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Abstract

In topological dynamics, the generic limit set is the smallest closed subset which has a comeager
realm of attraction. We study some of its topological properties, and the links with equicontinuity and
sensitivity. We emphasize the case of cellular automata, for which the generic limit set is included in all
subshift attractors, and discuss directional dynamics, as well as the link with measure-theoretical similar
notions.

Keywords : cellular automata, basin of attraction, limit set, attractor, directional dynamics, Baire
category, symbolic dynamics.

1 Introduction

In a topological dynamical system (DS), the limit set is the set of points that appear arbitrarily late during
the evolution (see [4]). But it may include points which look transient, because they do not appear arbitrarily
late around any orbit.

J. Milnor, interested in the dynamics on the space of measures, introduced in [23] the notion of likely
limit set, that provides a useful tool for studying asymptotic behavior for almost all orbits. He also implicitly
defined a topological version of the same intuitive idea, that he calls the generic limit set. The goal of our
article is to formalize this concept. In other words, we focus on the asymptotic behavior for almost all orbits
in the sense of Baire category theory. We study some topological properties of the generic limit set, which
is the smallest closed set that has a comeager realm.

We show that the generic limit set is actually equal to the limit set if the DS is semi-nonwandering (Propo-
sition, a broad property that is implied by nonwanderingness, or equicontinuous (Proposition. We
also prove that the generic limit set is the closure of the asymptotic set of the equicontinuity points if the
DS is almost equicontinuous (Proposition .

For cellular automata (CA), we know that all subshift attractors have a dense open realm of attraction
(see [15], [9, [7, [16]). We prove that the generic limit set is a subshift (Proposition [£.10)), which is included
in all subshift attractors (Corollary [3.15)).

We emphasize directional dynamics of cellular automata, which is devoted to their qualitative behaviour
(equicontinuity, sensitivity, expansiveness) when composed with shifts (see [24,[7]). First, in oblique directions
(the shifts are bigger than the radius), a weak semi-mixingness property makes the generic limit set equal
to the limit set. If the generic limit set is finite, it is shown that it consists of only one periodic orbit of a



monochrome configuration (Proposition and the DS is almost equicontinuous (Proposition . We
show that it is the case if the cellular automaton is almost equicontinuous in two directions of opposite sign;
moreover the realm of this periodic orbit then contains a dense open set (Proposition . We mention a
nontrivial example where the period is nontrivial (Example . We give a classification of generic limit
sets in the context of directional dynamics (Theorem .

We formulate most topological-dynamical results in a very general framework of sequences of continuous
functions, which correspond to nonuniform dynamical systems. The purpose is double: to be able to apply
our results to directional dynamics of cellular automata in a smoother way than previous works (which often
had to introduce several ad-hoc definitions), and hopefully to propose a large setting in which different kinds
of attractor properties can be studied, that could be useful in other subcases.

The paper is structured as follows : In Section [2) we provide the basic background on the subject of
topological dynamical systems and cellular automata. In Section 3] we show some preliminary results about
attractors, limit sets, realms. In Section [d] we define the generic limit set and prove the main results about
it. In Section[5} we show some consequences on directional dynamics of cellular automata, and provide a list
of examples. In Section [6] we compare the generic limit set with the likely limit set.

2 Preliminaries

2.1 Topology

In this article, (X, d) is a compact metric space. We put Bs(z) = {y € X|d(z,y) < ¢} and call it the open
ball with center x € X and radius § > 0. For U,V C X, we note d(U,V) = inf {d(z,y)|x € U,y € V}. We
may write d(U, y) = d(U,{y}) for y € Y. We also write Bs(U) = {y € X|d(U,y) < §} and Bs(U) its closure.

A subset U C X is called comeager (or residual) in X if it includes a countable intersection of dense
open sets. A subset U is meager if its complement U“ = X\U is comeager in X. By the Baire category
theorem, the intersection of countably many dense open sets in X is dense in X. Hence, a comeager set is
dense in X.

We also say that a set U C X is comeager in some set V C X if U NV is comeager in the induced
topological space V.

A subset A of X is said to have the Baire property if there is an open set U such that the symmetric
difference AAU = (A\U) U (U\A) is meager in X. The family of sets with the Baire property forms a
o-algebra. Every Borel subset has the Baire property (for more details, see for instance [25]).

We recall the following folklore remark, further used several times.

Remark 2.1. A set W C X with the Baire property is not comeager if and only if there exists a nonempty
open set U in which W NU is meager.

Proof. WY AU is meager for some open set U, and WNU C WEAU. Just remark that W is comeager if
and only if U = 0. O

2.2 Topological dynamics

Now we introduce some key concepts of the topological dynamics. A (time-nonuniform) dynamical system
(DS) is any sequence § = (F})ien of continuous self-maps of some compact metric space X. This general
formalism will be useful when studying directional dynamics of cellular automata, but the reader should
keep in mind the following specific, more classical, case. § is uniform if F; = G¢, for all t € N and some
continuous self-map G of X. We may then write the uniform DS simply as G.

We are interested in the orbits Og(x) = {F.(z)|t € N} of points © € X. We say that a set U is
J-invariant (resp. strongly) if Fy 1 (U) C Fy(U) (resp. F, ' (U) = U = Fy(U)), for every t € N.



Equicontinuity. For ¢ > 0, a point & € X is e-stable if there exists § > 0 such that Yy € Bs(z),Vt €
N,d(F:(z), F:(y)) < e. The set & C X of equicontinuous points for § is the set of points which are
e-stable for every € > 0. If £ is comeager, then we say that § is almost equicontinuous. If £ = X, then
we say that § is equicontinuous. Equivalently by compactness, for every € > 0, there is a uniform 6 > 0
such that Vo € X, Vy € Bs(x),Vt € N, d(Fi(x), Fi(y)) < .

§ is sensitive if there exists € > 0 such that Vo € X,Vé > 0,3y € Bs(x),3t € N,d(Fi(x), Fi(y)) > e.
This implies that &5 = .

Remark 2.2. & is comeager in some nonempty open set U C X if and only if, for every e > 0, the set of
e-stable points is.

Proof. & can be written as the decreasing countable intersection of the sets of 1/n-stable points. O

A class which is between nonuniform and uniform DS is the following: § is semi-uniform if F; =
Gi---Gq, for all t € N and some equicontinuous sequence (Gt)i>1 of self-maps of X. This is trivially
satisfied when {G¢|t > 1} is finite; in particular, in the case of uniform DS: Gy = G; for every t > 1. We
will sometimes denote G 1, the composition Gryy - - Gry2Gry1, so that Fyyr = GrypgFr.

Transitivity. Classical notions from topological dynamics can be adapted in our framework of nonuniform
DS. Here is an example, that will actually be used especially for a uniform DS, the shift map from the
next section, but we give the nonuniform version for completeness, and for the user to get used to the little
differences that hold in this setting, in the perspective of better understanding related notions, like the ones
introduced in Subsection A DS § is said to be transitive if for any nonempty open subsets U,V of
X and for every T € N, there exists ¢ > T such that F,'(U)NV # (. A DS § is said to be weakly
mixing if for any nonempty open subsets U, V,U’, V' of X and for every T € N, there exists ¢t > T such
that F{(U)NV # § and F, Y (U')NV’ # §. One can prove that, if the space is perfect, then it is enough to
suppose this for T'= 0. For any uniform DS, it is classical that it is enough to suppose this for T'=1 (and
for T'= 0 if the uniform DS is surjective).

The following lemma will be used in the context of shift maps: it can be interpreted as the fact that a
transitive DS mizes the space, in the sense that it transforms a local topological property into a global one.

Lemma 2.3. Let § = (Fi)ien be a transitive DS, where all Fy; are homeomorphisms, and let W C X be a
strongly §-invariant subset.

1. W is either dense or nowhere dense.
2. W either has empty interior or includes a dense open set.
3. If W has the Baire property, then it is either meager or comeager.

4. If U;en Wi has nonempty interior (resp. is not meager), where each W is strongly §-invariant (resp.
and has the Baire property), then there exists i € N such that W; includes a dense open set (resp. is
comeager).

Proof.

1. Suppose W is dense in some nonempty open set U. Since § is transitive, for every nonempty open set
V', there exists ¢ such that Ft_l(V) N U is a nonempty open set. Moreover, W is dense in U, so that
F7YV)NUNW # 0. Since F,(W) C W, VNEU)NW D F,(F7 ' (V)NUNW) # 0. So, W is dense
in X.

2. Suppose that W includes a nonempty open set and is strongly §-invariant; then W includes the
(nonempty open) orbit of this open set. From Point [1} this orbit is a dense open set.



3. Suppose that W is not meager and consider any nonempty open subset V' C X. By Remark
there exists an open set U such that W is comeager in U. By transitivity, there exists ¢ € N such
that Ft_l(U )NV is a nonempty open subset. By assumption, W is not meager in its nonempty open
(because F} is a homeomorphism) image U N F;(V), and since F, ! is a homeomorphism, F, ' (W) is
not meager in F, *(U) N V. By reverse invariance, we get that W is not meager in F, *(U) N V. By
Remark since W is not meager in any nonempty open set, it is comeager.

4. One of the W; has to have nonempty interior (resp. to not be meager). We conclude by the previous
point. O

2.3 Symbolic dynamics

Configurations. Let A be a finite set called the alphabet. A word over A is any finite sequence of
elements of A. Denote A* = |J,.y A" the set of all finite words u = ug...un_1;|u| = n is the length
of u. We say that v is a subword of u and write v C wu, if there are k,! < |u| with &k < [ such that
V= UL = UkUk41 - - - U1 A? is the space of configurations, equipped with the following metric:

d(z,y) :==27", where n =min{i € N|z; £y, or x_; Zy_;}.

A% is a Cantor space. The cylinder of u € A* in position i is [u]; = {;v € AZ ‘ T i Jul[ = u} Cylinders are
clopen (closed and open). The (full) shift is the dynamical system o over space AZ defined by o(z); = ;11
for i € Z and x € AZ. Tt is 2-Lipschitz: for every x,y € A%, d(o(z),0(y)) < 2d(z,y).

The (spatially) periodic configuration *u is defined by (*°u*)y|y4+: = u; for k € Z,0 < i < |u| and
u € AT. A monochrome configuration is one with only one symbol: *0°, for some 0 € A.

Subshifts. A subshift is any subsystem o5 of the full shift; we usually simply denote it by ¥, which is
then simply a closed strongly o-invariant subset of A%Z. Equivalently, there exists a forbidden language
F C A* such that ¥ =X r = {x € AZ| YuC z,u ¢ .7-'} If F can be taken finite, then one says that Xz is a
subshift of finite type (SFT); in that case F can be taken included in A* for some k € N, which is an order
for the SFT. We write that X7 is a k-SFT. Let > C A% be a subshift. Then £(X) = {u € A*| 3z € X,u C z}
is the language of X.

