK)
is a convex combination of uK and uL, we thus obtain that there exist two reconstruction
operators R1,M and R2,M such that:

T
(m)
3 = −

󰁝 T

0

󰁝

Ω

R1,Mp(m) R2,Mu(m) ·∇Eϕ
(m) dx dt.



Thanks to the assumptions of strong convergence in any Lr, 1 󰃑 r < +∞ of the approximate
solutions p(m) and u(m) and to the weak convergence of the gradient given by Lemma 4.1, we
thus get that

lim
m→+∞

T
(m)
3 = −

󰁝 T

0

󰁝

Ω

p̄ū ·∇ϕ dx dt.

The advection term, T
(m)
4 , can be rewritten as:

T
(m)
4 =

N(m)−1󰁛

n=0

δt
󰁛

σ∈Eint

σ=K|L

|σ| ũn+1
σ,1 · ũn+1

σ,2 ρnσ un
σ ·

󰀕
|σ|
|Dσ|

(ϕn
K − ϕn

L)nK,σ

󰀖

where ũn+1
σ,1 = ũn+1

K and ũn+1
σ,2 = ũn+1

L in the centered case (δup = 0), and ũn+1
σ,1 = ũn+1

σ,2 = un+1
σ

in the upwind case. In both cases, the discrete velocity fields 󰁨u1 and 󰁨u2 defined by these relations

are reconstructions of 󰁨u. Hence, with the same arguments as for the term T
(m)
2 , we have:

lim
m→∞

T
(m)
4 = lim

m→∞

󰁝 T

0

󰁝

Ω

󰁨u(m)
1 · 󰁨u(m)

2 ρ(m)󰁨u(m) ·∇E(m)ϕ(m) dx dt

=

󰁝 T

0

󰁝

Ω

ū · ū ρ̄ ū ·∇ϕ dx dt.

Finally, the fact that T
(m)
5 → 0 as m → ∞ is dealt with in Lemma 4.6 below.

Entropy inequality – Let ϕ ∈ C∞
c (Ω × [0, T ),R+) and let ϕ(m) = ϕM(m),δt(m) be its interpo-

late. Multiplying the local discrete entropy inequality (32) by δtϕn
K and summing over the mesh

cells and the time steps, we get T
(m)
1 + T

(m)
2 󰃑 0 with

T
(m)
1 =

N−1󰁛

n=0

󰁛

K∈M
|K| (ηn+1

K − ηnK) ϕn
K , T

(m)
2 =

N−1󰁛

n=0

δt
󰁛

K∈M

󰁛

σ∈E(K)

|σ| ηn+1
σ un+1

K,σ ϕn
K .

Clearly, thanks to the convergence assumtions on ρ(m) and e(m), one has η(ρ(m), e(m)) → η(ρ̄, ē)
in Lr for any r ∈ [1,+∞[, so that by similar arguments as for the mass, momentum and total
energy balance equations, we get:

lim
m→∞

T
(m)
1 = −

󰁝 T

0

󰁝

Ω

η(ρ̄, ē) ∂tϕ dx dt−
󰁝

Ω

η(ρ0, e0)(x)ϕ(x, 0) dx.

Reordering the summation in T
(m)
2 yields:

T
(m)
2 =

N−1󰁛

n=0

δt
󰁛

σ∈Eint

σ=K|L

|σ| ηn+1
σ un+1

σ · (ϕn
K −ϕn

L)nK,σ = −
󰁝 T

0

󰁝

Ω

η(ρ
(m)
E , e

(m)
E )u

(m)
E ·∇Eϕ

(m) dx.

Again, it is clear that η(ρ
(m)
E , e

(m)
E ) → η(ρ̄, ē) in Lr for any r ∈ [1,+∞[, so that by arguments

similar as those used for the term T
(m)
2 in the total energy balance, we get that

T
(m)
2 → −

󰁝 T

0

󰁝

Ω

η(ρ̄, ē) ū ·∇ϕ dx dt as m → +∞,

which concludes the proof.

