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Abstract

In this article, we consider a topological dynamical system. The generic limit set is the smallest
closed subset which has a comeager realm of attraction. We study some of its topological properties, and
the links with equicontinuity and sensitivity. We emphasize the case of cellular automata, for which the
generic limit set is included in all subshift attractors, and discuss directional dynamics, as well as the
link with measure-theoretical similar notions.
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1 Introduction

In topological dynamics, the limit set is the set of points that appear arbitrarily late during the evolution of
the dynamical system (see [4]). But the latter may include points which look transient, because they do not
appear arbitrarily late around any orbit. To capture only the points that can be approached by iteration
of the dynamical system, one can study the asymptotic set, which consists of all limit points of orbits (see
[8, 12]). Nevertheless, this set still includes some points that are, in some sense, very unlikely to be seen in
the dynamics.

J. Milnor, interested in the dynamics on the space of measures, introduced in [22] the notion of likely
limit set, that provides a useful tool for studying asymptotic behavior for almost all orbits. Following the
former reference, the likely limit set is the smallest closed set that includes the asymptotic set of a set of
full measure. More precisely, it is the smallest closed set that has a realm of attraction of measure one.
Equivalently, the likely limit set is the unique maximal µ-attractor (see [22, 15, 26]).

J. Milnor also implicitly defines a topological version of the same intuitive idea, that he calls the generic
limit set. The goal of our article is to formalize this concept. In other words, we focus on the asymptotic
behavior for almost all orbits in the sense of Baire category theory. We study some topological properties of
the generic limit set, which is the smallest closed set that has a comeager realm of attraction.

For cellular automata, we know that all subshift attractors have a dense open realm of attraction (see
[14, 9, 17, 16]), thus the generic limit set is included in all subshift attractors.

M. Delacourt et al. studied directional dynamics of cellular automata (see [7]); qualitative behaviour
(equicontinuity, sensitivity, expansiveness) appear along arbitrary curves in space-time. A section of the
present article is devoted to studying the generic limit set of cellular automata which have two directions of
almost equicontinuity.
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The paper is structured as follows : In Section 2, we provide the basic background on the subject of
topological dynamical systems and cellular automata. In Section 3, we show some preliminary results about
attractors, limit sets, realms. In Section 4, we define the generic limit set and prove the main results about
it. In Section 5, we show some consequences on directional dynamics of cellular automata. In Section 6, we
compare the generic limit set with similar measure-theoretical concepts. In Section 7, we give some simple
examples.

2 Preliminaries

2.1 Topology

In this article, (X, d) is a compact metric space. We put Bδ(x) = {y ∈ X| d(x, y) < δ} and call it the open
ball with center x ∈ X and radius δ > 0. For U ⊆ X, we also write Bδ(U) = {y ∈ X| d(U, y) < δ} and
Bδ(U) its closure.

A subset U ⊆ X is called comeager in X if it includes a countable intersection of dense open sets. A
subset U is meager if X\U is comeager in X. By the Baire category theorem, the intersection of countably
many dense open sets in X is dense in X. Hence, a comeager set is dense in X.

A subset A of X is said to have the Baire property (in short BP) if there is an open set U such that the
symmetric difference A∆U = (A\U) ∪ (U\A) is meager in X. Every Borel subset has the Baire property
(for more details, see for instance [24]).

We shall use the following remark to show Lemma 2.4.

Remark 2.1. If W ⊆ X is not comeager and has the Baire property, then there exists a nonempty open set
U in which W ∩ U is meager.

Proof. Indeed, WC∆U is meager for some open set U , and W ∩ U ⊆WC∆U .

2.2 Topological dynamics

Now we introduce some key concepts of the topological dynamics. A (time-nonuniform) dynamical system
(DS) is any sequence F = (Ft)t∈N of continuous self-maps of some compact metric space X. This general
formalism will be useful when studying directional dynamics of cellular automata, but the reader should
keep in mind the following specific, more classical, case. F is uniform if Ft = Gt, for all t ∈ N and some
continuous self-map G of X. We may then write the uniform DS simply as G.

We are interested in the orbits OF(x) = {Ft(x)| t ∈ N} of points x ∈ X. We say that a set U is
F-invariant if Ft+1(U) ⊆ Ft(U), for every t ∈ N.

Equicontinuity. For ε > 0, we define the set EF,ε of ε-stable points for F as the set of x ∈ X for which
there exists δ > 0 such that ∀y ∈ Bδ(x),∀t ∈ N, d(Ft(x), Ft(y)) < ε. The set EF ⊆ X of equicontinuous
points for F is the set of points which are ε-stable for every ε > 0. If EF is comeager, then we say that F is
almost equicontinuous. If EF = X, then we say that F is equicontinuous. Equivalently by compactness,
for every ε > 0, there is a uniform δ > 0 such that ∀x ∈ X,∀y ∈ Bδ(x),∀t ∈ N, d(Ft(x), Ft(y)) < ε.

F is sensitive if there exists ε > 0 such that ∀x ∈ X,∀δ > 0,∃y ∈ Bδ(x),∃t ∈ N, d(Ft(x), Ft(y)) ≥ ε.
This implies that EF = ∅.

Remark 2.2. EF is comeager in some nonempty open set U ⊆ X if and only for every n ≥ 1, EF,1/n is.

Proof. EF can be written as the decreasing countable intersection
⋂
n≥1 EF,1/n of open subsets.

A class which is between nonuniform and uniform DS is the following: F is semi-uniform if Ft =
Gt · · ·G1, for all t ∈ N and some equicontinuous sequence (Gt)t≥1 of self-maps of X. This is trivially
satisfied when {Gt| t ≥ 1} is finite; in particular, in the case of any uniform DS: Gt = G1 for every t ≥ 1.
We will sometimes denote GT+J1,tK the composition GT+t · · ·GT+2GT+1, so that Ft+T = GT+J1,tKFT .
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2.3 Symbolic dynamics

Configurations. Let A be a finite set called the alphabet. A word over A is any finite sequence of
elements of A. Denote A∗ =

⋃
n∈NA

n the set of all finite words u = u0 . . . un−1; |u| = n is the length of u.
We say that v is a subword of u and write v < u, if there are k, l < |u| such that v = uJk,lJ. AZ is the
space of configurations, equipped with the following metric:

d(x, y) := 2−n, where n = min { i ∈ N|xi 6= yi or x−i 6= y−i} .

Any element of AZ is called configuration. AZ is a Cantor space. In AZ the cylinder of u ∈ A∗ in
position i is [u]i =

{
x ∈ AZ

∣∣xJi,i+|u|J = u
}

. Cylinders are clopen (closed and open set). The shift map
σ : AZ → AZ defined by σ(x)i = xi+1 is continuous for i ∈ Z. The dynamical system (AZ, σ) is called the
full shift.

The (spatially) periodic configuration ∞u∞ is defined by (∞u∞)k|u|+i = ui for k ∈ Z, 0 ≤ i < |u| and
u ∈ A∗. A monochrome configuration is one with only one symbol: ∞0∞, for some 0 ∈ A.

Subshifts. A subshift is any subsystem (Σ, σ) of a full shift; we usually simply write Σ, which is then
simply a closed σ-invariant subset of AZ. Equivalently, there exists a forbidden language F ⊆ A∗ such
that Σ = ΣF =

{
x ∈ AZ

∣∣ ∀u < x, u /∈ F
}

. If F can be taken finite, then one says that ΣF is a subshift of
finite type (SFT); in that case F can be taken included in Ak for some k ∈ N, which is an order for the
SFT. We write that ΣF is a k-SFT.

Let Σ ⊆ AZ be a subshift. Then L(Σ) = {u ∈ A∗| ∃x ∈ Σ, u < x} is the language of Σ.
We shall use the following lemma to show results concerning the dynamics of cellular automata.

Lemma 2.3. Let ε > 0 and V ⊆ X.

1. σj(Bε(V )) ⊆ B2jε(σ
j(V )) for all j ∈ Z. If, moreover, V is σ-invariant, and there exists integer p > 0

such that for all n ∈ N, σpn(V ) ∈ Bε(V ), then ∀i ∈ Z, σi(V ) ∈ B2pε(V ).

2. If ∀i ∈ Z, σi(x) ∈ B2−k(V ) and V is a k-SFT, then x ∈ V .

Proof.

1. Let x ∈ σj(Bε(V )). Then σ−j(x) ∈ Bε(V ) ⇐⇒ d(σ−j(x), V ) < ε.
Moreover, d(x, σj(V )) = d(σjσ−j(x), σj(V )) < 2jd(σ−j(x), V ) < 2jε. So, x ∈ B2jε(σ

j(V )).
Hence, ∀i ∈ Z, σi(V ) = σi mod pσbi/pcp(V ) ∈ σi mod p(Bε(V )) ⊆ B2i mod pε(σ

i mod p(V )). Since V is
σ-invariant, we also have that B2i mod pε(σ

i mod p(V )) ⊆ B2pε(V ). Hence, ∀i ∈ Z, σi(V ) ∈ B2pε(V ).

2. Let i ∈ Z.

σi(x) ∈ B2−k(V ) ⇐⇒ d(σi(x), V ) < 2−k

⇐⇒ ∃y ∈ V, σi(x)J−k,kK = yJ−k,kK

⇐⇒ ∃y ∈ V, xJi−k,i+kK = yJ−k,kK

⇐⇒ xJi−k,i+kK ∈ L(V ) .

If this is true for every i ∈ Z and V is k-SFT (or even (2k + 1)-SFT), then x ∈ V .

Transitivity. A DS F is said to be transitive if for any nonempty open sets U, V in X, there exists t ∈ N
such that F−1t (U) ∩ V 6= ∅.

It is clear that (AZ, σ) is transitive, and the following lemma will be used later for this example: it states
for example that subshifts are all either meager or full.

Lemma 2.4. Let G be a transitive uniform DS, and let W ⊆ X be G-invariant.

1. If W is dense (resp. comeager) in some nonempty open set U , then W is dense (resp. comeager).
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2. If W has nonempty interior (resp. has the Baire property and is not meager), then W includes a dense
open set (resp. is comeager).

3. If
⋃
i∈NWi has nonempty interior (resp. is not meager), where each Wi is G-invariant (resp. and has

the Baire property), then there exists i ∈ N such that Wi includes a dense open set (resp. is comeager).