Remark 2.4. It is clear that (A% o) is transitive. Point @ of Lemma hence applies, and gives that
nonfull subshifts are all nowhere dense (hence meager).

We shall use the following lemma to show results concerning the dynamics of cellular automata.
Lemma 2.5. Lete >0 and V C AZ.
1. 07(B.(V)) C By (c9(V)) for all j € Z.

2. If V is strongly o-invariant, x € A%, and p > 0 are such that for all n € Z, oP™(x) € By (V), then
Vi € Z,o'(x) € B-(V).

3. If V is a 2k + 1-SFT, then (), o (By-x(V)) = V.
Proof.

)) and j € Z. Then o0~/ (x) € B.(V), which means that d(c ),V) < e. Moreover,

1. Let x € 07 (B.(V ](
=d(cioi(x),0?(V)) < 2ld(c=7(z),V) < 21ile. So, & € Byyji.(a7(V)).

d(z,07(V))

2. From the previous point, Vi € Z, o' (z) = o ™4 Pgli/PlP(3) € ¢ ™04 P(B, (V) C Byji mod p-pe (07 P01 P (V).
Since V is strongly o-invariant, we also have that Baji med pj—p. (0 ™°4P(V)) C B.(V). Hence, Vi €
Z,c'(z) € B(V).



3. Let ¢ € Z.

07 x) € By-r (V) <= d(o (z),V) <27
— e V,0 () [—kk] = Y[kl
= W EV,T[_i—p—itk] = Y[—k.k]
= T_i—k,—itk] € L(V) .

If this is true for every ¢ € Z and V is (2k + 1)-SFT, then x € V. O

2.4 Cellular automata

A map F : A” — A? is a cellular automaton (CA) if there exist integers 7_ < 7, (memory and
anticipation) and a local rule f : A"+~ "-*+1 — A such that for any z € A% and any i € Z, F(z); =
f(@igr_y. o 2igr, ). d =14 —r_ +1 € Nis sometimes called the diameter of F. Sometimes we assume
that —r_ = ry, which is then called the radius of F (it is always possible to obtain this, by taking
r = max{|r_|,|r+|} € N). By Curtis, Hedlund and Lyndon [14], a map F : AZ — A% is a CA if and only if
it is continuous and commutes with the shift. In particular, CA induce uniform DS over AZ.

Directional dynamics. We call curve a map h : N — Z with bounded variation, that is: M =
sup,ey |h(t + 1) — h(t)| is finite. The map is meant to give a position in space for each time step. Fol-
lowing [7], the CA F in direction h will refer to the sequence (F'o"®)),cy. We will use all notations for
DS with F, h instead of §, when dealing with it (for instance Ep, is its set of equicontinuous points).

In a first reading, the reader can understand the next definitions and results by considering the classical
case: h constantly 0. In general, the directional dynamics of a CA can be read on its space-time diagram,
by following h as a curve when going in the time direction. An example of curve is given by the (possibly
irrational) lines: a € R will stand for the direction ¢ — |ta|. The dynamics along « then corresponds to
that studied in [24] [1].

Equicontinuity. A word u € A* is (strongly) blocking for a CA F along curve h if there exists an offset
s € Z such that for every z,y € [u]s, Vt € N, Fto"® (2)0 pp = F'o" D (y)[o,arp, where M = max(—r_ +
max;(h(t) —h(t+1)),r+ +maxs(h(t+1)—h(t))), and r_ and r are the (minimal) memory and anticipation
for F. The terminology comes from the fact that in that case, u is both left- and right-blocking (with the
same offset), which is taken as a definition in [7]: A word v € A* is right-blocking for a CA F in direction
h if there exists an offset s € Z such that:

Y,y € [u)s, T)—cos] = YJ—oo,s] = YVt €N, FY(2)]_cont)] = F'(¥)]=c0,h(t)] -

We define left-blocking words similarly.

The following proposition explains how equicontinuity in cellular automata can be rephrased in terms
of blocking words. The vertical case dates back from [I7], I§], the linear directions from [24], the directions
with bounded variations can be found in the proofs of [7, Prop 2.1]; a version with unbounded variations of
the first point can even be found in [6, Prop 3.1.3, Cor 3.1.4].

Proposition 2.6. Let F' be a CA and h a curve.

1. If there is a left- and right-blocking word w for F' in direction h, then Erp includes the comeager set
of configurations where u appears infinitely many times on both sides.

2. Otherwise, F' is sensitive in direction h.

In particular, £, is either empty or comeager. The question is open whether this remains true in the
unbounded-variation case (see [6, Rem 3.1.1]).



Definition 2.7 ([, Def 2.5]). Let us denote B the set of curves (recall that they are maps h : N = Z with
bounded variation).

For h,h' € B, we put h < k' if there exists M > 0 such that h(t) < b'(t) + M for allt € N. We put h < I’/
if, besides h' A h. =< is a preorder relation on B, and we note ~ the corresponding equivalence relation.

We also note h << h' if limy_,o0 B/ (t) — h(t) = 400. =< is a transitive relation which is finer than <.

The preorder < induces a notion of (closed, open, semi-open) curve interval, with some bounds b’ < h”,
noted [W',h'], W', W[, [W,h"[, ]/, h"]. We say that the interval is nondegenerate if h' < h''. For an
interval S C B with bounds h' and h", we also note Z(S) ={h € B|h << h << 1"} C]W/, h"[.

A direction will implicitly refer to an equivalence class for ~ (sometimes abusively confused with one
representative). It is not so hard to get convinced that equicontinuity properties are preserved by ~.

Remark 2.8. Let F be a CA over AZ and h,h' € B. If h ~ I, then Epp = Eppr.

In particular, F' is almost equicontinuous (resp. equicontinuous) along h if and only if F' is almost
equicontinuous (resp. equicontinuous) along h’.

Proof. By assumption, there exists M € N such that —M + h(xz) < h'(t) < h(t) + M,Vt € N. Let [l € N
and x € A”. Let us show that if x € A% is 27M~lstable along h, then it is 27 '-stable along h’. So,
assume that there exists k € N such that Vy € A% 2p s 4y = yp-rxy) = Yt € N, Fto"® (@) _prparg =
Ftah(t)(a:)[[,M,l’MH]] . In other words,

Yy € A% apk ) = y—kr) = Yt € N, FY (@) [ 0m—th(e) Mtith@)] = F (@) - Motth(@), M4+1+h()] -

By assumption, we get that [—1 4+ A'(¢),l + h'(t)] C [-M — 1+ h(t), M + 1+ h(t)],Vt € N. Thus,
Vy e A% o pag = yposn) = V€N, Flo" O@) = Flo" Oa)_y

which is exactly 2~ '-stability of z.
Hence, if = is an equicontinuity point along h, then z is an equicontinuity point along h’. The converse is
symmetric. 0

3 Limit sets, asymptotic sets, realms

We will define notions that deal with asymptotic behavior of a DS § = (F});.

3.1 Limit sets

The (£2-) limit set of U C X is the set Qz(U) = ey U Fi(U), and the asymptotic set of U C X
is the set wz(U) = U,cy Q3({z}). By compactness, these sets are nonempty (decreasing intersection of
nonempty closed subsets). Qz(U) is compact, but wgz(U) may not be, even for U = X (see Example [£.9).
Remark that Qz(U) 2 (,cn F3(U), and this is an equality if U is a closed §-invariant set.

We denote Q5 = Q5(X) and wz = wz(X). For more about the asymptotic set of dynamical systems, one
can refer to [I2]. Note that it was called accessible set in [8], and ultimate set in [I1].

The following remark easily follows from the compactness of X, and can be understood as the fact that
every set which is at positive distance from Q3 is transient, that is, ultimately does not appear.

Remark 3.1. For every U, lim;_,o d(F;(U),Q5(U)) = 0.

In the uniform case, it is clear that asymptotic sets are invariant. Here is a generalization of this fact.
The proposition is relevant already for j = 1.

Proposition 3.2. Let § = (G[14): be a semi-uniform DS, U C X, and j € N.
1 Ify € Qz(U), then (Giyp,;7(Y)): admits a limit point in Qz(U).



2. Conversely, if z € Qz(U), then it is a limit point of (Gyip1,57(y))e for some y € Qz(U).

The corresponding statements are also true for the w, which is defined as a union of limit sets.

Proof.

1. By assumption, there are increasing times (t;)xen and points (2 )ren € UM such that limg o Fy, (21) =
y. Let ¢ > 0. By equicontinuity of the (Gyi1 ;7)¢, there exists ¢ > 0 such that for all z,2" with
d(z,2") < 6, we have ¥t € N,d(Gyip11(2), Geypj7(2)) < €/2. Then there is K € N such that
for all k > K, d(Fy, (wx),y) < 9, so that d(Fy, j(xr), Gy, 4n1,57(y)) < €/2. If z is a limit point for
(Gt,+11,j1(¥)))ken, one sees that there exist infinitely many k such that d(Fy, j(7r),2) < €, so that 2
is also in Qz({zx| k € N}) C Qz(U).

2. Now let z € Qz(U), so that it is the limit point of (F}, (zx))ken for some (zx)reny € U and (#;) an
increasing sequence, that we can assume to be greater than j. By compactness, (Fy, —;(2r))ken admits a
limit point y € Q5(U). By triangular inequality, we have d(Gy, —j+1,51(%), 2) < d(Gy—jr1,51®), . (wr))+
d(Fy, (xr),z). When k goes to oo, the second term of the sum converges to 0, and a subsequence of
the first term converges to 0, thanks to equicontinuity of (G, —;[1,;7)ken- O

The following corollary is useless for the purpose of the present paper, but may help the reader to connect
with the known uniform case.

Corollary 3.3. If G is a uniform DS and U C X, then G(Qg(U)) = Qc(U) and G(wa(U)) = wa(U).
Proof. Gy 11 = Gt = G for every t € N, so each point of Proposition gives one inclusion. The second

equality comes from the fact that wg(U) =,y Qa(U). O

3.2 Realms
The realm (of attraction) of V is:
Ds(V)={z € X|wz(z) CV} .

The realm is sometimes called the basin of attraction; we prefer another name to recall that it is relevant
even for sets V' which have no attractive property.

The direct realm of V is the set 93(V) = UpeyNisp Fr (V) of configurations whose orbits lie ulti-
mately in V.

From the definition and some compactness arguments, the reader can be convinced of the following
remarks. Note that the realm and the direct realm are related through opposite inclusions, depending on
whether the set is open or closed.