Lemma 4.6 (Pressure remainder terms) Let (M(m), δt(m))m∈N be a sequence of meshes
and time steps such that h(m) → 0 and δt(m) → 0 as m → +∞, and satisfying (46). Let
(ρ(m))m∈N and (p(m))m∈N be (part of) the associated sequence of discrete solutions. We assume



that the sequences (ρ(m))m∈N and (p(m))m∈N satisfy the boundedness assumptions (43) and (44).
Let ϕ ∈ C∞

c (Ω × [0, T )), let Pn+1
K be given by (25), and let X(m) be defined by

X(m) =

N(m)−1󰁛

n=0

δt
󰁛

K∈M
|K| Pn+1

K ϕn
K ,

where ϕn
K is the interpolation of ϕ defined by (37). Then

lim
m→+∞

X(m) = 0.

Proof 10 The proof of this lemma is similar to the proof of [20, Lemma 3.16], which concerns
the same result for the case of a staggered hexaedral or tetrahedral grid and a slightly different
discrete gradient. By definition of Pn

K , and thanks to a reordering of the summations, we get

|X(m)| =
󰀏󰀏󰀏
N(m)−1󰁛

n=0

δt2

2

󰁛

K∈M
|K|

󰀃 |∇Kpn+1|2
ρnK

− |∇Kpn|2
ρn−1
K

󰀄
ϕn
K

󰀏󰀏󰀏

󰃑
N(m)−1󰁛

n=0

δt2

2

󰁛

K∈M
|K| |∇Kpn+1|2

ρnK

󰀏󰀏ϕn+1
K − ϕn

K

󰀏󰀏+ δt2

2

󰁛

K∈M
|K| |∇Kp0|2

ρ−1
K

|ϕ0
K |.

Now, by the definition of the discrete gradient (8), and since the coefficients αK,σ lie in the
[0, 1] interval, we have:

󰀏󰀏∇Kpn+1
󰀏󰀏2 󰃑 1

|K|2
󰁫 󰁛

σ=K|L
|σ| |pn+1

L − pn+1
K |

󰁬 󰁫 󰁛

σ=K|L
|σ| |pn+1

L − pn+1
K |

󰁬

󰃑 1

|K|2
󰁫 󰁛

σ=K|L
|σ| |pn+1

L − pn+1
K |

󰁬
|∂K| 󰀂p󰀂∞.

By definition, we have
|∂K|
|K| 󰃑 1

h
.

Furthermore, there exists Cϕ > 0 such that
󰀏󰀏ϕn+1

K −ϕn
K

󰀏󰀏 󰃑 Cϕ δt and 󰀂ϕ(., 0)󰀂∞ 󰃑 Cϕ. Hence,

|X(m)| 󰃑 Cϕ
δt2

h
󰀂1
ρ
󰀂∞ 󰀂p󰀂∞

󰀓
|p0|BVx + |p|L1(BVx)

󰀔
.

Therefore, under assumption (46), X(m) → 0 as m → +∞.

5. Numerical results

In this section, all the numerical results produced by our scheme use the parameter δup = 1 , i.e.
an upwind convection operator in the momentum balance. The same tests are performed with
the SLK scheme, as a competing pressure-correction scheme for all-Mach flows, and with the
Godunov method as a reference scheme. The SLK scheme has been implemented in our numer-
ical code whereas the results from the Godunov method were calculated using the Clawpack 4.3
code, see [3].

First, we consider several 1D Riemann problems to assess the accuracy of our scheme. Then
two-dimensional Riemann problems are considered. In both cases an oscillatory behaviour is
observed near shocks, which does not affect the L1 convergence of the error. We show how to
cure it with an artificial viscosity method such as in [26].

