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Consensus analysis of large-scale nonlinear homogeneous
multi-agent formations with polynomial dynamics

Paolo Massioni* , Gérard Scorletti

SUMMARY

This paper concerns the consensus analysis of multi-agent systems made of the interconnection of identical,
nonlinear agents interacting with one another through an undirected and connected graph topology. Drawing
inspiration from the theory of linear “decomposable systems”, we provide a method for proving the
convergence (or consensus) of such multi-agents sytems in the case of polynomial dynamics. The method is
based on a numerical test, namely a set of linear matrix inequalities (LMIs) providing sufficient conditions
for the convergence. We also show that the use of a generalised version of the famous Kalman-Yakubovic-
Popov lemma allows the development of an LMI test whose size does not directly depend on the number of
agents. The method is validated in simulation on three examples, which also show how the numerical test
can be used to properly tune a controller.

KEY WORDS: Multi-agent systems, nonlinear systems, consensus, polynomial dynamics, sum of
squares, linear matrix inequalities.

1. INTRODUCTION

Large-scale systems are an emerging topic in the system and control community, which is devoting
significant efforts on the development of analysis and control synthesis methods for them. This deep
interest can clearly be seen from the large number of works published in the field in the last 40 years
[2, 5, 6, 32, 11, 17, 25, 1, 29, 19, 24, 22, 35, 38, 39].

One of the main objectives of the studies is the development and validation of “distributed control
laws” for obtaining a certain specified goal for a system of this kind. By “distributed control”,
opposed to “centralized control”, we mean a control action that is computed locally according to the
physical spatial extension of the system, which is seen as aninterconnection of simpler subsystems.
One of the main problems of large-scale systems is the “curseof dimensionality” that goes with
them, i.e. the analysis and synthesis problems related to dynamical systems grow with the size, and
for system of very high order, such problems becomes computationally infeasible. In the literature,
if we restrict to linear systems, we can find a few solutions [25, 11, 2] that can effectively overcome
the curse of dimensionality for a class of systems with a certain regularity, namely for what we call
“homogeneous systems”, i.e. systems made of the interconnection of a huge number of identical
subunits (also sometimes called “agents”).

In this paper we focus on formations made of a high number of identical nonlinear
agents interacting with one another through a time-invariant undirected and connected graph
interconnection. The goal is being able to check whether theagents converge eventually to a
common trajectory. This problem, also known as consensus orsynchronisation of multi-agent
systems, has been largely investigated in the literature for both linear and nonlinear dynamics; a
typical research problem is the determination of sufficientconditions which ensure the convergence
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for a specific class of agent dynamical equation (for example, first order dynamics [26, 27], second
order dynamics [37, 36, 40], heterogeneous systems [4, 24],nonholonomic vehicles [20, 3, 44],
etc.). In this case, we assume that the dynamical equation ofeach agent is of any ordern and it
is described by a generic polynomial in the state vector. We can then show that a linear matrix
inequality (LMI) test can be devised in order to verify the relative stability of such a formation. We
will also be able to formulate such a test in a form that is not strictly depending on the formation
size, making it possible to check the stability of formations with virtually any number of agents,
basically extending the analysis results of [25, 12] to the nonlinear (polynomial) case.

The generality of the proposed approach is of course paid forby the conservatism of the result:
nevertheless, three examples are proposed to show that the proposed LMI tests are successful in
proving the consensus of agent formations with very complexnonlinear dynamics. Two of the
examples show that the analysis results can also be used for the synthesis of a controller, at the cost
of losing the convexity of the optimisation problem: the LMIs become bilinear matrix inequalities
(BMIs); in most practical cases, an acceptable solution canbe found by executing an iterative search
on the controller parameters and solving for the corresponding LMIs.

2. PRELIMINARIES

2.1. Notation

We denote byN the set of positive integers, byR the set of real numbers and byRn×m the set of
realn×m matrices.A⊤ indicates the transpose of a matrixA, In is the identity matrix of sizen,
0n×m is a matrix of zeros of sizen×m and1n ∈ Rn a column vector that contains1 in all of its
entries. The notationA � 0 (resp.A � 0) indicates that all the eigenvalues of the symmetric matrix
A are positive (resp. negative) or equal to zero, whereasA ≻ 0 (resp.A ≺ 0) indicates that all such
eigenvalues are strictly positive (resp. negative). The binomial coefficient is denoted by

(

n

k

)

=
n!

k!(n− k)!
.