Proof.

1. • Since G is transitive, for every nonempty open set V , there exists t such that G−t(V ) ∩ U is a
nonempty open set. Moreover, W is dense in U , so that G−t(V )∩U ∩W 6= ∅. Since Gt(W ) ⊆W ,
V ∩Gt(U) ∩W ⊇ Gt(G−t(V ) ∩ U ∩W ) 6= ∅. So, W is dense in X.

• One has W ∩ U ⊇
⋂
n∈N Un where Un is open and such that Un = U . So, W ⊇

⋂
t∈NG

t(W ) ⊇⋂
t∈NG

t (W ∩ U) ⊇
⋂
t∈NG

t
(⋂

n∈N Un
)
. Note that each

⋂
t∈NG

t(Un) is G-invariant, and dense
in U . It is open, and by the previous point, dense, so that W indeed includes an intersection of
dense open sets.

2. • Since W includes a nonempty open set and is G-invariant, W includes the (nonempty open) orbit
of this open set. According to the previous point, W includes a dense open set.

• By Remark 2.1, W is comeager in some nonempty open set U . By the previous point, W is
comeager.

3. One of the Wi has to have nonempty interior (resp. to not be meager). We conclude by the previous
point.

2.4 Cellular automata

A map F : AZ → AZ is a cellular automaton (CA) if there exist integers r− ≤ r+ (memory and
anticipation) and a local rule f : Ar+−r−+1 → A such that for any x ∈ AZ and any i ∈ Z, F (x)i =
f(xi+r− , . . . , xi+r+). d = r+ − r− ∈ N is sometimes called the diameter of F . Sometimes we assume
that −r− = r+, which is then called the radius of F (it is always possible to obtain this, by taking
r = max{|r−|, |r+|} ∈ N). By Curtis, Hedlund and Lyndon [13], a map F : AZ → AZ is a CA if and only if
it is continuous and commutes with the shift. In particular, CA induce uniform DS over AZ.

Directional dynamics. We call curve a map h : N → Z with bounded variation, that is: Mh =
supt∈N |h(t+ 1)− h(t)| is finite. The map is meant to give a position in space for each time step. Following
[7], the CA F in direction h will refer to the sequence (F tσh(t))t∈N. In a first reading, the reader can
understand the next definitions and results by considering the classical case: h constantly 0. In general, the
directional dynamics of a CA can be read on its space-time diagram, by following h as a curve when going
in the time direction. The formalism includes that of [23]: a linear curve is h : t 7→ bαtc, for some real
number α.

Equicontinuity. A word u ∈ A∗ is (strongly) blocking for a CA F along curve h if there exists an offset
s ∈ Z such that for every x, y ∈ [u]s, ∀t ∈ N, F t(x)J0,MJ = F t(y)J0,MJ, where M = max(−r− + maxt(h(t +
1) − h(t)), r+ + maxt(h(t) − h(t + 1))), and r− and r+ are the (minimal) memory and anticipation for F .
The terminology comes from the fact that in that case, u is both left- and right-blocking (with the same
offset), which is taken as a definition in [7]: A word u ∈ A∗ is right-blocking for a CA F in direction h if
there exists an offset s ∈ Z such that:

∀x, y ∈ [u]s, xK−∞,sK = yK−∞,sK =⇒ ∀t ∈ N, F t(x)K−∞,h(t)K = F t(y)K−∞,h(t)K .

We define left-blocking words similarly.
The following proposition explains how equicontinuity in cellular automata can be rephrased in terms of

blocking words. The vertical case dates back from [17, 18], the linear directions from [23], the directions with
bounded variations from [7], and the general case can be found in the proofs of [6, Prop 3.1.3, Cor 3.1.4].
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Proposition 2.5 ([7]). Let F be a CA and h a curve.

1. If there is a left- and right-blocking word u for F in direction h, then EF,h includes the comeager set
of configurations where u appears infinitely many times on both sides.

2. Otherwise, F is sensitive in direction h.

In other words, in the bounded-variation case, EF,h is either empty or comeager. The question is open
whether this remains true in the unbounded-variation case (see [6, Remark 3.1.1]).

3 Attractors and realms

We will define notions that deal with asymptotic behavior of a DS F = (Ft)t.

3.1 Limit sets

The (Ω-) limit set of U ⊆ X is the set ΩF(U) =
⋂
T∈N

⋃
t≥T Ft(U), and the asymptotic set of U ⊆ X is

the set ωF(U) =
⋃
x∈U ΩF({x}). By compactness, these sets are nonempty. ΩF(U) is compact, but ωF(U)

may not be, even for U = X (see Example 7.7). Remark that ΩF(U) ⊇
⋂
t∈N Ft(U), and this is an equality

if U is a closed F-invariant set.
We note ΩF = ΩF(X) and ωF = ωF(X). For more about the asymptotic set of dynamical systems, one

can refer to [12]. Note that it was called accessible set in [8], and ultimate set in [11].

Remark 3.1. By compactness of X, for every U and ε > 0, there exists T ∈ N such that:

∀t ≥ T, d(Ft(U),ΩF(U)) < ε .

In the uniform case, it is clear that asymptotic sets are invariant. Here is a generalization of this fact.

Proposition 3.2. Let F = (GJ1,tK)t be a semi-uniform DS, U ⊆ X, and j ∈ N.

1. If y ∈ ΩF(U), then (Gt+J1,jK(y))t admits a limit point in ΩF(U).

2. Conversely, if z ∈ ΩF(U), then it is a limit point of (Gt+J1,jK(y))t for some y ∈ ΩF(U).

Of course, this remains true for the ω, which is defined as a union of Ω.

Proof.

1. By assumption, there are increasing times (tk)k∈N and points (xk)k∈N ∈ UN such that limk→∞ Ftk(xk) =
y. Let ε > 0. By equicontinuity of the (Gt+J1,jK)t, there exists δ > 0 such that for all z, z′ with
d(z, z′) < δ, we have ∀t ∈ N, d(Gt+J1,jK(z), Gt+J1,jK(z

′)) < ε/2. Then there is K ∈ N such that
for all k ≥ K, d(Ftk(xk), y) < δ, so that d(Ftk+j(xk), Gtk+J1,jK(y)) < ε/2. If z is a limit point for
(Gtk+J1,jK(y))k∈N, one sees that there exists K ′ ∈ N such that for all k ≥ K ′, d(Ftk+j(xk), z) < ε, so
that z is also in ΩF({xk| k ∈ N}) ⊆ ΩF(U).

2. Now let z ∈ ΩF(U), so that it is the limit point of (Ftk(xk))k∈N for some (xk)k∈N ∈ UN and (tk) an
increasing, say nonzero, sequence. By compactness, (Ftk−j(xk))k∈N admits a limit point y ∈ ΩF(U).
By triangular inequality, we have d(Gtk+J1,jK(y), z) ≤ d(Gtk+J1,jK(y), Ftk(xk)) + d(Ftk(xk), z). When k
goes to ∞, the second term of the sum converges to 0, and a subsequence of the first term converges
to 0, thanks to equicontinuity of (Gtk+J1,jK)k∈N.

The following corollary is useless for the purpose of the present paper, but may help the reader to connect
with the know, uniform case.

Corollary 3.3. If F is a uniform DS, U ⊆ X and j ∈ N, then F(ΩF(U)) = ΩF(U).
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3.2 Realms of attraction

The realm of attraction of V is:

DF(V ) = {x ∈ X|ωF(x) ⊆ V } =
{
x ∈ X

∣∣∣ lim
t→∞

d(Ft(x), V ) = 0
}
.

It is nonempty if and only if V intersects ωF.
The direct realm of V is the set dF(V ) =

⋃
T∈N

⋂
t≥T F

−1
t (V ) of configurations whose orbits lie ulti-

mately in V . It is included in the realm of V .
Just from the definition, the reader can be convinced of the following.

Remark 3.4. Let Vi ⊆ X be subsets, with i indexed within any set I.

1. DF(
⋃
i∈I Vi) ⊇

⋃
i∈I DF(Vi).

2. DF(
⋂
i∈I Vi) =

⋂
i∈I DF(Vi).

3.3 Linked concepts

Recurrence. A point x ∈ X is recurrent if x ∈ ωF(x). We say that F is nonwandering if the set of
recurrent points is comeager (see for instance [5] for equivalent definitions, for uniform DS).

Nilpotence. We say that F is nilpotent if there is a point z ∈ X such that ∃T ∈ N,∀x ∈ X,∀t >
T, Ft(x) = z. F is asymptotically nilpotent if ωF is a singleton.

It is known that CA are nilpotent if and only if their limit set is finite (see for instance [4]). Also, it
has been shown [12] that asymptotically nilpotent CA are actually nilpotent. In that case (see for instance
[4, 12]), z = σ(z), so that the CA is actually nilpotent in every direction.

Asymptotic pairs. Two points x, y ∈ X are said to be asymptotic to each other whenever

lim
t→∞

d(Ft(x), Ft(y)) = 0.

Let us generalize the realm notations to every sequence (Vt)t∈N of subsets of X, by defining: DF((Vt)t) =
{x ∈ X| limt→∞ d(Ft(x), Vt) = 0} and dF((Vt)t) = {x ∈ X| ∃T ∈ N,∀t ≥ T, Ft(x) ∈ Vt}. We may also note
DF((yt)t) and dF((yt)t) if Vt is a singleton {yt}. With this notation, AF(y) = DF(OF(y)).

One can observe from the definition that U ⊆ AF(U) ⊆ DF(ωF(U)).

Remark 3.5. Let G be a uniform DS over a finite space X, and x, y ∈ X. If x and y are asymptotic, then
∃t ∈ N, Gt(x) = Gt(y). In particular, if G is injective (or surjective), then x = y.

Proof. The first statement comes from X being discrete. The second statement is clear because if X is finite,
then injectivity or surjectivity of G are equivalent to bijectivity of any Gt.

The following remark states that when an asymptotic class is big, then it should contain many equicon-
tinuous points.

Remark 3.6. If AF(y) is comeager in some nonempty open subset U ⊆ X, for some y ∈ X, then EF is
comeager in U .

In particular, note that EF ∩ AF(y) is also comeager in U .