In all our tests, the non-linear system for the projection-correction step is solved with a
simple fixed-point procedure. The sub-iterations are initialized with the most up-to-date flow



variables. During a sub-iteration, we successively update the velocity with (20a), solve the
density with (20b), update the term Sn+1

K with (21), solve the internal energy with (20c) and
finally update the pressure with the equation of state. Let n and k 󰃍 0 be respectively the
time iteration and the fixed-point iteration indices. The stopping criteria for the fixed point
sub-iterations is a non-dimensional stagnation criterion defined as:

max

󰀕
|uk+1 − uk|∞

|un|∞
,
|ρk+1 − ρk|∞

|ρn|∞
,
|ek+1 − ek|∞

|en|∞
,
|pk+1 − pk|∞

|pn|∞

󰀖
< 󰂃

The value of 󰂃 should be chosen so that the mass balance and the internal energy balance are
well resolved. A good indicator of whether this is the case is the local residual of the discrete
total energy balance (29), since this latter equation is constructed using all the three balance
equations. Should any of these balance equations be under-resolved, it would impact the local
total energy balance. In our tests, we set 󰂃 = 10−6, and the residual of the total energy balance
is computed at convergence (see Section 5.1.2).

5.1 Accuracy tests

5.1.1 Problem definition The accuracy of the three schemes is evaluated on seven 1D Riemann
problems. The domain is Ω = [−4, 4] with Dirichlet boundary conditions on ∂Ω. The solution
of the first problem is a pure shock wave (the contact wave and left shock wave have their
amplitude set to zero). Likewise, the solution to the second problem is a pure contact wave,
with a left and right non linear wave of zero-amplitude. Riemann problems 3 to 7 are classical
problems, see [41]. Test 3 is a Sod shock tube. In Test 4 to Test 7, the genuinely nonlinear
waves appearing in the solution are respectively: two rarefaction waves, a left rarefaction wave
and a right shock, a left shock and a right rarefaction wave and two strong shocks. The tests
are carried out on 6 grids with 2m cells, 10 󰃑 m 󰃑 15. The space discretization step is taken
constant: h = 23−m. The initial state is given in Table 1 and the convergence orders for the
three schemes in Table 2.

Test ρL uL pL ρR uR pR T δt

1 0.26557 0.92745 0.30313 0.125 0.0 0.1 0.25 h/1
2 2.0 2.0 0.4 1.0 2.0 0.4 0.15 h/2
3 1.0 0.0 1.0 0.125 0.0 0.1 0.25 h/1
4 1.0 -2.0 0.4 1.0 2.0 0.4 0.15 h/2
5 1.0 0.0 1000.0 1.0 0.0 0.01 0.012 h/25
6 1.0 0.0 0.01 1.0 0.0 100.0 0.035 h/6
7 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950 0.035 h/20

Table 1. Initial states for the 1D Riemman problems used in accuracy tests.

5.1.2 Analysis of the results In Tests 1 to 7, the average number of sub-iterations of the
fixed-point procedure is less than 6 for all meshes. The normalized L∞ residual of the total
energy balance is monitored at each timestep tn:

Wn =
max
K∈M

󰀏󰀏T1
n
K + T2

n
K + T3

n
K + T4

n
K + T5

n
K
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max

󰀕
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n
K

󰀏󰀏, max
K∈M

󰀏󰀏T2
n
K

󰀏󰀏, max
K∈M

󰀏󰀏T3
n
K

󰀏󰀏, max
K∈M

󰀏󰀏T4
n
K

󰀏󰀏, max
K∈M

󰀏󰀏T5
n
K

󰀏󰀏
󰀖 , with:

T1
n
K =

1

δt

󰀓
(󰁩ρKEK)n+1 − (󰁩ρKEK)n

󰀔
, T2

n
K = divK(ρn+1en+1un+1),

T3
n
K =

1

2|K|
󰁛

σ=K|L

󰀏󰀏ũn+1
σ

󰀏󰀏2 Fn
K,σ, T4

n
K = 󰁩divK(pnun), and T5

n
K = Pn+1

K .



In each test, the quantity Wn stays below 2 × 10−7 for any timestep n and for any mesh.
This confirms the relevance of the stopping criteria chosen for the fixed-point iterations.

Order of convergence – The order of convergence for each test is reported in Table 2.
The code using the Godunov solver failed for Test 4 hence the absence of results. The exact
solution to the Riemann problems is computed using the method presented in [41]. The L1

error is calculated as:
ErrL1(w) =

󰁛

K∈M
|K| |wnum,K − wref,K |

with w = {ρ, e, p, ui}, wnum,K the numerically computed value and wref,K the exact reference
value.
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Fig. 3. Final state for Test 1 (left) and Test 2 (right) with our scheme (blue), the SLK scheme (black), the
Godunov method (green) and the exact solution (red). The mesh size is h = 8/4096.