Remark 3.4. Let V C X, and V; C X for any i in some arbitrary set I.
1. Dg(V) € Neso 05(B:=(V))-
2. If V is closed, then Dg(V) = {x € X|lim; o0 d(Fy(2),V) = 0} = .50 05(B:(V)) 2 05(V).
3. On the contrary, if V is open, then Dz(V) C 0z(V).
4 D(‘?(Uie] Vi) 2 Uie[ D{‘?(Vi)-
5. D&(ﬂiel Vi) = niel Dz(Vi).
Conjugating the realm operator with complementation is also very relevant dynamically: as stated in the
following remark.
Remark 3.5. For every DS § and subset V, the set of points whose orbits have a limit point in V is
DS(VC)C ={z € X|lwz(x)NV # 0} D Dz(V), and the set of points whose orbits visit V infinitely many
. . c _
times s DS(VC) =ren UtzT F, 1(V) Doz(V).
Note that Dz(V¢ “ s nonempty if and only if V intersects wg.
From Remark if V is closed (resp. open), then DS(VC)C includes (resp. is included in) Dg(Vc)C.



3.3 Related concepts

Nonwanderingness. Let § be a DS over space X. We say that § is nonwandering if for every nonempty
open set U C X, DS(UC)C is not meager.

This definition does not give a specific role to time 0, unlike, seemingly, the classical definition, for
uniform DS. Nevertheless, they are equivalent in the uniform case, which helps understand the essence of
that concept.

Remark 3.6. Let F' be a uniform DS. Then F is nonwandering if and only if, for every nonempty open set
V C X, there exists t > 1 such that V. N F~4(V) # (.

Proof.

e If (F') is nonwandering, then the set d F(Vc)c of points whose orbits visit V infinitely many times is
in particular nonempty. Let 2 be such a point, and t; < 3 be two time steps such that y = F'(x)
and F'2~% (y) = F*(z) are both in V. It is then clear that y € V N F1=t2(V).

e Now suppose that for every nonempty open set U C X, there exists ¢ > 1 such that U N F~4U) # 0.
Let us show by induction on n € N that there exist distinct time steps 0 = tg < t; < --- < t,, at
which the set Wy 4, ... 1,)(U) = i—q F~" (U) of points whose orbits visit U is nonempty. It is trivial
for n = 0. Suppose that W, ... 1) (U) # (). By assumption, we have that there exists ¢ > 1 such
that W(O,th--- ,tn)(U) N Fﬁt(W(O)th... 7tn)(U)) 7& @ In particular, W(07t,t+t17t+t2,-~ ,H—tn)(U) contains this
intersection, so that it is nonempty.

Now consider the set

W.(V)= UJ  Wouo)(V)
(t1,+,tn)EN™
0<t1 < <tp,

of points of V' whose orbits visit V' at least n more times. Note that it is an open set, which is dense
in V because it includes the nonempty W, (U) C U, for every open subset U C V. The set ? F(VC)C
of points whose orbits visit V' infinitely many times can be written as the intersection (1, .y Wn(V),
and is thus comeager in V.

Moreover, let us mention, even if it will not be used later, that uniform DS are known to admit a nonempty
largest nonwandering subsystem, containing, as a comeager set, the set of recurrent points, which are those
points € X such that x € wp(x) (see for instance [5]). Clearly, the set of recurrent points is a subset of
the asymptotic set.

Nilpotence. We say that § is nilpotent if there is a point z € X such that 3T € N,V € X, Vi >
T, F;(z) = z. § is asymptotically nilpotent if wg is a singleton.

It is known that CA are nilpotent if and only if their limit set is finite (see for instance [4]). Also, it
has been shown [12] that asymptotically nilpotent CA are actually nilpotent. In that case (see for instance
[4,12]), z = o(2), so that the CA is actually nilpotent in every direction.

Asymptotic pairs. Two points z,y € X are said to be asymptotic to each other (or (x,y) is an asymp-
totic pair) whenever lim;_, ., d(F;(z), F;y(y)) = 0. The asymptotic class of y is the set Az(y) of points
asymptotic to it. Let us generalize the realm notations to every sequence (V;)¢cn of closed subsets of X, by
defining: Dz((V1)) = {x € X|limy_ o0 d(Fi(x), V) =0} and 95((Vy)) = {x € X|3T e N,¥Vt > T, Fy(z) € V; }.
We may also note Dz ((yt)+) and 95 ((yz)¢) if V4 is a singleton {y; }. With this notation, Az(y) = Dz (({Fi(y)})s)-
One can observe from the definition that y € Az(y) C Dg(wz(y)).
The following remark states that, in a finite space, asymptotic pairs correspond to ultimately equal orbits.

Remark 3.7. Let G be a uniform DS over a finite space X, and x,y € X. If x and y are asymptotic, then
3t € N,G4(x) = G(y). In particular, if G is injective (or surjective), then x = y.



Proof. The first statement comes from X being discrete. The second statement is clear because if X is finite,
then injectivity or surjectivity of G are equivalent to bijectivity of any G?. O

The following remark states that when an asymptotic class is big, then it should contain many equicon-
tinuous points.

Remark 3.8. If Az(y) is comeager (resp. mot meager) in some nonempty open subset U C X, for some
y € X, then & is comeager (resp. not meager) in U.

In particular, note that & N . Az(y) is also comeager (resp. not meager) in U.

Proof. The assumption gives that for every n > 1, the union ey (Nisp F'(B, /n(Fi(y))) of closed sets
is comeager in U, as a superset of Ag(y). Hence, UpcyNisr Er ' (Bi/n(Fi(y))) is not meager in any
nonempty open subset V' C U. This implies that there is T € N such that (),~, F{l(ﬁl/n(Ft(y))) is not
meager in V; as a closed set, and by Remark [2.I] it must then include a nonempty open subset W C V.
For every x € W, by openness, there exists § > 0 such that for every z € Bs(x), 2 € W, which implies
that Vt > T, Fy(z) € By, (Fi(y)). In particular, Fy(x) € By,,(F;(y)) and, by triangular inequality, we get
Fy(2) € Bayn(Fy(2)) C Bs/n(Fy(x)). We deduce that x is 3/n-stable. In other words, the set of 3/n-stable
points includes nonempty open subsets of every nonempty open subset of U. This means that this set is
comeager in U for every n € N. We conclude by Remark [2.2]

The statement about non-meagerness can be obtained from the other one thanks to Remark O

3.4 Decomposition of realms

The following proposition can be compared partly to [23, Lem 3]: if a set is decomposable into invariant
components, then its realm can be decomposed accordingly.

Proposition 3.9. Let § = (G q)ien be a semi-uniform DS. Suppose (V;); is a finite collection of closed
pairwise disjoint sets which are invariant by every Gy. Then Dy (L], Vi) = |, Ds (V).

Proof. Since the V; are closed and pairwise disjoint, there are at positive pairwise distance. Let ¢ =
min,»; d(V;, V;)/2 > 0. By equicontinuity of (G;), there exists § > 0 such that Vt € N,Vz,y € X,d(z,y) <
§ = d(G¢(),G(y)) < e. Let © € Dg(| ], V5), so that there exists T € N such that Vt > T, d(Fy(z), ||, Vi) <
min(d,e). In particular, there exists ¢ such that d(Fr(z),V;) < min(d,e). Let us show by induction on
t > T that d(Fi(x),V;) < min(d,e). Since Gi1(Vi) C Vi, we have d(Fi1(x), Vi) < d(Fig1(x), Giy1(Vi)).
They are less than e by equicontinuity of (G;), using the recurrence hypothesis. By definition of €, we
have mins: d(Fis1(2),V;) > mingz(d(V;, Vi) - d(Fosa(2), Vi) > e So min(6,¢) > d(Foua(w),L ], V;) =
min; (d(Fy+1(z), V;) > min(e, d(Fi1(x), Vi)). It results that d(Fy4q(z), V;) < min(d,€), as wanted.

Since for every ¢ > T'and j # i, d(Fy(z), V;) > €, we deduce d(Fy(z), V;) = min; d(Fy(2), V) = d(Fi(z), [, V5)
converges to 0.

The other inclusion comes from Point [l of Remark [3.41 O

Realms of finite sets. Proposition shows that the realm of a finite set contains a finite number of
asymptotic classes. We shall use this to show Proposition It uses the following lemma.

Lemma 3.10. Let § = (G ¢)ten be a semi-uniform DS over space X and V' C X be finite. Then there
exists § > 0 such that for allx,x’ € Dz (V) and T € N with d(Fr(z), Fr(z)) <6, and ¥Vt > T,d(Fi(x),V) <46
and d(Fy(z"),V) <4, (z,2) is an asymptotic pair.

Proof. Let ¢ = %min{d(y,y/ﬂy,y’ e V,y#y'} > 0. By equicontinuity of (G;), there exists 6 > 0 such
that Vt € N\Vz, 2/ € X,d(z,2') < § = d(Gi(z),Ge(x")) < e. Without loss of generality, we can
assume § < e. Let z,2’ be as in the statement of the lemma, and for t € N, let y(¢) € V be such
that d(Fi(x),y(t)) = d(Fi(x),V), and y'(t) be defined similarly. Let us show by induction on ¢t > T that
y(t) = y'(t), which by definition of ¢, is equivalent to d(y(¢),y'(t)) < 3e. First, by the triangular inequality,



A(y(T), ¥/ (T)) < d(y(T), Fr(x)) + d(Fr(x), Pr(a')) + d(Pr(a’),y/(T)) < 36 < 3e.

Now suppose this is true for ¢ > T, and let us prove it for ¢ + 1. By the triangular inequality, we also have
dly(t+1),y'(t+1)) <d(y(t+1), Fir1(z)) + d(Gir1 Fi(x), Gey1 Fr(2) + d(Fiaeq(27), ¥’ (t + 1)). The first and
third terms are at most § by hypothesis, while the central one is at most € by definition of §. All in all, we
get that y(t+1) = ¢/(t+1). We can conclude with, once again, the triangular inequality: d(Fi(z), Fy(z")) <
d(Fy(x),y(t)) + d(y(t),y' () + d(y'(¢), Fr(2')). If t > T, this is d(Fy(z),V) + 0+ d(V, Fi(2')) =100 0. O

Proposition 3.11. Let § = (G q)ten be a semi-uniform DS over space X and V C X be finite. Then
there are at most |V| asymptotic classes in Dg(V).

Proof. For 0 < i < |V|, let z; € Dz(V), and 6 be as in Lemma [3.10] There exists 7' € N such that for all
i, Vt > T,d(Fi(x;),V) < §/2, and in particular, Jy; € V,d(Fr(z;),y;) < §/2. By the pigeon-hole principle,
there are distinct 4, such that y; = y;, so that d(Fr(z;), Fr(z;)) < 0 by the triangular inequality. By
Lemma we then know that (x;,z;) is an asymptotic pair. Hence we can partition Dz(V') into at most
|V| asymptotic classes. O

3.5 Realms for cellular automata

The following proposition is very important to show Proposition transitivity of the shift brings some
properties to realms and direct realms of shift-invariant sets through CA.