The symbol⊗ indicates the Kronecker product, for which we remind the basic properties(A⊗
B)(C ⊗D) = (AC ⊗BD), (A⊗B)⊤ = (A⊤ ⊗B⊤), (A⊗B)−1 = (A−1 ⊗B−1) (with matrices
of compatible sizes). We employ the symbol∗ to complete symmetric matrix expressions avoiding
repetitions.

2.2. Agent dynamics

We consider a set ofN ∈ N identical agents or subsystems of ordern, which interact with one
another. Each agent, if taken alone, is supposed to be described by polynomial dynamics, of the
kind

ẋi = fd(xi) = Aaχi (1)

wherei = 1, ..., N , xi = [xi,1, xi,2, ..., xi,n]
⊤ ∈ Rn is the state of theith agent,fd is a polynomial

function of degreed ∈ N, Aa ∈ Rn×ρ andχi ∈ Rρ is the vector containing all the monomials in
xi up to degreed (for example, ifn = 2, d = 2, thenχi = [1, xi,1, xi,2, x

2
i,1, xi,1xi,2, x

2
i,2]

⊤). The
value ofρ is given (see [28]) by the expression

ρ =

(

n+ d

n

)

. (2)

This approach is based on the sum of squares (SOS) literature[28], which basically allows the
relaxation of polynomial problems into linear algebra’s. In this context, it is possible to express
polynomialsp up to degree2d as quadratic forms with respect toχi, i.e. p(xi) = χ⊤

i Xχi, with
X = X⊤ ∈ Rρ×ρ. This quadratic expression is not unique, due to the fact that different products
of monomials inχi can yield the same result, for examplex2

i,1 is eitherx2
i,1 times 1 or xi,1
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timesxi,1. This implies that there exist linearly independent slack matricesQk = Q⊤
k ∈ Rρ×ρ, with

k = 1, . . . , ι such thatχ⊤
i Qkχi = 0. The number of such matrices (see [28]) is

ι =
1

2

(

(

d+ n

d

)2

+

(

d+ n

d

)

)

−
(

n+ 2d

2d

)

. (3)

We also define
Γ = [0n×1 In 0n×(ρ−n−2)], (4)

a matrix that picks the elements of the state vectorxi from χi, i.e. such thatΓχi = xi.
As a clarifying example, considerχi = [1, xi,1, x

2
i,1]. Then it is possible to express a polynomial

up to degree2 as a linear function ofχi, for example,1 + 2xi,1 + 4x2
i,1 = [1 2 4]χi. It is also possible

to express a polynomial up to degree4 as a quadratic form inχi, for example

1 + 2xi,1 + 4x2
i,1 + 6x3

i,1 − x4
i,1 = χ⊤

i





1 1 2− τ
1 2τ 3

2− τ 3 −1



χi (5)

where the value ofτ is not important as it always cancels out, which means that its matrix coefficient

Q =





0 0 −1
0 2 0
−1 0 0



 (6)

is a slack matrix, for which it can be verified thatχ⊤
i Qχi = 0.

2.3. Formations

Moving from one single agent to a whole formation, we employ a“pattern” matrixP ∈ RN×N to
describe the interactions among the agents. BasicallyP is a sparse matrix whose entries in theith

row andjth column indicate whether theith agent is influenced by the state of thejth, according to
the definition that follows.

Definition 1(Formation)
We call a formation (of non-linear agents with polynomial dynamics) a dynamical system of order
nN , with n,N ∈ N, described by the dynamical equation

ẋ = (IN ⊗Aa + P ⊗Ab)χ (7)

where x = [x⊤
1 , x

⊤
2 , ..., x

⊤
N ]⊤ ∈ RnN , χ = [χ⊤

1 , χ
⊤
2 , ..., χ

⊤
N ]⊤ ∈ RρN (χi is the vector of

monomials inxi up to degreed), P ∈ RN×N andAa, Ab ∈ Rn×ρ.