For a pure shock wave (Problem 1), both our scheme and the SLK scheme exhibit a con-
vergence order close to 1 for density, pressure and velocity. The two other waves (contact and
genuinely nonlinear waves) of the Euler system, whose amplitude is set to zero in the initial
data, appear here with a non-zero amplitude. However, this does not seem to impact the
convergence order. Let us notice a spurious oscillation at the shock computed with the SLK
scheme, which does not occur with our scheme (see Figure 3).

As for the pure contact wave (Problem 2), both our scheme and the SLK scheme present
an order of convergence close to 0.5 for the density and close to 1 for the pressure and the
velocity. Nonetheless the two schemes differ noticeably: while the SLK scheme presents two
waves (shocks) whose amplitude are not zero as they should be, our scheme preserves the contact
wave well and no phantom wave is present in the solution (see Figure 3). Indeed, our scheme
was constructed so that if the initial data feature constant pressure and velocity, they are kept
as such. For the Godunov method, the order of convergence for non-conserved variables is
limited by the order of convergence of the conserved variables on which they depend, hence the
lower order of convergence for the velocity and the pressure.

For the Riemann problems 3 to 7, the order of convergence in L1 norm is between 0.5 and 1.
With both schemes, while shocks are sharply captured, contact discontinuities are inaccurately
calculated, which is the main source of error in all the tests. SLK is often slightly more accurate
than our scheme but convergence orders are close. Both schemes suffer from oscillations near
shocks. Nevertheless although the magnitude of the oscillations does not decrease with the
mesh size, the L1 measure of these oscillations vanishes; therefore, they do not have a significant
impact on the L1 convergence of error. The issue of the oscillatory behaviour is addressed in the
next subsection. We recall that the pressure and velocity are computed exactly by our scheme



(precisely sepaking, are left to their initial value), which explains the order of convergence set
to 0 for the velocity and pressure in Test 2.

Variable Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7

ρ (our scheme) 0.989 0.502 0.644 0.658 0.527 0.529 0.544
ρ (SLK) 1.003 0.498 0.634 0.656 0.521 0.517 0.530
ρ (Godunov) 0.975 0.506 0.652 0.563 0.552 0.547

p (our scheme) 0.989 0 0.848 0.708 0.877 0.852 1.015
p (SLK) 1.005 1.002 0.818 0.712 0.879 0.855 0.991
p (Godunov) 0.974 0.510 0.797 0.898 0.859 0.933

u (our scheme) 0.982 0 0.878 0.679 0.894 0.866 0.994
u (SLK) 0.993 0.924 0.834 0.598 0.891 0.868 0.980
u (Godunov) 0.961 0.506 0.834 0.928 0.875 0.931

Table 2. Convergence orders (L1 norm) for 1D Riemman problems with our scheme, the SLK scheme and the
Godunov method.

Corrective term Sn+1
K – As outlined in the previous sections, the most critical component

of our method lies in the corrective term Sn+1
K added to the internal energy balance. As observed

in Figure 4, the source term is localized at shocks but not at contact discontinuities. Its L1

measure does not vanish when the space discretization step tends to zero.

The density field at the final time for Test 7 is given for our scheme with Sn+1
K (in blue) and

without Sn+1
K (in green). The two profiles are similar, however the shock speeds are different,

and so are the intermediate states. In absence of the corrective term, the scheme still seems
to converge to a limit, but this limit is not a weak solution of the continuous problem (the
Rankine-Hugoniot jump conditions are not verified at the shocks).