Proposition 3.12. Let § = (Fy)ien be a sequence of CA over X = A%, and V C AZ.
1. wz(o(V)) = o(ws(V)) and Dz(a(V)) = o(D(V)).

2. If V is strongly o-invariant, then Dz(V') either has empty interior or includes a dense open set; it is
either nowhere dense or dense. If, moreover, V is closed, then Dz(V) is either comeager or meager.

3. If V is a 2k + 1-SFT and Dg(V') has nonempty interior, then dz(V) is dense.

4. If V is a subshift, then 05(V') is meager, unless Fy* (V) is full, for some T € N.
Proof.

1. This is clear by definition that wz(o(z)) = o(wz(x)).

2. From the previous point, D(V) is strongly o-invariant. Besides, one can see that, if V is closed, then
D3(V) = .0 05(B:(V)) has the Baire property. The three statements then come from Lemma
(applied to the uniform DS o).

3. Let us show that, for an arbitrary w € A*, [w] N 0z(V) is nonempty. Since Dz(V) has nonempty
interior, there exists u € A* such that [u] C Dg(V).
Let 2 = *(uw)™ € [u] be the periodic configuration of period p = |uw| and such that zp [ = uw.
Since z € [u] € Dz(V), there exists T € N such that V¢ > T, d(Fy(x),V) < 27%7P. Since Vn € Z,z =
o"P(z), we even have:
Vt > T,\Vn € Z,d(F,o™ (z),V) < 27F7P .

By Point [2] of Lemma for all such t > T, Vi € Z,0'F(z) € By—x(V). Since V is a 2k + 1-SFT,
Fi(z) € V, by Point [3 of Lemma that is, € 95(V). By shift-invariance, we also have that
oll(z) € [w]Nog(V).

4. By definition, 35(V) € Uypey Fr ' (V). If for every T € N, F.*(V) is not full, Point [2| of Lemma
gives that it has empty interior (because it is closed and strongly o-invariant). In the end, 03(V) is
meager. O

Unsurprisingly, realms of CA behave well with respect to the shift.
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Proposition 3.13. Let F be a CA, h a curve, and U be strongly o-invariant. Then F(wp,(U)) =
o(wpr(U)) =wpp(U).

Proof. By Point [1| of Proposition wrp(U) is strongly o-invariant, and since F commutes with o,
we have that V¢t > 1, Fo"M="=1(yp, (U)) = F(wpn(U)). By Proposition (applied to 5 = 1 and
Gy = Fo"M=r=1) 5o that {Gy|t € N} is finite), we obtain that for any y, 2 € wpp(U), For(y) € wpn(U)
for some k, and 2z = Fo'!(x) for some [ and some z € wp(U). O

Corollary 3.14. Let F' be a CA, h a curve and U such that V = wpp(U) is finite and U = Dpp (V) is
strongly o-invariant. Then F induces a self-bijection of V, and U = |_|er Arn(y)-

Proof. By Proposition we see that F(V) =V, so that F induces a surjection, hence a bijection of V.

By Proposition there are at most |V| asymptotic classes in U. By the first point, V' C U, so that each
y € V should be in one of these classes. By Remark they are all in distinct classes, so that we obtain
U 2 ,ey Arn(y) (the converse inclusion being trivial). O

Attractors. In a DS, an attractor is the limit set of an inward set, that is an open set U such that
Fi+1(U) C Fy(U), for all t € N. There are other definitions of attractors in the literature, but this one, found
for example in [15] [I7], is particularly relevant in totally disconnected spaces, where U can equivalently
simply be assumed to be an invariant clopen set. References [I9] @] focus on subshift attractors of CA: in
that case the attractor enjoys a definition as the limit set of a so-called spreading cylinder. Qg = Qz(X) is
then the (unique) maximal attractor. A quasi-attractor is an intersection of attractors (possibly empty,
in our setting). The minimal quasi-attractor is thus the intersection of all attractors.

Directly from Point |2| of Proposition we recover the following (recall that every attractor has a

nonempty open realm).
Corollary 3.15 ([22]). For any CA in any direction, the realm of any subshift attractor is a dense open set.

The following example will be described more deeply in Example but gives here a first illustration
of the concept of limit set and attractor.

Example 3.16. Let Min be defined over {0,1}% by Min(z); = min(z;, zi11). One has {0°} = 5o Vi,
where Vi, = Quin([0]k) = {x € Quin| Vi < k,z; = 0} is an attractor but not a subshift, for every k € Z (see
[18]). {>°0°°} is the unique minimal quasi-attractor, and its realm Dy(*°0°°) = yep { @ € {0,1}2]3i > k,z; = 0}
1S comeager.

This property of having a comeager realm motivates the next definition.

4 The generic limit set

Milnor [23] suggests the following definition, which is the purpose of the present section.

Definition 4.1. Being given a DS §, the generic limit set &g is the intersection of all the closed subsets
of X which have a comeager realm of attraction.

The generic limit set wz can actually be defined as the smallest closed subset of X with a comeager
realm, thanks to the following proposition.

Proposition 4.2. Let § be a DS. The realm of the generic limit set is comeager.

In particular, it is nonempty! But much more thant this: it is the smallest closed set which includes all
limit points of all generic orbits.
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Proof. Any compact metric space admits a countable basis: there exists a countable set { U;| ¢ € N} of closed
subsets such that every closed set U can be written as ﬂieIU U; for some Iy C N. In particular, wg is the
intersection (; ;< Ui, where U ranges over closed sets with comeager realm; that is, g = (;c; Ui, where
I is the union of Iy, for every closed U with comeager realm. If ¢ is in I, then it is in some [y, so that
U C U;, where U has comeager realm, so that U; has comeager realm, too.

By Pointof Remark Dg(@0z) = Dz(N;er Us) = Nier P3(Us). We know that an intersection of countably
many comeager sets is comeager. Then Dz(wg) is comeager. O

Note that the generic limit set is the closure of the asymptotic set of some comeager set (it is exactly the
closure of the asymptotic set of its realm), but it may not be the asymptotic set of any set: see for example
Example [5.14] where the generic limit set is full, but the asymptotic set is not.

Remark 4.3. Proposition [3.9 applies to the asymptotic set of any comeager set. By continuity, we can
extend to its closure. We get some strong invariance property for the generic limit set. In particular, if G is
a uniform DS, then G(bg) = @a.

Remark 4.4. Let § be a DS over space X and V C X.

1. If V is open and intersects Wz, then DS(VC)C is not meager. In particular, Dg(VC)C is not meager,
and there exists a nonempty open set U in which UtZT E7Y(V) is dense for all T € N.

2. If V does not intersect g, then Dg(Vc)C is meager. In particular, if V is closed, then Dg(Vc)C is

meager, and there is no nonempty open set U in which \J,~p F7Y(V) is dense for all T € N.

There are counter-examples when this remark cannot be stated as an equivalence: take for instance open
set V' =]0,1[ in the uniform DS defined by Fy(x) = x/2 for z € [0,1].

Proof.

1. If V is open and intersects &gz, then wz \ V is closed; by the minimality of the generic limit set,
Dz (3 \ V) is not comeager. This set is equal to Dy (@) N Dgz(VC). Since the first one is comeager,
we deduce that the second one is not.

The second statement comes from the last sentence in Remark 3.5
The third statement comes from the expression of ag(Vc)C as intersection of open sets, and the
complement of Remark [2:1]

2. If V¢ D @z, then Dg(VC) D Dg(@g) is comeager.
The second statement comes from the last sentence in Remark 3.5
For the third statement, note that if V' does not intersect wg, then there exists an open set W 2 V

= . —C.C . .
such that W C @§'. Then we already know that 05(W ) is meager. But this set includes Dg(Wc)C7
which also has to be meager. By Remark this means that this set is meager in every subset U.
Since it can be written as the intersection (\pey U;sr i (W) of open subsets, this is equivalent to

saying that there is T € N such that |J,~ F, '(W) is not dense in U. In particular, |, F, *(V) is
not dense in U. - B O

A consequence of this is the following proposition: the generic limit set intersects any closed set with
dense realm.

Proposition 4.5. Suppose § is a DS and V' a closed set with dense realm Dz(V). Then V intersects wg.

Proof. Point [2| of Remark gives that Dz(V) = (1,50 05(B1/n(V)). It results that each d3(B/,(V)) is

c
dense. Its open superset |, F; (B, (V)) should also be dense. Hence, Dg(Bl/n(V)C) is comeager. In
particular, it is not meager. Then Point |2[ of Remark gives that By, (V) intersects wgz. Since this is true
for every n > 0, and By, (V) is closed, V should intersect @g. O
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4.1 Nonwandering systems

We will see that, for nonwandering dynamical systems, the generic limit set is the full space. Let us prove a
more general result, which will be also useful for Corollary We say that a DS § is semi-nonwandering

if for every open subset U which intersects Qz, 05(U®)" is not meager. It is clear that a DS over some
space X is nonwandering if and only if it is semi-nonwandering and its limit set is X (note that this second
property happens, in the uniform case, exactly for surjective systems).

Proposition 4.6. A DS § is semi-nonwandering if and only if vz = Q.
Proof.

e Suppose § is not semi-nonwandering. This means that there exists an open set U which intersects
Qz, and such that 05(UY) is comeager. Since U is closed, Dg(U®) 2 05(UY) is also comeager. By
definition, @z is then included in UY, and thus cannot include Q5.

c
e Conversely, suppose that § is semi-nonwandering, = € Qz and € > 0. By definition, Dg(Ba(a:)C) is

. . . . c\¢ . =

not meager. By inclusion, neither is 95(B:(z) ) . By Point 2| of Remark we deduce that B.(z)
intersects Wg. Since this is true for every ¢ > 0, we get that x € &z. The inclusions wz C Wz C Q5 are
always true. O

The following is a direct corollary of Proposition
Corollary 4.7. A DS § over some space X is nonwandering if and only if vz = X.

It is clear that the two properties in Corollary imply surjectivity. Since it is known that surjective
CA are all nonwandering (see for instance [I8, Prop 5.23]), we get the following.

Corollary 4.8. A CA F over A% is surjective if and only if Op = A%, if and only if wp is comeager.

The second statement is also true for uniform DS [12] Cor 26].