Proof. The assumption gives that for every n ≥ 1, the union
⋃
T∈N

⋂
t≥T F

−1
t (B1/n(Ft(y))) of closed sets is

comeager in U , as a superset of AF(y). This means that there is T ∈ N such that
⋂
t≥T F

−1
t (B1/n(Ft(y)))

includes a nonempty open subset W ⊆ U . For every x ∈W , there exists δ > 0 such that for every z ∈ Bδ(x),
z ∈ W , which means that ∀t ≥ T, Ft(z) ∈ B1/n(Ft(y)) ⊆ B3/n(Ft(x)). We deduce that x is 3/n-stable. In
other words, the set of 3/n-stable points includes nonempty open subsets of every nonempty open subset of
U , for every n ∈ N. We conclude by Remark 2.2.
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3.4 Decomposition of realms.

This proposition can be compared partly to [22, Lemma 3].

Proposition 3.7. Let F = (GJ1,tK)t∈N be a semi-uniform DS. Suppose (Vi)i is a finite collection of closed
pairwise disjoint sets which are invariant by every Gt. Then DF(

⊔
i Vi) =

⊔
iDF(Vi).

Proof. Since the Vi are closed and pairwise disjoint, there are at positive pairwise distance. Let ε =
mini 6=j d(Vi, Vj)/2 > 0. By equicontinuity of (Gt), there exists δ > 0 such that ∀t ∈ N,∀x, y ∈ X, d(x, y) <
δ =⇒ d(Gt(x), Gt(y)) < ε. Let x ∈ DF(

⊔
i Vi), so that there exists T ∈ N such that ∀t ≥ T, d(Ft(x),

⊔
i Vi) <

min(δ, ε). In particular, there exists i such that d(FT (x), Vi) < min(δ, ε). Let us show by recurrence on
t ≥ T that d(Ft(x), Vi) < min(δ, ε). Since Gt+1(Vi) ⊆ Vi, we have d(Ft+1(x), Vi) ≤ d(Ft+1(x), Gt+1(Vi)).
This is less than ε by equicontinuity of (Gt), using the recurrence hypothesis. By definition of ε, we
have minj 6=i d(Ft+1(x), Vj) ≥ minj 6=i(d(Vj , Vi) − d(Ft+1(x), Vi)) ≥ ε. So min(δ, ε) ≥ d(Ft+1(x),

⊔
j Vj) =

minj(d(Ft+1(x), Vj) ≥ min(ε, d(Ft+1(x), Vi)). It results that d(Ft+1(x), Vi) ≤ min(δ, ε), as wanted.
Since for every t ≥ T and j 6= i, d(Ft(x), Vj) ≥ ε, we deduce d(Ft(x), Vi) = mini d(Ft(x), Vi) = d(Ft(x),

⊔
i Vi)

converges to 0.
The other inclusion comes from Point 1 of Remark 3.4.

Realms of finite sets.

Lemma 3.8. Let F = (GJ1,tK)t∈N be a semi-uniform DS and V be finite. Then there exists δ > 0 such
that for all x, x′ ∈ DF(V ) and T ∈ N such that d(FT (x), FT (x′)) ≤ δ, and ∀t ≥ T, d(Ft(x), V ) ≤ δ and
d(Ft(x

′), V ) ≤ δ, (x, x′) is an asymptotic pair.

Proposition 3.9. Let F = (GJ1,tK)t∈N be a semi-uniform DS and V be finite. Then there are at most |V |
asymptotic classes in DF(V ).

Proof. For 0 ≤ i ≤ |V |, let xi ∈ DF(V ), and δ be as in Lemma 3.8. There exists T ∈ N such that for all
i, ∀t ≥ T, d(Ft(xi), V ) < δ/2, and in particular, ∃yi ∈ V, d(FT (xi), yi) < δ/2. By the pigeon-hole principle,
there are distinct i, j such that yi = yj , so that d(FT (xi), FT (xj)) < δ by the triangular inequality. By
Lemma 3.8, we then know that (xi, xj) is an asymptotic pair. Hence we can partition DF(V ) into at most
|V | asymptotic classes.

Proof of Lemma 3.8. Let ε = 1
3 min {d(y, y′)| y, y′ ∈ V, y 6= y′} > 0. By equicontinuity of (Gt), there exists

δ > 0 such that ∀t ∈ N,∀x, x′ ∈ X, d(x, x′) ≤ δ =⇒ d(Gt(x), Gt(x
′)) < ε/2. Without loss of generality,

we can assume δ ≤ ε. Let x, x′ be as in the statement of the lemma, and for t ∈ N, let y(t) ∈ V be such
that d(Ft(x), y(t)) = d(Ft(x), V ), and y′(t) be defined similarly. Let us show by induction on t ≥ T that
y(t) = y′(t), which by definition of ε, is equivalent to d(y(t), y′(t)) < 3ε. First, by the triangular inequality,
d(y(T ), y′(T )) ≤ d(y(T ), FT (x)) + d(FT (x), FT (x′)) + d(FT (x′), y′(T )) < 3δ ≤ 3ε.
Now suppose this is true for t ≥ T , and let us prove it for t+ 1. By the triangular inequality, we also have
d(y(t+ 1), y′(t+ 1)) ≤ d(y(t+ 1), Ft+1(x)) + d(Gt+1Ft(x), Gt+1Ft(x

′)) + d(Ft+1(x′), y′(t+ 1)). The first and
third terms are at most δ by hypothesis, while the central one is at most ε by definition of δ. All in all, we
get that y(t+ 1) = y′(t+ 1). We can conclude with, once again, the triangular inequality: d(Ft(x), Ft(x

′)) ≤
d(Ft(x), y(t)) + d(y(t), y′(t)) + d(y′(t), Ft(x

′)). If t ≥ T , this is d(Ft(x), V ) + 0 + d(V, Ft(x
′))→t→∞ 0.

3.5 Realms for cellular automata

The following proposition is very important to show Proposition 5.10.

Proposition 3.10. Let F = (Ft) be a sequence of CA over X = AZ, and V ⊆ AZ.

1. DF(σ(V )) = σ(DF(V )).

2. If V is σ-invariant and DF(V ) has nonempty interior, then DF(V ) includes a dense open set.

7



3. If, moreover, V is a k-SFT, then dF(V ) is dense.

4. If V is a subshift, then dF(V ) is meager, unless F−1T (V ) is full, for some T ∈ N.

Proof.

1. This is clear by definition, noting that ωF(σ(x)) = σ(ωF(x)).

2. DF(V ) has nonempty interior and, from the previous point, is σ-invariant. By Point 2 of Lemma 2.4
(applied to G = σ), DF(V ) then includes a dense open set.

3. Let us show that, for an arbitrary w ∈ A∗, [w] ∩ dF(V ) is nonempty. Since DF(V ) has nonempty
interior, there exists u ∈ A∗ such that [u] ⊆ DF(V ).
Let x = ∞(uw)

∞ ∈ [u] be the periodic configuration of period p = |uw| and such that xJ0,pJ = uw.

Since x ∈ [u] ⊆ DF(V ), there exists T ∈ N such that ∀t > T, d(Ft(x), V ) < 2−k−p. Since ∀n ∈ Z, x =
σnp(x), we even have:

∀t > T,∀n ∈ Z, d(Ftσ
np(x), V ) < 2−k−p .

By Point 1 of Lemma 2.3, for all such t > T , ∀i ∈ Z, σiFt(x) ∈ B2k(V ). Since V is a k-SFT, Ft(x) ∈ V ,

by Point 2 of Lemma 2.3, that is, x ∈ dF(V ). By shift-invariance, we also have that σ|u|(x) ∈ [w]∩dF(V ).

4. By definition, dF(V ) ⊆
⋃
T∈N F

−1
T (V ). If for every T ∈ N, F−1T (V ) is not full, Point 2 of Lemma 2.4

gives that it has empty interior (because it is closed and σ-invariant). In the end, dF(V ) is meager.

Proposition 3.11. Let F be a CA, h a curve, and U be σ-invariant. Then F (ωF,h(U)) = σ(ωF,h(U)) =
ωF,h(U).

Proof. By Point 1 of Proposition 3.10, we know that ωF,h(U) is σ-invariant, and since F commutes with
σ, we have that ∀t ≥ 1, Fσh(t)−h(t−1)(ωF,h(U)) = F (ωF,h(U)). By Proposition 3.2 (applied to j = 1 and
Gt = Fσh(t)−h(t−1), so that {Gt| t ∈ N} is finite), we obtain that for any y, z ∈ ωF,h(U), Fσk(y) ∈ ωF,h(U)
for some k, and z = Fσl(x) for some l and some x ∈ ωF,h(U).

Corollary 3.12. Let F be a CA, h a curve and U such that V = ωF,h(U) is finite and σ-invariant, and
U = DF,h(V ). Then F induces a bijection of V , and U =

⊔
y∈V AF,h(y).

Proof. By Proposition 3.11, we see that F (V ) = V , so that F induces a surjection, hence a bijection of V .
By Proposition 3.9, there are at most |V | asymptotic classes in U . By the first point, V ⊆ U , so that each
y ∈ V should be in one of these classes. By Remark 3.5, they are all in distinct classes, so that we obtain
the wanted result (the converse inclusion being trivial).

3.6 Attractors

We say that V is an attractor for F if it is closed and equal to Ω(U) for some open F-invariant set U (in
particular V ⊆ U). One can see that this notion is equivalent to some classical definitions, such as the one
used in [19, 9], which is focused on subshift attractors of CA: in that case the attractor enjoys a definition
as the limit set of a so-called spreading cylinder. ΩF = ΩF(X) is then the (unique) maximal attractor.A
quasi-attractor is a nonempty intersection of attractors.

Proposition 3.13. Consider some CA F in some direction h.

1. The realm of a subshift attractor is a dense open set.

2. The realm of a subshift quasi-attractor is comeager.

Point 1 was already stated in [21].

Proof.
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1. This is direct from Point 2 of Proposition 3.10.