Let us have a closer look at the behaviour of Sn+1
K through its L1(0, T ;Ω) norm. In the

case of an upwind choice in the momentum convection (δup = 1), the correction term reads:

Sn+1
K =

1

2δt
ρn−1
K

󰀏󰀏ũn+1
K − un

K

󰀏󰀏2 + 1

2|K|
󰁛

σ=K|L
|σ|ρnσ (un

K,σ)
− 󰀏󰀏ũn+1

L − ũn+1
K

󰀏󰀏2,

and the L1-norm of the piecewise constant function S with values Sn+1
K reads:

󰀂S󰀂L1(0,T ;Ω) =

N−1󰁛

n=0

δt
󰁛

K∈M
|K| Sn+1

K . (52)

Let us denote by |(u, ũ)|L1(BVt) the following quantity:

|(u, ũ)|L1(BVt) =
󰁛

K∈M
|K|

N−1󰁛

n=0

󰀏󰀏ũn+1
K − un

K

󰀏󰀏.

Then we easily get:

󰀂S󰀂L1(0,T ;Ω) 󰃑 1

2
󰀂ρ󰀂∞

󰀃
󰀂u󰀂∞ + 󰀂ũ󰀂∞

󰀄
|(u, ũ)|L1(BVt) + 󰀂ρ󰀂∞ 󰀂ũ󰀂∞ |ũ|L1(BVx).

Thus, for a sequence of discretizations, 󰀂S󰀂L1(0,T ;Ω) remains bounded provided that the norms
and semi-norms at the right-hand side remain bounded. This seems to be true, for the tests
performed in the present study. Let us now consider a discontinuity transported at a constant



speed over the domain, so that the numerical solution is a travelling profile. Equation (52)
yields 󰀂S󰀂L1(0,T ;Ω) = T1 + T2 with:

T1 =
1

2

N−1󰁛

n=0

󰁛

K∈M
|K| ρn−1

K

󰀏󰀏ũn+1
K − un

K

󰀏󰀏2,

T2 =
1

2

N−1󰁛

n=0

δt
󰁛

K∈M

󰁛

σ=K|L
|σ|ρnσ (un

K,σ)
− 󰀏󰀏ũn+1

L − ũn+1
K

󰀏󰀏2.

The term T2 equivalently reads:

T2 =
1

2

N−1󰁛

n=0

δt
󰁛

σ∈Eint

σ=K|L

|σ|ρnσ (un
K,σ)

− 󰀏󰀏ũn+1
L − ũn+1

K

󰀏󰀏2.

Let us denote ∆Ũ the amplitude of the discontinuity for the velocity ũ and ED the set of faces
inside the numerically computed discontinuity, with M = card ED. For σ = K|L ∈ ED, let ζn+1

σ

be such that: 󰀏󰀏ũn+1
L − ũn+1

K

󰀏󰀏 = ζn+1
σ ∆Ũ .

If the discontinuity is computed without oscillations, we have
󰁓

σ∈ED
ζn+1
σ = 1. With this

notation, we get:

󰁛

σ∈Eint

σ=K|L

|σ|ρnσ (un
K,σ)

− 󰀏󰀏ũn+1
L − ũn+1

K

󰀏󰀏2 =
(∆Ũ)2

M
Tn+1
D ,

with

Tn+1
D = M

󰁛

σ∈ED

|σ|
󰀃
ζn+1
σ )2 ρnσ |un

K,σ|.

If the coefficients ζn+1
σ are all the same, and so equal to 1/M , Tn+1

D is the average of the
product ρnσ |un

K,σ| over the faces involved in the shock. Let us thus consider Tn+1
D as a quantity

characterizing the numerical discontinuity profile, and taking similar values in time. Denoting
by TD the range of Tn+1

D , we get:

T2 ≃ TD

2

(∆Ũ)2

M
.

Since the discontinuity is supposed to travel trough the mesh at a constant speed, the term T1

may be estimated with similar arguments. Let us now suppose that the considered discontinuity
is a shock, and that the scheme captures the shocks within a number of cells that is independent
from the mesh size. This seems to be verified numerically: for instance, with a variation of
magnitude greater than 1% of either the left or right state as selection criterion, the left shock
is computed within 8 cells and the right shock within 3 cells with all meshes for Test 7. Note
that this fact is also consistent with an order 1 convergence for the tests where the solution
is a combination of shock waves. In this case, 󰀂S󰀂L1(0,T ;Ω) should remain approximatively
constant. On the other hand, if M increases when the mesh is refined (which is the case for
contact waves), 󰀂S󰀂L1(0,T ;Ω) tends to zero as hM, δt → 0. Finally, if the velocity is smooth,
󰀂S󰀂L1(0,T ;Ω) may be seen to behave as hM and δt.