Proof. The first statement is a direct corollary of Corollary [£.7}
For the second statement, nonwandering uniform DS are known to admit a comeager set of recurrent
points, which are all in wg (see Subsection [3.3)). O

D,
<
‘
‘
‘

)

Figure 1: Lonely Gliders: space is horizontal and time goes upwards; < (resp. >) are represented by black
(resp. white) squares, and — (resp. <) are represented by dark (resp. light) grey squares.

The following example answers a question left open in [I2]: the asymptotic set of a surjective CA is
comeager, but not always full.
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Example 4.9 (Lonely gliders). Let A = {>,<,—,«}, and F the CA, defined by the following local rule:

if x_1 =— and xg =<
if x_1 #> and xo =
if x_1 => and xg =«
if to =— and 1 =<
if tg == and x1 #<
if xg => and x1 =+
otherwise .

fi(x_1,x0,21) —

ETrTVvAaLll

A typical space-time diagram of this CA is shown in Figure[]l Intuitively, each configuration can be decom-
posed into wvalid zones, which contain at most one arrow, towards with chevrons < and > are supposed to
point. The arrow moves in the direction to which it points, until it reaches the end of the zone (noticed by
an invalid pattern of the form ab, where a #> and b € {>,—,+}, or symmetric), in which case it turns
back. With this in mind, it is not difficult to understand that F is reversible (hence surjective) and that any
invalid pattern is a blocking word. From Corollary[f.8, the asymptotic set is comeager. Yet, it is not full.

Proof. Let us prove that some configuration = with an infinite valid zone which contains one arrow cannot
be the limit point of any orbit. Indeed, any configuration whose orbit comes arbitrarily close to x should
also have an infinite valid zone (because the zones are invariant), with at most one arrow in it (like the orbit
illustrated in Figure [1} in which the rightmost zone has to be interpreted as infinite). Any limit point of
such an orbit has no arrow in its infinite valid zone (the arrow goes to infinity). O

4.2 First property for CA

It is rather clear that the generic limit set of a uniform DS induces a subsystem. Let us see that this is true
also for directional dynamics CA, and that it is also invariant by shift.

Proposition 4.10. Let § = (F;); be a sequence of CA. Then &z is a subshift. Its realm is strongly o-
invariant.

Proof. By definition, @z is closed. Let U = Dz(wz). Since o is a homeomorphism, o*(U) is also comeager
for all k € Z. Then W = (.5, 0*(U) is still comeager, as an intersection of countably many comeager sets.
One has W C U, so that wg(W) C wz(U) = @wgz. Conversely, the definition of wg gives that it is included in
wz(W). Overall, wz(W) = @z. Since W is strongly o-invariant, wgz = wz(W) is also strongly o-invariant,
by Proposition O

Moreover, Corollary directly gives that wg is included in all subshift attractors.

Proposition 4.11. Consider the CA F' in some direction h. Then O, is an F-invariant subshift.

Proof. We just apply Proposition to Orp = wrh(Prn(@rh)). O

4.3 Indecomposability
Now we prove that the generic limit set of a cellular automaton is indecomposable in some sense.

Proposition 4.12. Let V = U?;Ol Vi, where n € N and the V; are closed subsets which are invariant by
some CA F in some direction h, and, strongly, by o?, for some p > 0. If Dp (V) has nonempty interior
(resp. is not meager), then there exists i € [0,n[] such that Dg,(V;) is dense (resp. comeager).

Proof. One has Dr;, (V) = | |'=y Dr.x(V;) by Proposition
By Point (4| of Lemma there exists ¢ € [0,n[ such that Dpp(V;) is dense (resp. comeager). O

Corollary 4.13. Let F be a CA and h a curve. &g, cannot be decomposed as a disjoint union of non-trivial
subshift subsystems (or even non-trivial strongly o -invariant subsystems, for some p > 0).
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In other words, we can say that Wp,, is connected, when considering the dynamical pseudo-metric related

to the action of (F,o): d(z,y) = inf; jez.s ten d(Fa'(z), Flol (y)).

Proof. We assume that wr ) = |_]?:_01 Vi, where the V; are closed, invariant, strongly oP-invariant sets. By
Proposition there exists ¢ € [0, n[ such that Dp(V;) is comeager. By definition, wpg, is then included
in V;, and hence equal. O

4.4 Finite generic limit set

If the generic limit set is finite, then the DS is almost equicontinuous.

Proposition 4.14. Let § be a semi-uniform DS and V = w(U) be finite, for some set U which is comeager
in some nonempty open subset W C X. Then Ez is comeager in W.

This of course implies that £ N U is comeager in W.
Before proving the proposition, we immediately deduce the following.

Corollary 4.15.
o If Wz is finite, then § is almost equicontinuous.
o IfT has no equicontinuous point, then the asymptotic (and limit) sets of all non-meager sets are infinite.

Proof of Proposition[{.1, According to Proposition [3.11} U C Dg(V) C ||,c; Ag(y) for some finite set I.
If U is comeager in W, then so is this union. Let C W be nonempty and open. Since a finite union of

sets meager in W' is meager in W', we deduce that Ag(y) is not meager in W', for some y € I. Remark
says that £ is then not meager in W' either. We conclude thanks to Remark O

In the case of cellular automata with finite generic limit set, we can say more.

Proposition 4.16. Let F' be a CA and h a curve, such that Oy is finite. Then &y contains one single
(periodic) orbit, of a monochrome configuration y, and Apn(y) is comeager.

Note that the orbit of this monochrome configuration may be nontrivial (see Example , but still
generic configurations are all asymptotic to a single configuration of that orbit (and not to the others). This
could seem paradoxical, since it contrasts with the usual, uniform and synchronous aspect of dynamics of
CA over the full set A%, but here the genericity notion is not at all F-invariant.

Proof. By Proposition Wpp is a finite F-invariant subshift, so that all configurations are periodic (for
the shift). Let p > 0 be a common period: &g can be decomposed as |—|er Orpn(y), where V C &gy, is
a set of orbit representatives. We can apply Corollary Drp(@pn) = I—'yewp,h, App(y). Since every
Y € Wy, is strongly oP-invariant, we can apply Point [4] of Lemma (to the uniform DS oP), and get that
there is y € @pj, such that App(y) is comeager. Since Dpp(Orn(y)) 2 Apn(y) is comeager, we get that
the closed Op,(y) is actually @g ;. Moreover, since o is an automorphism of F, o(Ar(y)) = Arn(o(y))
is also comeager. Then A, (y) N Ap(o(y)) is also comeager, and in particular nonempty. By transitivity
of the asymptoticity relation, y is asymptotic to o(y). Since they both lie in the bijective subsystem of F
induced over the finite @ j,, Remark gives that y = o(y), which means that y is monochrome. O

4.5 Asymptotic set of equicontinuous points

We shall show that if the system is almost equicontinuous, then its generic limit set is exactly the closure of
the asymptotic set of its set of equicontinuous points.

The following proposition and its corollary show that the set of equicontinuity points is included in all
dense realms.
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Proposition 4.17. Let § be a DS and (Vi)ien a sequence of closed subsets of X. Then £ N Dz((Vy):) C
Ds((Vi)s)-

Proof. Let x € £ N Dg((V4)¢), and € > 0. Since z € &, there exists § > 0 such that
Yy € Bs(x),Vt € N, d(Fy(z), Fi(y)) <e/2 .
Since = € Dg((V;)1), there exists y € Bs(z) N Dg((V;);). Hence,
IT e NVt > T, d(Fi(y), Vi) <e/2 .

For this T', ¥Vt > T,d(Fi(x), V) < €. Since this is true for every € > 0, we get that x € Dz ((V4):). O

In particular, for z € X, we have Az(z) 2 Az(z) N E&5.

Remark 4.18. In [I8, Prop 2.74], it is proved that, in a uniform DS, if an attractor is included in the set
of equicontinuous points, so is its realm. In particular, we can deduce from Proposition [{.17 the following
result: the realm of any subshift attractor included in the set of equicontinuous points is exactly the set of
equicontinuity points.

For almost equicontinuous DS, Proposition means that it is enough to prove that some realm is
dense to prove that it is comeager.

Corollary 4.19. If § is an almost equicontinuous DS, then 0z = wz(Ez).

Proof. Since Dg(@wz) is dense, £ C Dgz(wz) by Proposition Hence, wz(€5) C wg. Since wg is closed,
wz(€z) C wg. Conversely, Wz is the intersection of all closed subsets with comeager realms, among which

wz(€z) (whose realm includes the comeager &). So, Wz = wz(Ez). O

If the system is equicontinuous, then its generic limit set is its limit set.
Proposition 4.20. If § is an equicontinuous DS over space X, then Oz = wz = Q5.

Proof. Let y € Q5 and € > 0. We will show that B.(y) intersects wg. There exists d such that for every
r €& =X and every t € N, Fy(Bs(x)) C B.2(Fi(z)). By compactness of X, there exists a finite I C X
such that X = (J,c; Bs(z). Since y € Qg, there is an infinite J C N, and for all ¢ € .J, some z; € X such that
Fi(x) € B./2(y). By the pigeon-hole principle, there exists 2 € I such that Bs(x) contains infinitely many
x; with ¢ € J. This means that for infinitely many ¢, d(F;(z),y) < d(Fy(z), Fi(z,))+d(Fi(xe),y) < e/2+¢/2.
We conclude that the orbit of  has a limit point z € wg(z) N B:(y). This proves that wz(X) is dense in Q;
by Corollary we obtain 0 = wz(X) = Q5. O

Another remark: it is known that a cellular automaton is nilpotent if and only if its limit set is finite.
Hence, it is nilpotent if and only if it is equicontinuous and its generic limit set is finite.

5 Directional dynamics

In this section, we study cellular automata while varying the directions.

We have already seen in Remark that the equicontinuity properties are preserved by ~. This is
also the case for asymptotic sets, as stated in the following remark; the limit set and direct realm are even
direction-invariant, provided that the considered set is strongly shift-invariant.

Remark 5.1. Let F be a CA, V,U C A% be strongly o-invariant, V, C AZ be closed and strongly o-invariant,
fort € N and h,h' € B.

L. opn((Vi)e) = 0mm ((Vi)e)-
2. QF,h(U) == QF,h’(U)-
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3. If h ~ W, then wpp(U) = wpp (U).
4. Ifh ~ h/, then Dp)h(V) = 'DF’h/(V), and C:)F,h = ‘:}F,h’-
Proof.

1. Let 2 € 0p,((Vi)¢), that is, there exists a time 7' € N above which for all times t > T, Fto"®)(z) € V;.
By assumption, we get that F'o" () (z) = o"' ()=h®) pigh(t) () € V.