2. Suppose V =
⋂
n∈N Vn, where Vn is an attractor. ThenOσ(V ) =

⋂
n∈NOσ(Vn), so thatDF,h(Oσ(V )) =⋂

n∈NDF,h(Oσ(Vn)). For every n ∈ N, DF,h(Oσ(Vn)) is shift-invariant, and includes the nonempty
open subset DF,h(Vn). From Point 2 of Proposition 3.10, it includes a dense open set. Globally, the
realm of Oσ(V ) is thus comeager.

This allows to answer a conjecture stated in [17].

Corollary 3.14. If a CA admits a minimal quasi-attractor in some direction, then:

1. it is a subshift;

2. its realm is comeager.

In particular, in that case, all (possibly not subshifts) attractors have dense open realms (see Example 7.3
in direction 0).

Proof.

1. Just note that if V is a quasi-attractor, then it is closed, and, since σ is a conjugacy, any σn(V ),
with n ∈ Z, must also be a quasi-attractor. We deduce that a minimal quasi-attractor should also be
included in

⋂
n∈N σ

n(V ), which is a subshift. Applied to itself, we get that this is equal to V , which is
thus a subshift.

2. This now corresponds to Point 2 of Proposition 3.13.

This property of having a comeager realm motivates the next definition.

4 The generic limit set

Milnor [22] suggests the following definition, which is the purpose of the present section.

Definition 4.1 ([22]). Being given a DS F, the generic limit set ω̃F is the intersection of all the closed
subsets of X which have a comeager realm of attraction.

The generic limit set ω̃F can actually be defined as the smallest closed subset of X with a comeager
realm, thanks to the following proposition.

Proposition 4.2. Let F be a DS. The realm of the generic limit set is comeager.

In other words, it is the smallest closed set which includes all limit points of all generic orbits.

Proof. Any compact metric space admits a countable basis: there exists a countable set {Ui| i ∈ N} of closed
subsets such that every closed set U can be written as

⋂
i∈IU Ui for some IU ⊆ N. In particular, ω̃F is the

intersection
⋂
U

⋂
i∈IU Ui, where U ranges over closed sets with comeager realm; that is, ω̃F =

⋂
i∈I Ui, where

I is the union of IU , for every closed U with comeager realm. If i is in I, then it is in some IU , so that
U ⊆ Ui, where U has comeager realm, so that Ui has comeager realm, too.
By Point 2 of Remark 3.4, DF(ω̃F) = DF(

⋂
i∈I Ui) =

⋂
i∈I DF(Ui). We know that an intersection of countably

many comeager sets is comeager. Then DF(ω̃F) is comeager.

Remark 4.3. For every DS F and subset V , DF(V C)
C

=
⋂
T∈N

⋃
t≥T F

−1
t (V ) is the set of points whose

orbits visit V infinitely many times, which includes DF(V ).
We deduce that if, for every ε > 0 and every T ∈ N,

⋃
t≥T F

−1
t (Bε(V )) is dense, then V intersects ωF(x)

for generic x; in particular it intersects ω̃F.
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Proof. The first statement is direct.
Now suppose that for every ε > 0 and every T ∈ N,

⋃
t≥T F

−1
t (Bε(V )) is dense; by continuity it is also open,

so that DF(Bε(V )
C

)
C

is comeager, and so is DF(V
C

)
C

=
⋂
n∈NDF(B1/n(V )

C
)
C

. The orbits from this set

visit B1/n(V ) infinitely many times for every n ∈ N, so that they all have a limit point in V .

Since DF(V
C

) is meager, V
C

cannot include the generic limit set, which give us the last statement.

4.1 First properties for CA

Proposition 4.4. Let F = (Ft)t be a sequence of CA. Then ω̃F is a subshift. Its realm is σ-invariant.

Proof. By Definition, ω̃F is closed. Let ω̃F = ωF(U) where U is comeager. Since σ is a homeomorphism,
σk(U) is also comeager for all k ∈ Z. Then W =

⋂
k∈Z σ

k(U) is still comeager, as an intersection of countably

many comeager sets. One has W ⊆ U , so that ωF(W ) ⊆ ω̃F. Conversely, the definition of ω̃F gives that it is
included in ωF(W ). Overall, ωF(W ) = ω̃F. Since W is σ-invariant, ω̃F = ωF(W ) is also σ-invariant.

Moreover, Proposition 3.13 directly gives that ω̃F is included in all subshift attractors.

Proposition 4.5. Consider the CA F in some direction h. Then ω̃F,h is an F -invariant subshift.

Proof. We just apply Proposition 3.11 to ω̃F,h = ωF,h(D(ω̃F,h)).

4.2 Nonwandering systems

For nonwandering dynamical systems, the generic limit set is the full space.

Proposition 4.6. Let F be a nonwandering DS over space X. Then ω̃F = X.

Proof. Consider the comeager set R of recurrent points of F. The set U = DF(ω̃F) ∩ R is comeager, and,
by inclusion, ω̃F ⊇ ωF(U). Since U ⊆ R, by definition, U ⊆ ωF(U) ⊆ ωF(U) ⊆ ω̃F. By the Baire category
theorem, U is dense. So the closed superset ω̃F is X.

Since it is known that surjective CA are all nonwandering (see for instance [18]), we get the following.

Corollary 4.7. A CA F over AZ is surjective if and only if ω̃F = AZ.

4.3 Indecomposability

Now we prove that the generic limit set of a cellular automaton is indecomposable in some sense.

Proposition 4.8. Let V =
⊔n−1
i=0 Vi, where n ∈ N and the Vi are closed subsets which are invariant by some

CA F in some direction h, and by σp, for some p > 0. If DF,h(V ) has nonempty interior (resp. is not
meager), then there exists i ∈ J0, nJ such that DF,h(Vi) is dense (resp. comeager).

Proof. One has DF,h(V ) =
⊔n−1
i=0 DF,h(Vi) by Proposition 3.7.

By Point 3 of Lemma 2.4, there exists i ∈ J0, nJ such that DF,h(Vi) is dense (resp. comeager).

Corollary 4.9. Let F be a CA and h a curve. ω̃F,h cannot be decomposed as a disjoint union of non-trivial
subshift subsystems (or even non-trivial σp-invariant subsystems, for some p > 0).

In other words, we can say that ω̃F,h is connected, when considering the dynamical pseudo-metric related

to the action of (F, σ): d̃(x, y) = infi,j∈Z,s,t∈N d(F sσi(x), F tσj(y)).

Proof. We assume that ω̃F,h =
⊔n−1
i=0 Vi, where the Vi are closed, invariant, σp-invariant sets. By Proposi-

tion 4.8, there exists i ∈ J0, nJ such that DF,h(Vi) is comeager. By definition of ω̃F,h, it is then included in
Vi, and hence equal.
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4.4 Finite generic limit set

Proposition 4.10. Let F be a semi-uniform DS and V = ω(U) be finite, for some set U which is comeager
in some nonempty open subset W ⊆ X. Then EF is comeager in W .

Of course this means that EF ∩ U is comeager in W .
We immediately deduce the following.

Corollary 4.11.

• If ω̃F is finite, then F is almost equicontinuous.

• If F is sensitive (or has not equicontinuous point), then the asymptotic and limit sets of all non-meager
sets are infinite.

Proof of Proposition 4.10. Let W ′ ⊆ W be a nonempty open subset. According to Proposition 3.9,⊔
y∈I AF(y) ⊇ U , where I is finite, must also be comeager in W . One such AF(y) should not be mea-

ger in W ′. By Remark 2.1, it is then comeager in some W ′′ ⊆W ′. Remark 3.6 says that EF is then comeager
in W ′′. It results that EF is not meager, in any nonempty open subset W ′ ⊆W , and again Remark 2.1 tells
us that it is the comeager in W .

In the case of cellular automata with finite generic limit set, we have the following.

Proposition 4.12. Let F be a CA and h a curve, such that ω̃F,h is finite. Then ω̃F,h contains one single
(periodic) orbit, of a monochrome configuration y, and AF,h(y) is comeager.

Note that the orbit of this monochrome configuration may be nontrivial (see Example 7.9), but still generic
configurations are all asymptotic to the same configuration of that orbit. This could seem paradoxical, since
it contrasts with the usual, uniform and synchronous aspect of dynamics of CA over the full set AZ, but
here the genericity notion is not at all F -invariant.

Proof. By Proposition 4.5, ω̃F,h is a finite F -invariant subshift, so that all configurations are periodic (for
the shift). Let p > 0 be a common period: ω̃F,h can be decomposed as

⊔
y∈V OF,h(y), where V ⊆ ω̃F,h is a

set of orbit representatives.
We can apply Corollary 3.12: DF (ω̃F,h) =

⊔
y∈ω̃F,h

AF,h(y). Since every y ∈ ω̃F,h is σp-invariant, we can

apply Point 3 of Lemma 2.4 (to G = σp), and get that there is y ∈ ω̃F,h such that AF,h(y) is comeager. It
results that ω̃F,h = OF,h(y). Moreover, since σ is an automorphism of F , σ(AF,h(y)) = AF,h(σ(y)) is also
comeager. Then AF,h(y) ∩ AF,h(σ(y)) is also comeager, and in particular nonempty. By transitivity of the
asymptoticity relation, y is asymptotic to σ(y). Since they both lie in the bijective subsystem of F induced
over the finite ω̃F,h, Remark 3.5 gives that y = σ(y), which means that y is monochrome.

4.5 Asymptotic set of equicontinuous points

We shall show that if the system is almost equicontinuous, then its generic limit set is exactly the closure of
the asymptotic set of its set of equicontinuous points. Also, if the system is equicontinuous, then its generic
limit set is its limit set.

Proposition 4.13. Let F be a DS and (Vt)t∈N a sequence of subsets of X. Then EF∩DF((Vt)t) ⊆ DF((Vt)t).

Proof. Let x ∈ EF ∩ DF((Vt)t), and ε > 0. Since x ∈ EF, there exists δ > 0 such that

∀y ∈ Bδ(x),∀t ∈ N, d(Ft(x), Ft(y)) < ε/2 .

Since x ∈ DF((Vt)t), there exists y ∈ Bδ(x) ∩ DF((Vt)t). Hence,

∃T ∈ N,∀t > T, d(Ft(y), Vt) < ε/2 .

For this T , ∀t > T, d(Ft(x), Vt) < ε. Since this is true for every ε > 0, we get that x ∈ DF((Vt)t).
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In particular, for z ∈ X, we have AF(z) ⊇ AF(z) ∩ EF. For almost equicontinuous DS, Proposition 4.13
means that it is enough to prove that some realm is dense to prove that it is comeager.