This definition extends and adapts the definition of “decomposable systems” found for example
in [25, 10] to polynomial dynamics. In the linear case, a formation defined above boils down to the
dynamical equation

ẋ = (IN ⊗Aa + P ⊗Ab)x. (8)

In [25] it has been shown that ifP is diagonalisable, then this system (of ordernN ) is equivalent
to a set of parameter-dependent linear systems of ordern. This is obtained with the change of
variablesx = (S ⊗ In)x̂, wherex̂ = [x̂⊤

1 , x̂
⊤
2 , ..., x̂

⊤
N ]⊤ ∈ RnN andS is the matrix diagonalising

P , i.e. S−1PS = Λ, with Λ diagonal. This turns (8) intȯ̂x = (IN ⊗Aa + Λ⊗Ab)x̂, which is
a block-diagonal system equivalent to the set of equations˙̂xi = (Aa + λiAb)x̂i for i = 1, ..., N ,
with λi the ith eigenvalue ofP . This idea of decomposing a distributed system into a set of
parameter-varying systems is very practical and it has inspired several works in the domain of
consensus and distributed control [18, 41, 10, 7]. However,this idea as it is cannot work if the
dynamics is polynomial, as it can be seen by means of a simple example. Consider the dynamics
in (7) with only two subsystems (N = 2) of order one (n = 1), second-degree dynamics (d = 2, so
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χ = [1, x1,1, x
2
1,1, 1, x2,1, x

2
2,1]

⊤), and a pattern matrix

P =

[

1 −1
−1 1

]

diagonalised byS =
1√
2

[

1 1
1 −1

]

. (9)

Applying the change of variablesx = (S ⊗ In)x̂ andχ = (S ⊗ Iρ)χ̂ leads to the apparently useful
expressioṅ̂xi = (Aa + λiAb)χ̂i. The problem is that the vector̂χi does not contain the monomials
of the powers of̂xi, but linear combinations of the powers ofxi, which means that the decomposition
is only apparent. In fact for̂χ = (S−1 ⊗ Iρ)χ we have

χ̂1 =
1√
2





2
x1,1 + x2,1

x2
1,1 + x2

2,1



 , χ̂2 =
1√
2





0
x1,1 − x2,1

x2
1,1 − x2

2,1



 (10)

and

x̂ =

[

x̂1,1

x̂2,1

]

= (S−1 ⊗ In)x =
1√
2

[

x1,1 + x2,1

x1,1 − x2,1

]

. (11)

It is clear thatχ̂1,3 = 1√
2
(x2

1,1 + x2
2,1) is not the second power of̂x1,1 = 1√

2
(x1,1 + x2,1) which

means that thêx1,1 and x̂1,2 have not really been decoupled. Nevertheless, it is still possible to
adapt the idea of decomposition to polynomial dynamics, as it is described in the rest of this paper.
To our knowledge, this is the first time that the idea is applied to nonlinear systems.

2.4. Problem formulation

The topic of this paper is to find a proof of convergence of the state of the agents under given
dynamics expressed as in (7). We do not require that each agent by itself converges to a point, but
that they all converge eventually to the same state, which could be either an equilibrium point or a
trajectory. In order to do so, we formulate first an assumption on the pattern matrixP .

Assumption 1
The pattern matrixP ∈ RN×N in (7) is symmetric and it has one and only one eigenvalue equal to
0, associated to the eigenvector1N , i.eP1N = 0.

This assumption is very common in the literature, it basically ensures that the interconnection
matrix is a (generalised) graph Laplacian of an undirected connected graph [8]. Such matrices have
real eigenvalues and eigenvectors. We can then formulate the problem on which this paper focuses.

Problem 1
We consider (7) with initial conditionsx(0) ∈ RnN . Find a numerical test that is sufficient condition
for limt→∞ ||xi − xj || = 0, ∀i, j ∈ {1, ..., N}, for any initial condition.

3. FORMATION LYAPUNOV FUNCTION

In order to be able to prove the convergence of all the agents to the same trajectory, we define a
formation Lyapunov function, a special choice (quadratic)of a function tending to zero when the
agents are converging. We summarise these notions in a definition and a lemma.

Definition 2(Formation Lyapunov function candidate)
We define as “formation Lyapunov function candidate” a function

V (x) = x⊤

(

l
∑

i=1

P i ⊗ Li

)

x = x⊤Lx (12)

with Li = L⊤
i ∈ Rn×n, l ∈ N, l 6 N . The reason for this special structure will be clear later on,

in fact it allows the block-diagonalisation of the Lyapunovmatrix in the same way asP can be
diagonalised; increasing the numberl of addends also increases the number of degrees of freedom
of V , making it more likely that a solution is found.
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Lemma 1
Consider (7) and a formation Lyapunov function candidateV (x) = x⊤Lx as in (12). Let1⊥

N ∈
R

N×(N−1) be the orthogonal complement of1N , i.e. [1N 1
⊥
N ] is full rank and1⊤

N1
⊥
N = 0.

If (1⊥
N ⊗ In)

⊤L (1⊥
N ⊗ In) > 0, then we havexi = xj ∀i, j ∈ {1, ..., N} if and only ifV (x) = 0.