2. Qpn(U) = Nrey Upsr Fro"O(U) = NpeyUpsr FHU) = Qp(U).

3. Let y € wpp,(U); there exist z € U and an increasing sequence (ny )y, such that limy_, o F™ o) (z) =
y. Since h ~ 1/, (h(t) — h'(t)) is bounded, for ¢t € N. We deduce that there is a subsequence (my,), of
(n1)x such that (h(my)—h'(my)) is constant, say equal to g € Z. We deduce that F™*g" (%) (54(z)) =
F mkah(m’“)(m‘), so that this term converges to y when k goes to infinity. Since U is o-invariant, it
contains 09(z), so that y € wg/ (U).

4. This can be directly derived from the definitions and the previous point.

5.1 Oblique directions

Let F be a CA with memory r_ € Z and anticipation r, € Z. Then for every ¢t € N, F* can be defined by a
rule of memory r_t and anticipation rt. But it could be that smaller parameters also fit. This motivates
the following definition.

For a sequence (Fy)ieny of CA, let us denote r_(¢) and r, (¢) the minimum possible memory and antici-
pation for Fy, and call them the iterated memory and iterated anticipation. Formally,

r_(t) =sup{i € Z|Vz,y € A%, 2i yoof = Ylitoo] = F1(z)o = Fr(y)o}
and
r.(t) =inf{i€Z|Ve,y € A%, 2] i = Yj-oo] = Fi(x)o =Fi(y)o} -

The next remark shows that essentially in the case of a unique direction of equicontinuity (up to ~), the
iterated memory is equivalent to the iterated anticipation.

Remark 5.2.
1. For everyt € N, —oo <r_(t) <ry(t) < +00, if and only if Fy is not a constant function.

2. (Ftoh(t))teN is equicontinuous if and only if ry =< —h =< r_. In particular, if F; is never constant,
h~—-r_~—-r4.

In the uniform case, some F; is constant if and only if the CA is nilpotent.

Proof. The first statement is direct from continuity of F;.
If (F;o"®),; is equicontinuous, then there exists » € N such that

Vie Nz, y € AZ7$|177’,7‘]] =Yl—rr] = Fto—h(t) (.’L’)O = Ftah(t) (y)O .

Since F' commutes with o, we get T[_,_pn ) r—h(t)] = Y[—r—n).r—ht)] = Fi(®)o = F(y)o-

We get that —r — h(t) < r_(¢t) and ro (¢t) <1 — h(t).

Conversely, assume that there exists M € N such that V¢ € N,r, (¢t) < M —h(t) and —h(t) < M +r_(¢), and
let I € N. Then for every t € N and z,y € A” such that T[_1—Mi+M] = Y[-1—M,1+ ], consider the configu-
ration z € A% such that z; = x; for every i € |—o00,l + M| and z; = y; for every i € [l — M, +oo[. By the
assumed inequalities, oo 14r, (1) 1h(t)] = Z]—oo,ltri (t)+h(t)] A Z[—i4r_ (6)+h(t),+oo] = Y[—ltr_ (t)+h(t),+oo[>
so that Fo"® (2)_; ;1 = Fo"™® (2)1_1y = Fio™®(y)[_1,y- This proves equicontinuity of (Fy;o®)),.

The consequence between parentheses comes from the first point. O
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In the case of a single CA, we have seen that r_(t) > r_t and ry(¢t) < rit. It is known that these
sequences will be asymptotically linear, the slopes being called the Lyapunov exponents (see [13] for a
discussion on possible growths for these sequences).

We say that a direction h is oblique for CA sequence (Fi); if h ¢ [—ry, —r_]. We will show that the
generic limit set in an oblique direction is equal to the limit set.

We say that a DS § over space X is weakly semi-mixing if for every nonempty open sets U, V,U’, V'
such that V and V' intersect Qz and for any T' € N, there exists ¢ > T such that U N EF, (V) # () and
U' N E;7 (V') # 0. This implies that § is semi-transitive, which means that for every nonempty open sets
U,V such that V intersects Qg and for any T € N, there exists ¢ > T such that U N F; (V) # (.

Proposition 5.3. A DS § is semi-transitive if and only if for every sequence (U;)i>1 of open subsets
intersecting Qz, the set Ut1<---<t,;<--- ﬂ¢>1 thl(Ui) 18 comeager. In particular, § is then semi-nonwandering.

Proof.

e Suppose § is semi-transitive, and that (U;);>1 is a sequence of open sets intersecting Q5. Let us
show, by induction over n € N, that the open set Z, = U, -..o; Mi<i<n thl(Ui) is dense. Let
Up be any nonempty open subset of X. Let us show, by induction over n € N, that the open set
ZnNUy = UO:to<t1<~-<tn ﬂogign thl(Ui) is nonempty. Trivially, Zo N Uy = Uy. By semi-transitivity,
there exists t,,+1 > t, such that Z,,1 NUy = Z, NUgN Ft;il (Up+1) is nonempty. We deduce that Z,
is dense (in X), and hence, that [, .y Z, is comeager. This is another expression for the set of points
whose orbits visit the sequence (U;) in the correct order, which is what we had to prove.

e Now suppose that for every sequence (U;);>1 of open subsets intersecting Qz, the set Ut1<---<t,;<--- ﬂi>1 Fy

is comeager. Let U,V be nonempty open sets such that V intersects Qz, and 7" € N. If one defines
Ury1 =V and U; = X if ¢ # T 41, then our assumption gives that there exists 0 < t; < --- <t; < ---
such that Ft_Til (V)= Ut1<,_,<ti<m Ni>1 thl(U,') is comeager, which implies that it intersects U. Note

that tpq > 7.

e The definition of semi-nonwanderingness can simply be applied to the sequence of open sets constantly
equal to U. O

The previous proposition applies to semi-wixing systems, but weak semi-mixing has another strong
consequence.

Remark 5.4. Any weakly semi-mizing DS § is sensitive or admits a trivial limit set.

Proof. If Qg is not trivial, then there are two open subsets V' and V'’ which are at positive distance ¢ > 0
and intersect Q. Then for every x € X and 6 > 0, Bs(x) intersects both F,*(V) and F, '(V"), for some
t € N, so that there are points y and ' in it, for which d(F;(y), F;(y')) > . By the triangular inequality,
Fi(z) should be at distance at least £/2 of one of the two, which means that z is not £/2-stable. O

The following proposition shows that every CA (and even CA sequence) in an oblique direction is weakly
semi-mixing.

Proposition 5.5. If (F;); is a CA sequence and h an oblique curve, then the DS § = (Ftah(t))t is weakly
Semi-mizing.

Proof. Tt is enough to prove the property for U = [u},,, U' = [u/];n, V = [v],, and V' = [v'], four cylinders,
such that patterns v and v’ appear in Qz, and m,m’,n,n’ € Z. By extending v and/or v" (into a pattern
which still appears in the limit set) and v and/or «’, we can suppose that they have the same length pairwise,
that m = m’ and n = n’. Suppose, without loss of generality, that h is left-oblique: —r_ < h; in particular,
there exists T' € N such that r_(T) 4+ h(T) +m > n + |u|l. Fre™™) is a CA of memory r_(T) + h(T) and
anticipation r (T) 4+ h(T): there exists wy € AlVIHE+T)=r—(T)) guch that

Er ([Wlm) 2 [wrle_ (r)+n(T)4m -
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Hence, there exist 7' € N and y € A% such that y € [u],, N [Wr e (7)4h(T)+m- The same is true for v" and v’
(for the same T). O

We deduce the following.

Corollary 5.6. Consider DS § = (Ftah(t))t where (Fy): is a CA sequence and h an oblique curve. Then
wg = Qg; it is either sensitive or nilpotent.

Proof. The equality is direct from Propositions and Sensitivity comes from Proposition [5.5
Remark [5.4] and the known fact that the limit set of a CA is trivial if and only if it is nilpotent. O

5.2 Almost equicontinuity in two directions

The purpose of this subsection is to show that if the CA is almost equicontinuous in two directions of
opposite sign, then its generic limit set is finite. We essentially reprove [6, Prop 3.2.3, Prop 3.3.4] (or the
corresponding result for linear directions from [24]), but additionally discuss the generic limit set.

Here is the main lemma for understanding directional dynamics. It is based on the fact that if a word u
is blocking along h' € B, and s’ is the minimal corresponding offset, then in particular for every t € N there
exists a particular symbol a, n () € A such that Vz € [u]y, @y n (t) = F'(2)p ).

Lemma 5.7. Let F be a CA over A% with blocking words u along h' € B with offset s' € Z and v along h" € B
with offset s € Z, and ¢ = h' + |v| — s and ¢" = W' — s". Then for every z € [v]p and j € [¢'(t),q" (t)[,
F'(z)j = aun(t).

In other words, in the orbit of such a configuration z will, after some time, appear such symbols that
depend only on u (which does not necessarily appear in z). Of course the symmetric statement is true for [u].
Before proving the lemma, here are some remarks on directionnally blocking words. Of course the symmetric
statements hold for right-blocking words.

Remark 5.8.

1. From the definition, one can see that if u is blocking for CA F along curve h, then any word containing
u s also blocking.

2. If two directions are almost equicontinuous, Proposition [2.0 states that they admit blocking words u
and v. From the previous point, they admit a common blocking word uv.

3. From the definition, one can see that: if u is a right-blocking word for CA F along directions h' and
L', then also along any direction h = min(h’, h"").

4. From the previous point and the symmetric statement, if u is right- and left-blocking along directions
R and B", then also along any direction h € [min(h’, h"), max(h', h')].

5. In particular, right- and left-blockingness are preserved by ~ (which is not the case for strong blocking-
ness).

Proof of Lemma[5.7. Since u and v are left-blocking and right-blocking, respectively, for every ¢t € N:

{ Vo, y € [uls, Ty 4oo] = Y[s' 4ol == F(T)[n(t),400] = F W) [r (), 400l
Va,y € [U]S”ax]]—oc,s”]} = Yl—o0,s"] = Ft(x)]]—oo,h”(t)]] - Ft(y)]]—oo,h”(t)]] .

By definition, Vz € [u]s, @y n (t) = F*(2)p). Now let j € [¢'(t),q"(t)[, so that there is a configuration
Y € [v]o N [u]j—nr(t)+s such that yj_o o] = 2]—cc,0]-

Since o777 ") (y) is in [u]y, we get: F'(y); = aup (). On the other hand, since v is right-blocking
along h", ¥t € N, F*(2)]—con(t)—s] = F'(Y)]—00,h(t)—s7]- In particular, we get that F*(z); = F'(y); =
au,h/(t). O
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Proposition 5.9. Let F' be a CA with a blocking word u along two distinct directions h' and h”, with h"” A h'.
Along any direction h € B, the direct realm dp p,((*ay pn (t)™):) includes all o-periodic configurations where
u appears; Moreover, the realm Dpp((®ay n (t))t) includes:

1.

all configurations where u appears infinitely many times on the left and on the right, if ¥ < h X h";

2. all configurations where u appears infinitely many times on the right, if b’ << h < h”;

3. all configurations where u appears infinitely many times on the left, if ¥ < h << h";

4.

all configurations where u appears, if b’ << h << h'.