Corollary 4.14. If F is an almost equicontinuous DS, then ω̃F = ωF(EF).

Proof. Since DF(ω̃F) is dense, EF ⊆ DF(ω̃F) by Proposition 4.13. Hence, ωF(EF) ⊆ ω̃F. Since ω̃F is closed,
ωF(EF) ⊆ ω̃F.
Conversely, ω̃F is the intersection of all closed subsets with comeager realms, among which ωF(EF) (whose
realm includes the comeager EF). So, ω̃F = ωF(EF).

Proposition 4.15. If F is an equicontinuous DS over space X, then ω̃F = ωF = ΩF.

Proof. Let y ∈ ΩF and ε > 0. We will show that Bε(y) intersects ωF. There exists δ such that for every
x ∈ EF = X and every t ∈ N, Ft(Bδ(x)) ⊆ Bε/2(Ft(x)). By compactness of X, there exists a finite I ⊆ X
such that X =

⋃
x∈I Bδ(x). Since y ∈ ΩF, there is an infinite J ⊆ N, and for all t ∈ J , some xt ∈ X such that

Ft(xt) ∈ Bε/2(y). By the pigeon-hole principle, there exists x ∈ I such that Bδ(x) contains infinitely many
xt, t ∈ J . This means that for infinitely many t, d(Ft(x), y) ≤ d(Ft(x), Ft(xt)) + d(Ft(xt), y) ≤ ε/2 + ε/2.
We conclude that the orbit of x has a limit point z ∈ ωF(x) ∩Bε(y).

This proves that ωF(X) is dense in ΩF; by Corollary 4.14, we obtain ω̃F = ωF(X) = ΩF.

Another remark: it is known that a cellular automaton is nilpotent if and only if its limit set is finite.
Hence, it is nilpotent if and only if it is equicontinuous and its generic limit set is finite.

5 Directional dynamics

In this section, we study cellular automata while varying the directions.

Definition 5.1 ([7, Def 2.5]). The set of curves (and, abusively, of directions) is noted B.
For h, h′ ∈ B, we put h � h′ if there exists M > 0 such that h(t) ≤ h′(t) +M for all t ∈ N. We put h ≺ h′

if, besides h′ 6� h. � is a preorder relation on B, and we note ∼ the corresponding equivalence relation.
We also note h ≺≺ h′ if limt→∞ h′(t)− h(t) = +∞. ≺≺ is a transitive relation which is finer than ≺.
The preorder � induces a notion of (closed, open, semi-open) curve interval, with some bounds h′ � h′′,
noted [h′, h′′], ]h′, h′′[, [h′, h′′[, ]h′, h′′]. We say that the interval is nondegenerate if h′ ≺ h′′. For an
interval S ⊆ B with bounds h′ and h′′, we also note I(S) = {h ∈ B|h′ ≺≺ h ≺≺ h′′} ⊂]h′, h′′[.

A direction will implicitly refer to an equivalence class for ∼ (sometimes abusively confused with one
representative). The reader will note that all dynamical properties (equicontinuous points, finiteness of the
generic limit set, etc.) are invariant through this equivalence class.

An example of curve is given by the (possibly irrational) lines: α ∈ R will stand for the direction t 7→ btαc.
The dynamics along α then corresponds to that studied in [23, 1].

Here are simple remarks about direction-invariance.

Remark 5.2. Let F be a CA and U, Vt ⊆ AZ be shift-invariant, for t ∈ N.

1. dF,h((Vt)t) does not depend on h ∈ B.

2. ΩF,h(U) does not depend on h ∈ B.

Proof.

1. Let x ∈ dF,h((Vt)t), that is, there exists a time T ∈ N above which for all times t > T , F tσh(t)(x) ∈ Vt.
By assumption, we get that F tσh

′(t)(x) ∈ Vt for any other h′ : N→ Z.

2. ΩF,h(U) =
⋂
T∈N

⋃
t≥T F

tσh(t)(U) =
⋂
T∈N

⋃
t≥T F

t(U) = ΩF (U).
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5.1 Oblique directions

Let F be a CA with memory r− ∈ Z and anticipation r+ ∈ Z. Then for every t ∈ N, F t can be defined by
a rule of memory r−t and anticipation r+t. But it could be that smaller parameters also fit. This motivates
the following definition.

For a sequence (Ft)t∈N of CA, let us denote r−(t) and r+(t) the minimum possible memory and an-
ticipation for Ft. Formally, r−(t) = sup

{
i ∈ Z

∣∣ ∀x, y ∈ AZ, xJi,+∞J = yJi,+∞J =⇒ Ft(x)0 = Ft(y)0
}

and

r+(t) = inf
{
i ∈ Z

∣∣ ∀x, y ∈ AZ, xK−∞,iK = yK−∞,iK =⇒ Ft(x)0 = Ft(y)0
}

.

Remark 5.3.

1. For every t ∈ N, −∞ < r−(t) ≤ r+(t) < +∞, if and only if Ft is not a constant function.

2. (Ftσ
h(t))t∈N is equicontinuous if and only if r+ � −h � r− (in particular, if Ft is never constant,

h ∼ −r− ∼ −r+).

In the uniform case, some Ft is constant if and only if the CA is nilpotent.

Proof. The first statement is direct from continuity of Ft.
If (Ftσ

h(t))t is equicontinuous, then there exists r ∈ N such that for all t ∈ N, x, y ∈ AZ, xJ−r,rK =

yJ−r,rK =⇒ Ftσ
h(t)(x)0 = Ftσ

h(t)(y)0.
Since F commutes with σ, we get xJ−r−h(t),r−h(t)K = yJ−r−h(t),r−h(t)K =⇒ Ft(x)0 = Ft(y)0. We get that

−r − h(t) ≤ r−(t) and r+(t) ≤ r − h(t).
Conversely, assume that there exists M ∈ N such that ∀t ∈ N, r+(t) ≤M −h(t) and −h(t) ≤M + r−(t),

and let l ∈ N. Then for every t ∈ N and x, y ∈ AZ such that xJ−l−M,l+MK = yJ−l−M,l+MK, consider the config-
uration z ∈ AZ such that zi = xi for every i ∈ K−∞, l +MK and zi = yi for every i ∈ J−l −M,+∞J. By the
assumed inequalities, xK−∞,l+r+(t)+h(t)K = zK−∞,l+r+(t)+h(t)K and zJ−l+r−(t)+h(t),+∞J = yJ−l+r−(t)+h(t),+∞J,

so that Ftσ
h(t)(x)J−l,lK = Ftσ

h(t)(z)J−l,lK = Ftσ
h(t)(y)J−l,lK. This proves equicontinuity of (Ftσ

h(t))t.
The consequence between parentheses comes from the first point.

In the case of a single CA, we have seen that r−(t) ≥ r−t and r+(t) ≤ r+t. It is known that these
sequences will be asymptotically linear, the slopes being called the Lyapunov exponents (see for instance
[25]).

We say that a direction h is oblique for CA sequence (Ft)t if h /∈ [−r+,−r−]. We will show that the
generic limit set in an oblique direction is equal to the limit set.

We say that a DS F over space X is semi-transitive if for every open sets U, V such that V ∩ ΩF 6= ∅,
there exists T ∈ N such that U ∩ F−1T (V ) 6= ∅. Equivalently,

⋃
t≥T F

−1
t (V ) is dense. F is weakly semi-

mixing if for every open sets U, V, U ′, V ′ such that V and V ′ intersect ΩF, there exists (a common) T ∈ N
such that U ∩ F−1T (V ) 6= ∅ and U ′ ∩ F−1T (V ′) 6= ∅. Clearly if a system is weakly semi-mixing or transitive,
then it is semi-transitive. But weak semi-mixing has a stronger consequence.

Remark 5.4. Any weakly semi-mixing DS F is sensitive or admits a trivial limit set.

Proof. If ΩF is not trivial, then there are two open subsets V and V ′ which are at positive distance ε > 0.
Then for every x ∈ X and δ > 0, Bδ(x) intersects both F−1T (V ) and F−1T (V ′), for some T ∈ N, so that there
are points y and y′ in it, for which d(FT (y), FT (y′)) > ε. By the triangular inequality, FT (x) should be at
distance at least ε/2 of one of the two, which means that x is not ε/2-stable.

Proposition 5.5. For every semi-transitive DS F, ω̃F = ΩF.

Proof. Let us consider x ∈ ΩF. By assumption, for every ε > 0 and T ∈ N,
⋃
t≥T F

−1
t (Bε(x)) is dense so

that we can apply Remark 4.3: {x} = {x} intersects all generic orbits, hence is in ω̃F.
The other inclusion is always true.

Proposition 5.6. If (Ft)t is a CA sequence and h an oblique curve, then the DS (Ftσ
h(t))t is weakly

semi-mixing.
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Proof. It is enough to prove the property for U = [u]n a cylinder, V = [v]m and V ′ = [v′]m′ two cylinders
of patterns appearing in ΩF,h, with m,m′, n ∈ Z. By extending v and/or v′ (into a pattern which still
appears in the limit set), we can suppose that they have the same length and that m = m′. Suppose,
without loss of generality, that h is left-oblique: −r− ≺ h; in particular, there exists T ∈ N such that
r−(T ) +h(T ) +m > n+ |u|. FTσh(T ) is a CA of memory r−(T ) +h(T ) and anticipation r+(T ) +h(T ): there
exists wT ∈ A|v|+(r+(T )−r−(T )) such that

F−1T ([v]m) ⊇ [wT ]r−(T )+h(T )+m .

Hence, there exist T ∈ N and y ∈ AZ such that y ∈ [u]n ∩ [wT ]r−(T )+h(T )+m. The same is true for v′ (for
the same T ).

Corollary 5.7. Let F be a CA over AZ and h an oblique curve. Then ω̃F,h = ΩF,h; it is either sensitive or
nilpotent.

Proof. The equality is direct from Propositions 5.6 and 5.5. Sensitivity comes from Proposition 5.6, Re-
mark 5.4 and the known fact that the limit set of a CA is trivial if and only if it is nilpotent.