The evolution of Sn+1
K in L1 and L∞ norm is given in Table 3. Tests 1, 5 and 7 all feature at

least one shock wave and the L1 norm of Sn+1
K is kept constant. In contrast, in Test 4 which has

two rarefaction waves and one contact wave, the L1 norm of the compensation term decreases
as O(hM

0.64). As expected, the L∞ norm of Sn+1
K behaves as O(1/hM) in all tests.
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Fig. 4. Influence of the source term for Test 7. Left: density at T = 0.035 with SK (blue), without SK (green)
and exact solution (red). Right: localization of SK (blue) with respect to the exact solution (red).

N Test 1 Test 4 Test 5 Test 7

L1 L∞ L1 L∞ L1 L∞ L1 L∞

1024 3.75e-3 8.46e0 4.58e-3 7.72e-1 1.99e1 3.04e5 1.79e2 3.62e6
2048 3.61e-3 1.69e1 3.29e-3 1.54e0 1.97e1 6.08e5 1.78e2 7.23e6
4096 3.55e-3 3.39e1 2.19e-3 3.09e0 1.95e1 1.22e6 1.78e2 1.45e7
8192 3.51e-3 6.77e1 1.39e-3 6.18e0 1.94e1 2.43e6 1.78e2 2.89e7
16384 3.50e-3 1.35e2 8.51e-4 1.24e1 1.93e1 4.86e6 1.78e2 5.79e7
32768 3.49e-3 2.71e2 5.07e-4 2.47e1 1.93e1 9.73e6 1.78e2 1.16e8

Table 3. Evolution of residual term Sn+1
K in L1(0, T ;Ω) and L∞(0, T ;Ω) norms.

5.2 2D Riemann Problems

We now test a set of classical 2D Riemann problems, described in detail in [28]. The compu-
tational domain is a square and the initial data consists in four constant states, each of them
associated to one of the four quadrants partitioning the domain, defined in such a way that
the solution of the Riemann problem associated to the constant initial states of neighbouring
quadrants features only one non-zero-amplitude wave. Tests 1 and 2 feature four rarefaction
waves, Tests 3 and 4 four shocks, Tests 5 and 6 four contact waves, Tests 7 to 10 both contact
and rarefaction waves, Tests 11 to 14 both contact and shock waves and Tests 15 to 19 contact,
shock and rarefaction waves.

The iso-values of the density calculated with our scheme, the SLK scheme and the Godunov
solver for the 19 test cases are given in figures 5 to 9. The wave speeds appear correctly
calculated by all schemes and the main differences lie in the presence of spurious oscillations.
For Test 2, the SLK scheme exhibits oscillations for the rarefaction waves near the bottom left
corner of the domain. For Test 3 and 4, both our scheme and SLK suffer from severe oscillations
nears shocks.



Fig. 5. Density contours (40) for 2D Riemann problems 1 to 4 with our scheme (first row), SLK scheme (second
row) and Godunov method (third row).

5.3 Numerical stabilization

The Weak Local Residual (WLR) method of[26] is an interesting and efficient technique for
damping spurious oscillations at shock and contact waves by adding an artificial viscosity,
controlled by a variable viscosity coefficient µ which is proportional to the weak local residual
W of one of the conservation equations. For instance the weak residual of the mass balance
reads:

W (φ) =

󰁝 ∞

t=0

󰁝

Ω

ρ ∂tφ+

󰁝 ∞

t=0

󰁝

Ω

ρu ·∇φ, ∀φ ∈ C∞(Ω × R+)

We assume hereafter that the mesh M is a one dimensional grid with constant step h. The
discrete weak local residual is obtained using the piecewise constant approximate solution and
the following specific test functions:

W
n− 1

2

K ≡ W (φ
n− 1

2

K ) =

∞󰁛

n=0

󰁛

P∈M

󰁝 tn+1

tn

󰁝

P

󰀓
ρnP∂tφ

n− 1
2

K + ρnPu
n
P ·∇φ

n− 1
2

K

󰀔
dx dt



Fig. 6. Density contours (40) for 2D Riemann problems 5 to 8 with our scheme (first row), SLK scheme (second
row) and Godunov method (third row).

where φ
n− 1

2

K (x, t) = BK(x) · Bn− 1
2 (t) and BK and Bn− 1

2 are quadratic and linear B-Spline
functions:

BK(x) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

1

2

󰀓x− xK

h
+

3

2

󰀔2

if x ∈ [xK − 3

2
h, xK − 1

2
h)

3

4
−
󰀓x− xK

h

󰀔2

if x ∈ [xK − 1

2
h, xK +

1

2
h)

1

2

󰀓x− xK

h
− 3

2

󰀄2
if x ∈ [xK +

1

2
h, xK +

3

2
h)

0 otherwise

Bn− 1
2 (t) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

t− tn + 3
2δt

δt
if t ∈ [tn − 3

2
δt, tn − 1

2
δt)

tn + 1
2δt− t

δt
if t ∈ [tn − 1

2
δt, tn +

1

2
δt)

0 otherwise

Note that test function φ
n− 1

2

K has the local support 3h× 2δt. The artificial viscosity µσ at the
face σ = K|L is taken proportional to the largest weak local residual among neighboring cells
K and L:

µn
K|L = CW max(|Wn− 1

2

K |, |Wn− 1
2

L |) (53)

The coefficient CW is tuned by hand as a trade-off between the damping of oscillations and

the amount of artificial diffusion introduced. It can be shown that W
n− 1

2

K is o(h) near shocks,
o(hα) near contact waves with 1 < α 󰃑 2 and o(h3) in smooth regions, see [26].



Fig. 7. Density contours (40) for 2D Riemann problems 9 to 12 with our scheme (first row), SLK scheme (second
row) and Godunov method (third row).

Introducing WLR artificial viscosity with CW = 102 in our scheme for Test 7 significantly
damps the oscillations (see figure 10). Despite the added diffusion, the global accuracy of the
scheme is not noticeably affected, except for the grid N = 4096, in which case the overshoot is
indeed completely removed, but the accuracy of the solution is degraded (see Figure 10). The
convergence orders in L1 norm are improved: 0.587 for the density, 1.13 for the pressure and
1.17 for the velocity. However we should note that they are impacted by the poorer accuracy
for the N = 4096 grid. For other meshes, the accuracy of the solution is the same as the results
without WLR and the overshoot, though still present, is severely reduced. For instance the
overshoot on the density is reduced by 94% on average.

Let us then turn to the 2D case and focus on Test 3, which seems to be the most impacted

by the spurious oscillations. Similarly to the 1D case, the test function φ
n− 1

2

K is defined as:

φ
n− 1

2

K (x, y, t) = BK(x) ·BK(y) ·Bn− 1
2 (t).

The WLR technique is used with a coefficient CW = 6.4 × 104 in (53) (figure 11, right). The
oscillations behind shock waves are effectively reduced. Most of the remaining oscillations are
in the top-right quadrant [0, 0.5] × [0, 0.5] and their amplitude is very small. Note however
that oscillations remain due to phantom waves; these are shock waves with zero amplitude
originating from the initial conditions, see e.g. [10] for examples of such waves.

A. The SLK scheme

The pressure-correction scheme introduced in this paper is compared in Section 5 to the SLK
(for “Saturne-LiKe”) scheme, introduced in [30] and implemented in the Code Saturne CFD



Fig. 8. Density contours (40) for 2D Riemann problems 13 to 16 with our scheme (first row), SLK scheme
(second row) and Godunov method (third row).

code developed at EDF R&D. Among the differences between our scheme and the SLK scheme,
it should be stressed first that the latter is derived from the compressible Euler equations
written with the total energy balance (1); second, thanks to a decomposition of the variation
of the pressure into the variations of the density and of the entropy, the projection-correction
step of the SLK scheme (here taking the form of an “acoustic step”) is linear.