Proof. Consider a configuration z € [u];, for some ¢ € Z, with some o-period p > 1. Let ¢’ and ¢” be as in
Lemma Since ¢ ~ h" A W' ~ ¢/, there exists T € N such that ¢/(T) < ¢’(T) + p. Lemma [5.7] says that
then F7(2); = ayp (T) for all j € [i + ¢/(T),i + ¢"(T)[, and, by periodicity, for all j € Z. This means that
FT(z) is monochrome, and it is clear that is stays monochrome for ¢t > T. Since, by definition of a, n/(t), it
appears in F*(z), we deduce that the latter is equal to *ay, p (t)™

1.

5.3

From Point[4]of Remark[5.8] w is right- and left-blocking along every curve h € [min(%’, h'), max(h’, h'")].
So from Proposition [2.6] configurations with infinitely many occurrences of v on the left and on the
right are equicontinuous. From Proposition and the previous point that Dpp((Cayn (£)™):) 2
071 ((®ayn (t)°)) is dense, these equicontinuous configurations must also be in Dgp, (ay,n (£)™)¢).

Let z € (;cz U >ilul; and n € N If b < B ~ ¢”, then there exists j > maxsen h(t) — ¢"(t) + n such
that z € [u];. If ¢ ~ A’ << h, then there exists T € N such that Vt > T,¢'(t) + j < h(t) — n. From
Lemma and these inequalities, for all ¢ > T, the pattern Ft(z)[[h(t)_n,h(t)_,_nﬂ is monochrome. Since
this is true for every n, every limit point of the orbit must be monochrome.

This case is symmetric to the previous one.

Let z € [u]; for some j € Z and n € N. If ¢/ ~ b’ << h << h"" ~ ¢", then there exists T € N such that
forall t > T, h(t)+n < ¢"(t) +j and ¢'(t) + j < h(t) — n. From Lemmal[5.7 and these inequalities, for
all t > T, the pattern F*(2)n()—n,h(t)+n] iS monochrome. O

Classification of generic limit sets up to directions

We recall the classifications of CA up to shift from [24] [7] and emphasize the properties of each class in terms
of generic limit set. As the closure of an asymptotic set, the generic limit set may depend on the direction.
By strictly almost equicontinuous, we mean almost equicontinuous but not equicontinuous.

Theorem 5.10. Every CA F satisfies exactly one of the following statements:

1.
2.

F is nilpotent; there is a symbol a € A such that for all h € B, &pp = {*a>}.

F is equicontinuous along a single direction h’ € [—ry, —r_], and sensitive along other directions; for
every h € B, @p, = Qp is infinite.

F is strictly almost equicontinuous along a nondegenerate interval S C [—r4, —r_] and sensitive along
other directions; there exists a € A such that g, = Op(®a™) for every h € S, and &gy, is infinite
for every h ¢ S; moreover, Erp, C Dpp(wpn) = App(®a™), and if h € Z(S), Epp includes a dense
open set.

F' is strictly almost equicontinuous along a single direction h’ € [—ry, —r_] and sensitive along other
directions; for every h € B, &pp is infinite.

. F is strictly almost equicontinuous along a single direction h’ € [—ry, —r_] and sensitive along other

directions; W, is finite if and only if h = K.
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5. F is sensitive in every direction; wp, is infinite along all h € B.

Compared to [7, Thm 2.9], we have merged the last two classes, because expansiveness is not relevant
in terms of generic limit set, except that it implies surjectivity. Surjective CA have their generic limit set
equal to the full shift of configurations in every direction: they are either in Class [2] Class [ or Class[f] In
Class [3] each bound of the interval of almost equicontinuity can be included in it or not; actually all four
cases can happen: see [6] for some examples. Note nevertheless that the bound would always be included if
one considered directions with possibly unbounded variation.

Proof. 1. Nilpotent CA have a trivial limit set (in every direction), which includes the generic limit set.

2. Now suppose that F'is not nilpotent, which is equivalent to 2z being infinite. Assume also that there is
at least one direction of equicontinuity. By Remark all other directions are oblique, hence sensitive
by Corollary By Proposition and Corollary Opp = Qp, for all h € B.

3. Now suppose that F admits no direction of equicontinuity, but two distinct directions h’ and h”
of almost equicontinuity. By Point 2] of Remark [5.8] these two directions have a common block-
ing word u, so that we can apply Proposition [5.9} u is also blocking for directions in the interval
[min(h/, h”), max(h’, h’"")]. Since this is true for every almost equicontinuous ', h”, we deduce that the
set S of almost equicontinuous directions is convex: it is a nondegenerate interval. By Corollary
it is included in [—r4, —r_].

Proposition also states that Dgj,((*ay,n (t)):) is dense for every h € B, so that it includes all
equicontinuous points, by Proposition If h € S, Corollary gives that the generic limit set is
the closure of the asymptotic set of £y, that is then the asymptotic set of { ®a,, 5/ (t)|t € N}, which
is a set of monochrome configurations; in particular, it does not depend on h. By Proposition it
is the orbit by F' of a monochrome configuration.

For other directions, the generic limit set of a sensitive DS is infinite, by Corollary

Finally, if h € Z(59), it is easy to find ¢’,¢” € S such that ¢/ << h << ¢”. Point [4] of Proposition
gives that Dpj,((*ay,q (t))¢) contains a dense open set. The same argument as above gives that this
is in the realm of the generic limit set.

4. The cases remain when there is at most one direction of almost equicontinuity; it cannot be oblique,
and other directions have to all have infinite generic limit by Corollary This settles the last three
classes. O

In the following examples, we will meet all 6 classes from the previous classification.

Example 5.11 (Shift). Let o be the CA over A% defined by o(z); = xi11. This CA is reversible, hence
surjective. By Corollary Wo,h = A% qlong all h € B. Along direction —1, it corresponds to the identity
CA. This CA has only one equicontinuous direction: it is in Class[q of Theorem[5.10

Let F' be a CA with alphabet A, memory r_ € Z, anticipation r > r_ and local rule f. A state 0 € A
is spreading if for all u € A"+~ "=+ such that 0 C u, one has f(u) = 0.

Remark 5.12. Let F be a CA over A” with memory r_ € Z, anticipation r4 > r_, and spreading state
0 € A. Then @&pp = {0} along all h € [—ry,—r_] and &g, = QF along all h ¢ [-r4,—r_], where
r(t) =7yt and r_(t) = r_t. In other words, F is in Class[3 or Class[1]

Note that any CA is a subsystem of a CA with a spreading state (simply by artificially adding it to the
alphabet). In particular, unlike the asymptotic set (which includes the nonwandering set), the generic limit
set does not support the topological entropy (in the sense of [2]).

Proof. We suppose that F' has a spreading state 0 € A. By definition, it is a (left- and right-) blocking word
along all h € [-r;,—r_]. By Proposition there exists a € A such that @p), = Op(®a™) = w(Erp)
along all h € [-r4, —r_]. In this case, a is nothing else than 0 (from the definition of a, ;(t)). Moreover,
since any h ¢ [—r4, —r_] is oblique, &g, = Qp by Corollary O
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Figure 2: Min CA along direction 1; 0 (resp. 1) are represented by black squares (resp. white squares).

The simplest example of spreading state is the following.

Example 5.13 (Min). Following Ea:ample we define Min over {0,1}% by Min(z); = min(z;, v;11). A
typical space-time diagram is represented in Figure[d By Remark[5.13, we know that this CA is in Class[3:

1. Along direction 0:
Dwinn = {0} and its realm (V,cp { @ € {0,1}%| 3i > k,2z; = 0} is comeager.

2. Along direction —1: the same is true, replacing > by <.

o

Along directions in ] —1,0[: Quinn = {0} and its realm is the dense open set {0,1}2\ {*1=°}. Note
that along direction —1/2: Min corresponds, up to a power 2, to the three-neighbor Min CA, defined
by o~ Min®(x); = min(x;_1,2;,2;11). This is an example of uniform DS whose generic limit set does
not include all recurrent points.

4. Any direction h ¢ [—1,0] is oblique: Gyins = Qwin = {2 € {0, 1}Z‘sz > 0,101 Z z}. The realm of
the generic limit set is {0,1}2. This is an ezample of uniform DS whose set of recurrent points is not
dense in the generic limit set.

Example 5.14 (Lonely gliders). The CA F from Ezample s surjective and almost equicontinuous.
Hence this CA is in Class[{}

Example 5.15 (Finite generic limit set). Consider the CA Min x o~ Min defined over ({0,1}%)% by (Min x
o~ Min)(z,y); = (min(z;, z;41), min(y;_1,4:)). According to Example Ominp, = {0} along all h €
[—1,0] and Ouyinn = Qn along all h ¢ [—1,0]; of course @Wy—1yin, = {0} along all h € [0,1] and
(DaflM'L'n,h = QM'Ln along all h ¢ [0’ 1] H@’I’LC@, @MinxoflMin,O = {00000}27 and ajMinXo’*IMin,h = {OOOOC} X QM'Ln
(Tesp. Oyinsco—1minh = Quin X {°0°}) along all h € [—1,0[ (resp. h €]0,1]), and @yinxo—14inn = Liin along
all h ¢ [—1,1]. In particular, Min X o~ Min has only one almost equicontinuous direction: {0}. Hence, it is

in Class[{]’.

The next two examples are in Class

Example 5.16 (Sensitivity in every direction). Consider the CA o~'Min x o defined over ({0,1}%)? by
(07 Min x o)(z,y); = (min(x;_1,7;),yi11). According to Ezample @on = {0,1}% along all h € B.
According to Ezample Do—1iinhn = 1°°0°°} along all h € [0,1] and Go—1yinn, = Quin along all h ¢ [0, 1].
Hence, Gg—1yinxon = {20} x {0,1}% along all h € [0,1], and Gp-1yinxon = Qn X {0,1}% along all
h ¢ [0,1]. Since there is no almost equicontinuous direction, this CA is in Class[§
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Figure 3: Just Gliders (+ are represented by light grey squares and — are represented by dark grey squares).

Example 5.17 (Just Gliders). Let A = {«+-,0,—} and F the CA defined by the following local rule:

= ifwi_1 =— and x; £+ and (viy1 £ orx; =—)
flrici,x,miv1)s = | < if vi41 = and x; #— and (x,-1 #— or x; =<)
0 otherwise .