5.2 Almost equicontinuity in two directions

The purpose of this subsection is to show that if the CA is almost equicontinuous in two distinct directions,
then its generic limit set is finite. We essentially reprove [6, Prop 3.2.3, Prop 3.3.4] (or the corresponding
result for linear directions from [23]), but additionally discuss the generic limit set.

Here is the main lemma for understanding directional dynamics. It is based on the fact that if a word u
is blocking along h′ ∈ B, and s′ is the minimal corresponding offset, then in particular for every t ∈ N there
exists au,h′(t) ∈ A such that ∀z ∈ [u]s′ , au,h′(t) = F t(z)h′(t).

Lemma 5.8. Let F be a CA over AZ with blocking words u along h′ ∈ B with offset s′ ∈ Z and v along h′′ ∈ B
with offset s′′ ∈ Z, and q′ = h′ + |v| − s′ and q′′ = h′′ − s′′. Then for every z ∈ [v]0 and j ∈ Jq′(t), q′′(t)J,
F t(z)j = au,h′(t).

Of course the same is true for [u]. The following statement is direct from the definition. Of course the
symmetric statement holds for right-blocking words.

Remark 5.9.

1. From the definition, one can see that if u is blocking for CA F along curve h, then any word containing
u also.

2. If two directions are almost equicontinuous, Proposition 2.5 states that they admit blocking words u
and v. From the previous point, they admit a common blocking word uv.

3. From the definition, one can see that: if u is a right-blocking word for CA F along directions h′ and
h′′, then also along any direction h � min(h′, h′′).

4. From the previous point and the symmetric statement, if u is right- and left-blocking along directions
h′ and h′′, then also along any direction h ∈ [min(h′, h′′),max(h′, h′′)].

5. In particular, right- and left-blockingness are preserved by ∼ (which is not the case for strong blocking-
ness).

Proof of Lemma 5.8. Since they are left-blocking and right-blocking, respectively, for every t ∈ N:{
∀x, y ∈ [u]s′ , xJs′,+∞J = yJs′,+∞J =⇒ F t(x)Jh′(t),+∞J = F t(y)Jh′(t),+∞J
∀x, y ∈ [v]s′′ , xK−∞,s′′K = yK−∞,s′′K =⇒ F t(x)K−∞,h′′(t)K = F t(y)K−∞,h′′(t)K .

By definition, ∀z ∈ [u]s′ , au,h′(t) = F t(z)h′(t).
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Now let j ∈ Jq′(t), q′′(t)J, so that there is a configuration y ∈ [v]0 ∩ [u]j−h′(t)+s′ such that yK−∞,0K =

zK−∞,0K and σj−h
′(t)(y)Js′,+∞J = xJs′,+∞J. Since σj−h

′(t)(y) is in [u]s′ and u is left-blocking along h′, we
get: F t(y)j = au,h′(t). On the other hand, since v is right-blocking along h′′, ∀t ∈ N, F t(z)K−∞,h′′(t)−s′′K =
F t(y)K−∞,h′′(t)−s′′K. In particular, we get that F t(z)j = F t(y)j = au,h′(t).

Proposition 5.10. Let F be a CA with a blocking word u along two distinct directions h′ and h′′, with h′′ 6�
h′. Along any direction h ∈ B, the direct realm dF,h((∞au,h′(t)

∞
)t) includes all σ-periodic configurations

where u appears; Moreover, the realm DF,h((∞au,h′(t)
∞

)t) includes:

1. All configurations where u appears infinitely many times on the left and on the right, if h′ � h � h′′;

2. All configurations where u appears infinitely many times on the right, if h′ ≺≺ h � h′′;

3. All configurations where u appears infinitely many times on the left, if h′ � h ≺≺ h′′;

4. All configurations where u appears, if h′ ≺≺ h ≺≺ h′′.

Proof. Consider a configuration z ∈ [u]i, for some i ∈ Z, with some σ-period p ≥ 1. Let q′ and q′′ be as in
Lemma 5.8. Since q′′ ∼ h′′ 6� h′ ∼ q′, there exists T ∈ N such that q′(T ) ≤ q′′(T ) + p. Lemma 5.8 says that
then FT (z)j = au,h′(T ) for all j ∈ Ji+ q′(T ), i+ q′′(T )J, and, by periodicity, for all j ∈ Z. This means that
FT (z) is monochrome, and it is clear that is stays monochrome for t ≥ T . Since, by definition of au,h′(t), it
appears in F t(z), we deduce that the latter is equal to ∞au,h′(t)

∞
.

1. From Point 4 of Remark 5.9, u is right- and left-blocking along every curve h ∈ [min(h′, h′′),max(h′, h′′)].
So from Proposition 2.5, configurations with infinitely many occurrences of u on the left and on the
right are equicontinuous. From Proposition 4.13 and the previous point that DF,h((∞au,h′(t)

∞
)t) ⊇

dF,h((∞au,h′(t)
∞

)t) is dense, these equicontinuous configurations must also be in dF,h((∞au,h′(t)
∞

)t).

2. Let z ∈
⋂
i∈Z

⋃
j≥i[u]j and n ∈ N. If h � h′′ ∼ q′′, then there exists j ≥ maxt∈N h(t)− q′′(t) + n such

that z ∈ [u]j . If q′ ∼ h′ ≺≺ h, then there exists T ∈ N such that ∀t ≥ T, q′(t) + j ≤ h(t) − n. From
Lemma 5.8 and these inequalities, for all t ≥ T , the pattern F t(z)Jh(t)−n,h(t)+nK is monochrome. Since
this is true for every n, every limit point of the orbit must be monochrome.

3. This case is symmetric to the previous one.

4. Let z ∈ [u]j for some j ∈ Z and n ∈ N. If q′ ∼ h′ ≺≺ h ≺≺ h′′ ∼ q′′, then there exists T ∈ N such that
for all t ≥ T , h(t) +n ≤ q′′(t) + j and q′(t) + j ≤ h(t)−n. From Lemma 5.8 and these inequalities, for
all t ≥ T , the pattern F t(z)Jh(t)−n,h(t)+nK is monochrome.

5.3 Classification of generic limit sets up to directions

We recall the classifications of CA up to shift from [23, 7] and emphasize the properties of each class
in terms of generic limit set. By strictly almost equicontinuous, we mean almost equicontinuous but not
equicontinuous.

Theorem 5.11. Every CA F with memory r− and anticipation r+, satisfies exactly one of the following
statements:

1. F is nilpotent; there is a symbol a ∈ A such that for all h ∈ B, ω̃F,h = {∞a∞}.

2. F is equicontinuous along a single direction h′ ∈ [−r+,−r−], and sensitive along other directions; for
every h ∈ B, ω̃F,h = ΩF is infinite.

3. F is strictly almost equicontinuous along a nondegenerate interval S ⊆ [−r+,−r−] and sensitive along
other directions; there exists a ∈ A such that ω̃F,h = OF (∞a∞) for every h ∈ S, and ω̃F,h is infinite
for every h /∈ S; moreover, EF,h ⊆ DF,h(ω̃F,h) = AF,h(∞a∞), and if h ∈ I(S), it includes a dense open
set.
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4. F is strictly almost equicontinuous along a single direction h′ ∈ [−r+,−r−] and sensitive along other
directions; for every h ∈ B, ω̃F,h is infinite.

4’. F is strictly almost equicontinuous along a single direction h′ ∈ [−r+,−r−] and sensitive along other
directions; ω̃F,h is finite if and only if h = h′.

5. F is sensitive in every direction; ω̃F,h is infinite along all h ∈ B.

Compared to [7, Theorem 2.9], we have merged the last two classes, because expansiveness is not relevant
in terms of generic limit set, except that it implies surjectivity. Surjective CA have their generic limit set
equal to the full shift of configurations in every direction: they are either in Class 2, Class 4 or Class 5. In
Class 3, the bounds of the interval of almost equicontinuity can be closed or not; actually all four cases can
happen: see [6] for some examples (the bound would be included if one allows directions with unbounded
variation).

See Section 7 for examples of all classes (in particular, both subclasses of Class 4 can occur).

Proof. 1. Nilpotent CA have a trivial limit set (in every direction), which includes the generic limit set.

2. Now suppose that F is not nilpotent, which is equivalent to ΩF being infinite. Assume also that there is
at least one direction of equicontinuity. By Remark 5.3, all other directions are oblique, hence sensitive
by Corollary 5.7. By Proposition 4.15 and Corollary 5.7, ω̃F,h = ΩF , for all h ∈ B.

3. Now suppose that F admits no direction of equicontinuity, but two distinct directions h′ and h′′

of almost equicontinuity. By Point 2 of Remark 5.9, these two directions have a common block-
ing word u, so that we can apply Proposition 5.10: u is also blocking for directions in the interval
[min(h′, h′′),max(h′, h′′)]. Since this is true for every h′, h′′, we deduce that the set S of almost
equicontinuous directions is convex: it is a nondegenerate interval. By Corollary 5.7, it is included in
[−r+,−r−].
Proposition 5.10 also states that DF,h((∞au,h′(t)

∞
)t) is dense for every h ∈ B, so that it includes all

equicontinuous points, by Proposition 4.13. If h ∈ S, Corollary 4.14 gives that the generic limit set is
the closure of the asymptotic set of EF,h, that is then the asymptotic set of {∞au,h′(t)∞| t ∈ N}, which
is a set of monochrome configurations; in particular, it does not depend on h. By Proposition 4.12, it
is the orbit by F of a monochrome configuration.
For other directions, the generic limit set of a sensitive DS is infinite, by Corollary 4.11.
Finally, if h ∈ I(S), it is easy to find q′, q′′ ∈ S such that q′ ≺≺ h ≺≺ q′′. Point 4 of Proposition 5.10
gives that DF,h((∞au,q′(t)

∞
)t) contains a dense open set. The same argument as above gives that this

is in the realm of the generic limit set.

4. The cases remain when there is at most one direction of almost equicontinuity; it cannot be oblique,
and other directions have to all have infinite generic limit by Corollary 4.11. This settles the last three
classes.

6 Links with the measure-theoretical approach

By a measure, we mean a Borel probability measure on X. The topological support Sµ of a measure µ is
the smallest closed subset of measure 1. If Sµ = X, we say that µ has full support.