A.1 Time discretization

Among the several variants of the SLK algorithm, we consider the following semi-discrete algo-
rithm from [1]. For all n ∈ N
Acoustic step (compute ρn+1, qn+1)

ρn+1 − ρn

δt
+ div qn+1 = 0 (54a)

qn+1 = ρnun − δt(c2)n ∇ ρn+1 − δtβn ∇ sn (54b)

Momentum and total energy steps (compute un+1, En+1)

ρn
un+1 − un

δt
− un+1 div qn+1 + div(un+1 ⊗ qn+1) +∇ pn = 0 (55a)

ρn
En+1 − En

δt
− En+1 div qn+1 + div

󰀗󰀕
En+1 +

pn

ρn+1

󰀖
qn+1

󰀘
= 0 (55b)

Pressure update (compute pn+1)

pn+1 = (γ − 1)ρn+1

󰀕
En+1 − 1

2
un+1 · un+1

󰀖



Fig. 9. Density contours (40) for 2D Riemann problems 17 to 19 with our scheme (first row), SLK scheme
(second row) and Godunov method (third row).
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Fig. 10. Application of the WLR artificial viscosity method for our scheme in Test 7 : evolution of the error in
L1-norm (left), zoom on the density for N = 4096 (center) and for N = 8192 (right).



Fig. 11. Density contours (50 values) for 2D Riemann problem 3 computed with our scheme without WLR
stabilization (left), with WLR stabilization (middle) and the reference solution from the Godunov method
(right).

with q the “acoustic mass flux” (see [30] for an interpretation of the acoustic step), s the
entropy, c the speed of sound and β = ργ .

A.2 Space discretization

We give the space-time discretization of the SLK scheme for cell-centered finite-volumes that
we actually used in the numerical tests:

Initialization

∀K ∈ M, ρ0K , u0
K , p0K given ; ρ−1 = ρ0 ; E0

K = p0K/(γ − 1)ρ0K − 1

2
u0
K · u0

K

Iterations for n = 0, 1, . . . , N − 1:

1. Update passive scalars : for all K ∈ M

snK = pnK/(ρnK)γ ,

(c2)nK = γpnK/ρnK ,

2. Predict the density (ρn+1
K ) : solve for all K ∈ M

|K|
δt

(ρn+1
K − ρnK) +

󰁛

σ∈E(K)

qn+1
K,σ = 0,

qn+1
K,σ = |σ|ρnσun

K,σ − δt|σ|(c2)nσ(∂K,σρ)
n+1 − δt|σ|ρnσ(ρnK)γ−1(∂K,σs)

n

3. Compute the velocity (un+1
K ) : solve for all K ∈ M

|K|
δt

ρnK(un+1
K − un

K)− un+1
K

󰁛

σ∈E(K)

qn+1
K,σ +

󰁛

σ∈E(K)

un+1
σ qn+1

K,σ +∇K pn = 0

4. Compute the total energy (En+1
K ) : solve for all K ∈ M

|K|
δt

ρnK(En+1
K − En

K)− En+1
K

󰁛

σ∈E(K)

qn+1
K,σ +

󰁛

σ∈E(K)

󰀕
En+1

σ +
pnσ

ρn+1
σ

󰀖
qn+1
K,σ = 0

5. Update the pressure (pn+1
K ) : for all K ∈ M

pn+1
K = (γ − 1)ρn+1

K

󰀕
En+1

K − 1

2
un+1
K · un+1

K

󰀖



The face normal gradient of the entropy and of the density are calculated in the same manner:
∂K,σs = (sσ − sK)/dK,σ with sσ centered. The pressure pσ and the advecting velocity uK,σ are
centered. The face values ρσ, uσ and eσ are calculated with an upwind scheme with respect
to the acoustic flux qn+1

K,σ . As for the square of the speed of sound, a harmonic interpolation is
used: for a face σ = K|L,

(c2)σ =
2c2Kc2L
c2K + c2L

.
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