A typical space-time diagram of this CA is shown in Figure[3 It is possible to interpret it as a background
of Os where particles — and < go to the right and to the left, respectively. When two opposite particles meet
they disappear.

One can see that the limit set is Qp = {w € AZ| Vk €N, 08 =iz x} . We prove here that F is weakly
semi-mizing in every direction h ¢ {—1,+1}. Hence Opp = Qpp. Moreover, @p 1 = {0, —}2, Gp 41 =
{0,+-}%, and F is sensitive in every direction; it is in Class .

Similar results have been proved in the measure-theoretical setting in [20]. The simplicity of the following
proof illustrates the power of our setting, and of the notion of semi-mixingness.

Proof. By induction on t € N, one can see that F*(x); =— if and only if #_;, =— and u = [tk 1,64k]
is a right-balanced pattern, that is, it does not send any particle to the left, or more formally:

Vi € [0, [ul[, > y(u:) >0, where y(u;) = | 0 ifu; =0
i=0 -1 ifu; =«

Generalizing this induction, we can see that if k € Z, t € N, «Z w and u € A? is right-balanced, then
F'([wu]g) C [w]gss- We define left-balanced patterns symmetrically, and get that if = 2 and w is

right-balanced, then F*([uz]i) C [2]k1e-

o Let [u]m, [W]ms, [v]n and [v'], be four cylinders, and assume that the last two intersect Qp. By

the expression of Qf, note that we can decompose them as v = wz, v = w'2’, with <[ w,w’ and
—I z,2/. We prove that there is a time step ¢ € N such that both Fto"®([u],,) N [v], # @ and
Fto" D ([u'],n) N [0']r # O. If h is oblique, the result follows from Proposition hence we can
assume that h €] — 1, +1].
We can assume that u and «' are left- and right-balanced pattern: just extend it with the suitable
number of — on the left or of < on the right (the obtained cylinders are included in the original one).
We can also add 0s to w and «’ until being able to assume that they have the same length and that
m=m'.
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Since h > —1, there exists ¢ € N such that h(t) > —t + max(n + |w|,n' + |w'|) — m. Since h < 1, there
exists t € N such that h(t) < t+min(n+ |w|,n’+|w’|) —m— |u|. These t could be distinct, but it is not
difficult to be convinced that, since h has bounded variation, there is a common ¢ € N which satisfies
both. In that case we can define @ = 0t~ —lwltmygt—m—ful+n—h(t)+|wl ~Clearly, it is still left- and
right-balanced, so that F'o®) ([wil, _p)—¢) C [w], and F1o™ O ([@2],pne)tjw|—t) C [Zlntjw); taking

the intersection we get Fto"® ([wiiz],_pu)—¢) C [v]n. Moreover, [wiz],—nw—¢ € [@n-n()—t+pw|

[u]m; we get the wanted nonempty intersection. The exact same can be achieved for [u/],, and [v'],/
for the same ¢.

e Proposition [4.6{ and Remark [5.4] then give that for every h ¢ {—1,4+1}, @p ), = Qp and F is sensitive.
Since the set of almost equicontinuous directions is an interval, then at least one direction in {—1,+1}
should also be sensitive. Since the definition of the local rule is exactly symmetric, we get that both
directions are also sensitive.

e Now consider direction h = +1. For i € N, let W; be the set of configurations z € A% such that T,
is not right-balanced. If x € Wj;, then by definition z[; ;) is not right-balanced, for ¢ > i, so that,
by the first claim of the proof, F'o*(x)y #—. Since every pattern can be extended to the right into
a pattern which is not right-balanced, we see that W = (J,cy Wi is a dense open set. We get that
w1 (W) N [—=] = 0. Hence wr1(N,ez0™(W)) € {0,412 N,ez 0™ (W) being comeager, we get that
@r1 C {0,+}2. Conversely, for every cylinders [u],, and [v],,, the latter intersecting {0, +~}%, the same
argument above allows to find arbitrarily large ¢ € N such that F*([u],,) intersects [v],,, so that Point
of Remark gives that [v],, intersects the generic limit set.

e The exact symmetric argument settles the case of h = —1. O

The following two examples enjoy additional properties that are counter-intuitive, that we state; for a
full understanding of these constructions, we refer to the original articles, because each of them could fit a
whole article by itself.

Example 5.18. In [3, Thm 6.1], a CA F is built with a word w which is blocking in a nondegenerate interval
of directions, and @p = wr([u]o) is the orbit of a monochrome configuration (see Proposition[5.9), but here
this orbit is nontrivial: in particular, Op2 = Qp2 , C Qp, = Op.

This shows that CA which have a finite generic limit set are not always generically nilpotent: they can
converge to a nontrivial orbit. This property is possible only if the blocking words are Gardens of Eden.

The following example shows that it is relevant to study arbitrary curves rather than just linear directions.

Example 5.19. In [7, Prop 3.3], a CA is built which is almost equicontinuous along h if and only if
0 < h < p, where p is an explicit function close to the square root function. There is a nondegenerate
interval of almost equicontinuous directions, but only one of them is linear.

With some horizontal bulking operation and a product with the CA from [7, Prop 3.1], which deals with
the other side of a parabola, one can even obtain a CA which is still almost equicontinuous in two directions
of opposite sign, but which is sensitive along all linear directions.

6 Links with the measure-theoretical approach

By a measure, we mean a Borel probability measure on X. The topological support S, of a measure p is
the smallest closed subset of measure 1. If S, = X, we say that p has full support.

We say that § = (F})ten is u-equicontinuous if 4(&5) = 1. From Proposition one understands that,
if F'is a CA and p is o-ergodic, then either F' has no equicontinuous point in S,,, or F' is p-equicontinuous.
This generalizes [10, Prop 3.5], which was stated only for Bernoulli measures.
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6.1 p-likely limit set and p-limit set

The generic limit set is the topological variant of the p-likely limit set Ag ,, which is the smallest closed
subset of X that has a realm of attraction of measure one. [23| Ex 5, 6] point that there are no general
inclusion relations between the two sets, but that they intersect. Here is a formalization of this argument.

Proposition 6.1. For every DS § and full-support measure p, Az, Nz # 0.

Proof. Remark that Az, is a closed set with dense (because measure-1) realm. Proposition allows to
conclude. O

The p-likely limit set should not be confused with the p-limit set Qg ,, from [20) [7], which is the
intersection of all closed subsets U such that lim; ., u(F; '(U)) = 1. We prove one general inclusion,
though; it is a generalization of [20, Prop 1].

Proposition 6.2. For every DS § and Borel probability measure p1, Qz, C Ag ..

Proof. Tt is enough to prove that, for every ¢ > 0, lim;_,oo u(F; '(Be(Ag,,))) = 1. Suppose, for the sake
of contradiction, that it is not the case: there is @ > 0 and an infinite set I C N such that for all ¢ € I,

1(As) > o, where Ay = F[l(EE(AS’#)C). For every T' € N, consider the set Br = A \ ;o A¢ of points
which are for the last time in some Ar. Note that the set of those which are still expecting one visit,
Cr = Uen At \ U< Bt = Upsr At includes A; for some ¢ € I. It results that u(Cr) > u(A;) > a. Since
(Cr)r is a decreasing sequence of subsets, we get that u(C) > a, where C' = [,y Cr. Now if x € C, then

for all T € N, there exists ¢ > T such that Fy(x) € EE(A&H)C. This means that « ¢ Dg(Ag,,), so that
Dz(Ag,,) has measure at most 1 — o O

The converse is in general false: Example is a counter-example, as proved in [20]; it is known to have
a p-limit set which is strictly included in the u-likely limit set, when p is the uniform Bernoulli measure (see
[20) Ex 3] and [21], Ex 4]).

However, we prove the converse in a specific case.

Proposition 6.3. Let § be a p-equicontinuous DS for some measure p. Then Qg , = Az, = wz(Eg NS,).

In particular, if p has full support, then these sets are equal to wz(€z) = Oz.

Proof. Since Dg(Ag,,,) is dense in Sy, it includes the full-measure set £ N S,,, thanks to Proposition [£.17}
In the same way as in the proof of Corollary [£.19] we can quickly deduce the second equality. Now let
y € wz(€NS,) and € > 0. There is a point © € & N S, and a subsequence (t,), such that Vn €
N, F;, (x) € B./2(y). By equicontinuity of z, there exists § > 0 such that V¢ € N, F;(Bs(x)) C B./2(Fi(x)).
In particular, for n € N, we get F; (Bs(x)) C B:(y), so that ;L(thl(Be(y))) > u(Bs(z)) > 0. Let U be a
closed subset of B.(y)”. Then for every n € N, p(F7H) < M(thl(BE(y)C)) <1 — u(Bs(x)). Since this
is positive and independent of n, we get that u(F; *(U)) does not converge to 1. By contrapositive, we get
that every closed U such that u(F, '(U)) converges to 1 should intersect B.(y), for every ¢ > 0. Hence it
contains y, and we can conclude that y € Q5 .

The converse inclusion comes from Proposition [6.2 O

7 Conclusion

We studied the generic limit set of dynamical systems, and we emphasized the example of cellular automata.
Our main results are:

e The generic limit set of a nonwandering system (in particular, of a surjective CA) is full.

e The generic limit set of a semi-nonwandering system (in particular, of an oblique CA) is its limit set.
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Almost equicontinuous: Sensitive:
‘DF = wp(é') ‘419’ Surjoctive: LZJF is infinite 4.15

Equicontinupus: | &p | = AZ (4.8))
o — 0 (20)
Oblique:

Almost equiconti- orp=Qr | (5.6)
nuous in 2 curves
of opposite sign:

wr is finite ([5.10))

Figure 4: Summary of the main results. Nilpotent CA are not included, for better readability (they would
be equicontinuous, almost equicontinuous in 2 directions, oblique, nonsensitive, nonsurjective, and have that
wp is a singleton).

e The generic limit set of an almost equicontinuous system is exactly the closure of the asymptotic set
of its set of equicontinuity points.

e The generic limit set of an equicontinuous dynamical system is its limit set.

e The generic limit set of a cellular automaton which is almost equicontinuous in two directions of
opposite sign is finite; it is the periodic orbit of a monochrome configuration.

e The generic limit set of a sensitive system is infinite.

A summary of these results, for non-nilpotent CA, is represented in Figure

Among the interesting questions that the directional classification brings, one can wonder whether, fixing
one CA and making the directions vary, we obtain only finitely many generic limit sets, or whether they
should intersect, at least as the orbit of a monochrome configuration (which is not clear for the last two
classes).

Of course, another natural question is about what happens for two-dimensional CA: in that case almost
equicontinuity does not correspond to existence of blocking words, and neither to non-sensitivity, so that
everything becomes much more complex.
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