We say that F = (Ft)t∈N is µ-equicontinuous if µ(EF) = 1. Proposition 2.5 and Corollary 6.4 give that,
if µ is σ-ergodic, a CA F along some direction h is µ-equicontinuous unless EF,h ∩ Sµ = ∅. In the case of
Bernoulli measure, this corresponds to [10, Prop 3.5].
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6.1 µ-likely limit set and µ-limit set

The generic limit set is the topological variant of the µ-likely limit set ΛF,µ, which is the smallest closed
subset of X which has a realm of attraction of measure one. [22, Examples 5, 6] point that there are no
general inclusion relations between the two sets, but that they intersect. Here is a formalization of this
argument.

Proposition 6.1. For every DS F and full-support measure µ, ΛF,µ ∩ ω̃F 6= ∅.

Proof. Remark that for every ε > 0 and every T ∈ N,
⋃
t≥T F

−1
t (Bε(ΛF,µ)) ⊇ DF(ΛF,µ) has measure 1, so

it is dense. We apply Remark 4.3 and get that ΛF,µ intersects every generic orbit, hence ω̃F.

The µ-likely limit set should not be confused with the µ-limit set ΩF,µ, from [26, 7], which is the
intersection of all closed subsets U such that limt→∞ µ(F−1t (U)) = 1. We prove one general inclusion,
though; it is a generalization of [26, Prop 1].

Proposition 6.2. For every DS F and Borel probability measure µ, ΩF,µ ⊆ ΛF,µ.

Proof. It is enough to prove that, for every ε > 0, limt→∞ µ(F−1t (Bε(V ))) = 1, where V = ΛF,µ. Suppose,
for the sake of contradiction, that it is not the case: there is α > 0 and an infinite set I ⊆ N such that for

all t ∈ I, µ(At) ≥ α, where At = F−1t (Bε(V )
C

). For every T ∈ N, consider the set BT = AT \
⋃
t>T At of

points which are for the last time in some AT . Note that the set of those which are still expecting one visit,
CT =

⋃
t∈NAt \

⊔
t≤T Bt =

⋃
t>T At, includes At for some t ∈ I. It results that µ(CT ) ≥ µ(At) ≥ α. Since

(CT )T is a decreasing sequence of subsets, we get that µ(C) ≥ α, where C =
⋂
T∈N CT . Now if x ∈ C, then

for all T ∈ N, there exists t > T such that Ft(x) ∈ Bε(V )
C

. This means that x /∈ DF (V ), so that DF (V )
has measure at most 1− α.

The converse is in general false: Example 7.6 is a counter-example, as proved in [26]. However, we prove
the converse in a specific case.

Proposition 6.3. Let F be a µ-equicontinuous DS for some measure µ. Then ΩF,µ = ΛF,µ = ωF(EF ∩ Sµ).

In particular, if µ has full support, then these sets are equal to ωF(EF).

Proof. Since DF (ΛF,µ) is dense in Sµ, it includes the full-measure set EF ∩ Sµ, thanks to Proposition 4.13.
In the same way as in the proof of Corollary 4.14, we can quickly deduce the second equality.

Now let y ∈ ωF(EF ∩ Sµ) and ε > 0. There is a point x ∈ EF∩Sµ, and a subsequence (tn)n such that ∀n ∈
N, Ftn(x) ∈ Bε(y). By equicontinuity of x, there exists δ > 0 such that ∀t ∈ N, Ft(Bδ(x)) ⊆ Bε/2(Ft(x)). In

particular, for n ∈ N, we get Ftn(Bδ(x)) ⊆ Bε(y), so that µ(F−1tn (Bε(y))) ≥ µ(Bδ(x)) > 0.

Let U be a closed subset of Bε(y)
C

. Then for every n ∈ N, µ(F−1tn (U)) ≤ µ(F−1tn (Bε(y)
C

)) ≤ 1−µ(Bδ(x)).

Since this is positive and independent of n, we get that µ(F−1t (U)) does not converge to 1.
By contraposite, we get that every closed U such that µ(F−1t (U)) converges to 1 should intersect Bε(y),

for every ε > 0. Hence it contains y, and we can conclude that y ∈ ΩF,µ.
The converse inclusion comes from Proposition 6.2.

6.2 µ-likely limit set of cellular automata

If G is a uniform DS, µ is G-invariant if µ(G−1(U)) = µ(U) for all measurable subsets U of X. A G-
invariant measure µ is G-ergodic if every G-invariant set U has either zero or full measure. This is the
measure-theoretical counterpart of the topological notion of transitivity, as emphasized by Lemma 2.4, which
gives the following.

Corollary 6.4. Let G be a transitive uniform DS, µ a full-support ergodic measure, and let W ⊆ X be
G-invariant. Then the following are equivalent.
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1. W is not meager.

2. W is comeager.

3. W has measure 1.

4. W has positive measure.

Proof. The first two points are equivalent thanks to Lemma 2.4, and the last two by definition of ergodicity.
Now if W is comeager, it can be written as a countable intersection

⋂
n∈NWn of dense open sets Wn, and

hence as a countable intersection
⋂
n∈NOG(Wn) of dense open G-invariant sets. By full support, their

measure should be positive, and by ergodicity, they should be 1, so that of W also. Otherwise W is meager,
so that the previous argument holds for its complement.

In [22], J. Milnor asks for a good criterion for equality between the likely and generic limit sets. Here is
at least a criterion, in the case of cellular automata.

Corollary 6.5. If F is a sequence of CA, and µ is a full-support σ-ergodic measure, then ω̃F = ΛF,µ.

Proof. Proposition 4.4 gives that the generic limit set is the intersection of all closed subsets with σ-invariant
comeager realms. The same simple argument shows that the likely limit set is the intersection of all closed
subsets with σ-invariant realms of measure 1. Thanks to Corollary 6.4, these realms are actually the same,
so that the two sets are equal.

It results that all results from the previous sections hold for the µ-likely limit set in that case. Actually,
even when they are not equal, most results on the generic limit have a parallel result on the likely limit set,
which can be proven with the same proof tools.

7 Examples

Example 7.1 (Shift). Let σ be the CA over AZ defined by σ(x)i = xi+1. This CA is reversible, hence
surjective. By Corollary 4.7, ω̃σ,h = AZ along all h ∈ B. Along direction −1, it corresponds to the identity
CA. This CA has only one equicontinuous direction: it is in Class 2 of Theorem 5.11.

Let F be a CA with alphabet A, memory r− ∈ Z, anticipation r+ > r− and local rule f . A state 0 ∈ A
is spreading if for all u ∈ Ar+−r−+1 such that 0 < u, one has f(u) = 0. Note that any CA is simulated, in
a strong natural sense, by a CA with a spreading state (simply by artificially adding it to the alphabet). In
particular, unlike the asymptotic set (which includes the nonwandering set), the generic limit set does not
support the topological entropy (in the sense of [2]).

Remark 7.2. Let F be a CA over AZ with memory r− ∈ Z, anticipation r+ > r−, and spreading state 0 ∈ A.
Then it is in Class 4: ω̃F,h = {∞0∞} along all h ∈ [−r+,−r−] and ω̃F,h = ΩF along all h /∈ [−r+,−r−].

Proof. We suppose that F has a spreading state 0 ∈ A. By definition, it is a (left- and right-) blocking word
along all h ∈ [−r+,−r−]. By Proposition 5.10, there exists a ∈ A such that ω̃F,h = OF (∞a∞) = ω(EF,h)
along all h ∈ [−r+,−r−]. In this case, a is nothing else than 0. Moreover, since any h /∈ [−r+,−r−] is
oblique, ω̃F,h = ΩF by Corollary 5.7.

The simplest example of spreading state is the following.

Example 7.3 (Min). Let Min be defined over {0, 1}Z by Min(x)i = min(xi, xi+1). By Remark 7.2, we know
that this CA is in Class 3: ω̃Min,h = {∞0∞} along all h ∈ [−1, 0] and ω̃Min,h = ΩMin =

{
x ∈ {0, 1}Z

∣∣∀k > 0, 10k1 6< x
}

along all h /∈ [−1, 0].

1. Along direction 0 (or, symmetrically, direction −1): the realm of {∞0∞} is
⋂
k∈Z

{
x ∈ {0, 1}Z

∣∣∃i ≥ k, xi = 0
}

,
it is a comeager set. {∞0∞} =

⋂
k≥0 Vk, where Vk = ΩMin([0]k) = {x ∈ ΩMin| ∀i ≤ k, xi = 0} is an at-

tractor but not a subshift, for every k ∈ Z (see [18]).
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Figure 1: Oblique Min CA (0 (resp. 1) are represented by black squares (resp. white squares)).

2. Along direction −1/2: Min corresponds, up to a power, to the three-neighbor Min CA, defined by
σ−1Min2(x)i = min(xi−1, xi, xi+1). Like for all directions in ]− 1, 0[, the realm of {∞0∞} is the dense
open set {0, 1}Z \ {∞1∞}.

3. Direction 1 is oblique: the realm of the generic limit set is {0, 1}Z. A typical space-time diagram is
represented in Figure 1.

Example 7.4 (Finite generic limit set). Consider the CA Min× σ−1Min defined over ({0, 1}Z)2 by (Min×
σ−1Min)(x, y)i = (min(xi, xi+1),min(yi−1, yi)). According to Example 7.3, ω̃Min,h = {∞0∞} along all h ∈
[−1, 0] and ω̃Min,h = ΩMin along all h /∈ [−1, 0]; of course ω̃σ−1Min,h = {∞0∞} along all h ∈ [0, 1] and
ω̃σ−1Min,h = ΩMin along all h /∈ [0, 1]. Hence, ω̃Min×σ−1Min,0 = {∞0∞}2, and ω̃Min×σ−1Min,h = {∞0∞} × ΩMin

(resp. ω̃Min×σ−1Min,h = ΩMin×{∞0∞}) along all h ∈ [−1, 0[ (resp. h ∈]0, 1]), and ω̃Min×σ−1Min,h = Ω2
Min along

all h /∈ [−1, 1]. In particular, Min× σ−1Min has only one almost equicontinuous direction: {0}. Hence, it is
in Class 4.

Example 7.5 (Sensitivity in every direction). Consider the CA σ−1Min × σ defined over ({0, 1}Z)2 by
(σ−1Min × σ)(x, y)i = (min(xi−1, xi), yi+1). According to Example 7.1, ω̃σ,h = {0, 1}Z along all h ∈ B.
According to Example 7.3, ω̃σ−1Min,h = {∞0∞} along all h ∈ [0, 1] and ω̃σ−1Min,h = ΩMin along all h /∈ [0, 1].
Hence, ω̃σ−1Min×σ,h = {∞0∞} × {0, 1}Z along all h ∈ [0, 1], and ω̃σ−1Min×σ,h = ΩMin × {0, 1}Z along all
h /∈ [0, 1]. Since there is no almost equicontinuous direction, this CA is in Class 5.

Example 7.6 (Just Gliders). Let A = {←, 0,→} and F the CA defined by the following local rule:

f(xi−1, xi, xi+1)i =

∣∣∣∣∣∣
→ if xi−1 =→ and xi 6=← and (xi+1 6=← or xi =→)
← if xi+1 =← and xi 6=→ and (xi−1 6=→ or xi =←)
0 otherwise .

A typical space-time diagram of this CA is shown in Figure 2. It is possible to interpret it as a background
of 0’s where particles → and ← go to the right and to the left, respectively. When two opposite particles meet
they disappear.

This example is known to have a µ-limit set which is strictly included in the µ-likely limit set, when µ
is the uniform Bernoulli measure (see [26, Ex 3] and [20, Ex 4]). One can see (or read in these references)
that the limit set is ΩF =

{
x ∈ AZ

∣∣∀k ∈ N,← 0k →6< x
}
. We prove here that F is weakly semi-mixing in

every direction h /∈ {−1,+1}. Hence ω̃F,h = ΩF,h. Moreover, ω̃F,−1 = {0,→}Z, ω̃F,+1 = {0,←}Z, and F is
sensitive in every direction; it is in Class 5.
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Figure 2: Just Gliders (← are represented by light grey squares and→ are represented by dark grey squares).

Proof. By induction on t ∈ N, one can see that F t(x)k =→ if and only if x−t+k =→ and u = xJ−t+k+1,t+kK
is a right-balanced pattern, that is it does not send any particle to the left, or more formally:

∀j ∈ J0, |u|J ,
j∑
i=0

ui ≥ 0 , where →= +1 and ←= −1 .

Generalizing this induction, we can see that if k ∈ Z, t ∈ N, ←6< w and u ∈ A2t is right-balanced, then
F t([wu]k) ⊆ [w]k+t. We define left-balanced patterns symmetrically, and get that if →6< z and u is
left-balanced, then F t([uz]k) ⊆ [z]k+t.

• Let [u]m, [v]n and [v′]n′ be three cylinders, the last two intersecting ΩF . By the expression of ΩF , note
that we can decompose them as v = wz, v′ = w′z′, with ←6< w,w′ and →6< z, z′. We prove that there
is common time step t ∈ N such that F tσh(t)([u]m) ∩ [v]n 6= ∅ and F tσh(t)([u]m) ∩ [v′]n′ 6= ∅. If h is
oblique, the result follows from Proposition 5.6, so we can assume that h ∈]− 1,+1[.
We can assume that u is a left- and right-balanced pattern: just extend it with the suitable number
of → on the left, and the suitable number of ← on the right (the obtained cylinder is included in the
original one).
Since h � −1, there exists t ∈ N such that h(t) > −t+ max(n+ |w| , n′+ |w′|)−m. Since h ≺ 1, there
exists t ∈ N such that h(t) < t+min(n+ |w| , n′+ |w′|)−m−|u|. These t could be distinct, but it is not
difficult to be convinced that, since h has bounded variation, there is a common t ∈ N which satisfies
both. In that case we can define ũ = 0t−n+h(t)−|w|+mu0t−m−|u|+n−h(t)+|w|. Clearly, it is still left- and
right-balanced, so that F tσh(t)([wũ]n−h(t)−t) ⊆ [w]n and F tσh(t)([ũz]n−h(t)+|w|−t) ⊆ [z]n+|w|; taking

the intersection we get F tσh(t)([wũz]n−h(t)−t) ⊆ [v]n. Moreover, [wũz]n−h(t)−t ⊆ [ũ]n−h(t)−t+|w| ⊆
[u]m; we get the wanted nonempty intersection. The exact same can be achieved for [v′]n′ for the same
t.

• Proposition 5.5 then gives that for every h /∈ {−1,+1}, ω̃F,h = ΩF and F is sensitive. Since the set of
almost equicontinuous directions is an interval, then at least one direction in {−1,+1} should also be
sensitive. Since the definition of the local rule is exactly symmetric, we get that both directions are
also sensitive.

• Now consider direction h = +1. For i ∈ N, let Wi be the set of configurations x ∈ AZ such that
xJ1,iK is not right-balanced. If x ∈ Wi, then by definition xJ1,tK is not right-balanced, for t ≥ i, so
that, by the first claim of the proof, F tσt(x)0 6=→. Since every pattern can be extended to the right
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in a pattern which is not right-balanced, we see that W =
⋃
i∈NWi is a dense open set. We get that

ωF,1(W ) ∩ [→] = ∅. Hence ωF,1(
⋂
n∈Z σ

n(W )) ⊆ {0,←}Z.
⋂
n∈Z σ

n(W ) being comeager, we get that
ω̃F,1 ⊆ {0,←}Z. Conversely, for every cylinders [u]m and [v]n, the latter intersecting {0,←}Z, the
same argument above allows to find t ∈ N such that F t([u]m) intersect [v]n, so that Remark 4.3 states
that [v]n intersects the generic limit set.

• The exact symmetric argument settles the case of h = −1.

Figure 3: Lonely Gliders (← (resp. >) are represented by black squares (resp. white squares) and→ (resp.
<) are represented by dark grey squares (resp. light grey squares)).

Example 7.7 (Lonely gliders). Let A = {>,<,→,←}, and F the CA, defined by the following local rule:

f : (x−1, x0, x1) 7→

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

→ if x−1 =→ and x0 =<
→ if x−1 6=> and x0 =←
< if x−1 => and x0 =←
> if x0 =→ and x1 =<
← if x0 =→ and x1 6=<
← if x0 => and x1 =←
x0 otherwise .

A typical space-time diagram of this CA is shown in Figure 3.
Intuitively, each configuration can be decomposed into valid zones, which contain at most one arrow,

towards with chevrons < and > are supposed to point. The arrow moves in the direction to which it points,
until it reaches the end of the zone, in which case it turns back. With this in mind, it is not difficult
to understand that F is reversible (hence surjective), and that any invalid pattern ab, where a 6=> and
b ∈ {>,→,←}, or symmetric, is a blocking word. Hence this CA is in Class 4’.

The reason to introduce this CA rather any simpler surjective almost equicontinuous one is the following
feature, which answers a question left open in [11]: ωF ( AZ = ω̃F , is comeager (like for every surjective
CA) but not full.

Proof. Let us prove that some configuration x with an infinite valid zone which contains one arrow cannot
be the limit point of an orbit. Indeed, any configuration whose orbit comes arbitrarily close to x should also
have an infinite valid zone (because the zones are invariant), and hence at most one arrow in it. Any limit
point of such an orbit has no arrow in its infinite valid zone (the arrow goes to infinity).

The last two examples are only cited, and not defined formally, because they can fit a whole article by
themselves. The first one shows that it is relevant to study arbitrary curves rather than just linear directions.
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Almost equicontinuous : Sensitive :
ω̃F = ωF (E). ω̃F is infinite.

(Corollary 4.14). (Corollary 4.11).

Almost equicontinuous
in two directions of opposite sign :

ω̃F is finite.
(Proposition 5.10).

Surjective :
ω̃F = AZ.

(Corollary 4.7).
Oblique :
ω̃F = ΩF .

(Corollary 5.7).Equicontinuous :
ω̃F = ΩF .

(Proposition 4.15).

Figure 4: Summary of results. Nilpotent CA are not included, for a better readability.

Example 7.8. In [7, Prop 3.3], a CA is built, which is almost equicontinuous along h if and only if
0 ≺ h ≺ p, where p is an explicit function close to the square root function. This CA is in Class 3: there is
a nondegenerate interval of almost equicontinuous directions, but only one of them is linear.

With some horizontal bulking operation and a product with the CA built in [7, Prop 3.1] which deals with
the other side of a parabola, one can even obtain a CA which is still in Class 3, but which is sensitive along
all linear directions.

Example 7.9. In [3, Thm 6.1], a CA F is built with a word u which is blocking in a nondegenerate
interval of directions, such that ωF ([u]0) is the nontrivial orbit of a monochrome configuration (in particular,
ω̃F 2 = ΩF 2,µ ( ΩF,µ = ω̃F ). This shows that CA of Class 3 are not always generically nilpotent: they can
converge to a nontrivial orbit, provided that the blocking words are Gardens of Eden.

8 Conclusion

We studied the generic limit set of dynamical systems, and we emphasized the example of cellular automata.
Our main results are:

• The generic limit set of a nonwandering system (in particular, of a surjective CA) is full.

• The generic limit set of an almost equicontinuous system is exactly the closure of the asymptotic set
of its set of equicontinuity points. In particular, the generic limit set of an equicontinuous dynamical
system is its limit set.

• The generic limit set of a cellular automaton which has two distinct directions of almost equicontinuity
is finite; it is the periodic orbit of a monochrome configuration.
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• The generic limit set of a sensitive system is infinite.

• The generic limit set of a semi-transitive system (in particular, of an oblique CA) is its limit set.

A summary of these results, for non-nilpotent CA, is represented in Figure 4.
Among the interesting questions that the directional classification brings, one can wonder whether, fixing

one CA and making the directions vary, we obtain only finitely many generic limit sets, or whether they
should intersect, at least as the orbit of a monochrome configuration (which is not clear for the last two
classes).

Of course, another natural question is about what happens for two-dimensional CA: in that case almost
equicontinuity does not correspond to existence of blocking words, and neither to non-sensitivity, so that
everything becomes much more complex.
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[17] Petr Kůrka. Languages, equicontinuity and attractors in cellular automata. Ergodic Theory and Dy-
namical Systems, 17(2):417–433, 1997.
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