Proof
Necessity is almost obvious: ifxi = xj ∀i, j ∈ {1, ..., N}, thenx = 1N ⊗ xi; the fact thatP1N = 0
implies thatV (x) = 0.

We prove the sufficiency by contradiction, i.e. we suppose that there existi and j for which
xi 6= xj andV (x) = 0. The vectorx must then have at least one orthogonal component with respect
to the columns of(1N ⊗ In), because(1N ⊗ In) contains columns with all the corresponding agent
states equal. So, based on the fact that(1⊥

N ⊗ In)
⊤L (1⊥

N ⊗ In) > 0, thenV (x) > 0 contradicting
the hypothesis.

4. MAIN RESULT

We are now ready for our main result. A preliminary lemma allows diagonalising the Lyapunov
function in the same way as a linear system is decomposed in [25].

Lemma 2
If Assumption 1 holds, then 1) there exist a matrixS ∈ RN×N such thatS⊤S = SS⊤ = IN ,
andS⊤PS = Λ, with Λ diagonal (matrix of the eigenvalues ofP). Moreover, we have that 2)
S⊤

1N = T = [t1 t2 ... tN ], with ti ∈ RN = 0 if the eigenvalueλi = Λi,i 6= 0.

Proof
The first part is proven by the fact that all symmetric matrices are diagonalisable by an orthonormal
matrix S (i.e. S−1 = S⊤) [13]. For the second part, due to Assumption 1,1N is an eigenvector
of P with eigenvalue0; S contains the normalised eigenvectors ofP in its columns, and all these
eigenvectors are orthogonal to one another becauseS⊤S = IN . So eachti is the dot product between
1N and theith eigenvector, and it is non zero if and only ifλi = 0.

Theorem 1
Consider (7) with givenN , Aa, Ab and P statisfying Assumption 1; moreover, we order the
eigenvalues ofP so that the first eigenvalue is the one equal to zero, i.e.λ1 = 0. If for a chosen
l ∈ N, there existτj ∈ R, and matricesLj = L⊤

j ∈ Rn×n such that

∑l
j=1 λ

j
iLj ≻ 0 (13)

∑ι
j=1 τjQj � 0 (14)

Π(
∑ι

j=1 τjQj +
∑l

j=1(λ
j
i (Γ

⊤LjAa +A⊤
a LjΓ + Γ⊤LjΓ)+

λj+1
i (Γ⊤LjAb +A⊤

b LjΓ) + ǫλj
i (Γ

⊤LjΓ))Π
⊤ � 0

(15)

for i = 2, ... N , whereΠ = [0(ρ−1)×1 Iρ−1], ǫ > 0 (small), the slack matricesQj for j = 1, . . . , ι

with ι defined in (3) are such thatχ⊤
i Qjχi = 0, and whereΓ is defined in (4),

thenlimt→∞||xi−xj||=0, ∀i, j ∈ {1, ..., N} (Problem 1).

Proof
Assuring the convergence of the agents requires assuring the conditions stated in Lemma 1, namely
that a functionV (x) = x⊤Lx exists, with and(1⊥

N ⊗ In)
⊤L (1⊥

N ⊗ In) > 0, and thatV̇ (x) < 0 for
V (x) > 0. For the condition(1⊥

N ⊗ In)
⊤L (1⊥

N ⊗ In) > 0, consider thatS contains a scaled version
of 1N in its first column and1⊥

N in the rest of the matrix. Knowing thatL = (S ⊗ In)(
∑l

i=1 Λ
i ⊗

Li)(S
⊤ ⊗ In) thanks to Lemma 2, this condition is equivalent to (13).
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For what concerns the conditioṅV (x) < 0 for V (x) > 0, it is satisfied ifV̇ (x) 6 −ǫx⊤Lx, i.e.

χ⊤(QN + Γ⊤
NL(IN ⊗Aa) + Γ⊤

NL(P ⊗Ab)+
(IN ⊗A⊤

a )LΓN + (P ⊗A⊤
b )LΓN + ǫΓ⊤

NLΓN )χ 6 0
(16)

whereΓN = (IN ⊗ Γ) (soΓNχ = x) andQN = IN ⊗
∑ι

j=1 τjQj (for which, by definition ofQj,
χ⊤QNχ = 0 for all values of theτi). By the fact thatP = SΛS⊤ andIN = SS⊤ (Assumption 1
and Lemma 2), using the properties of Kronecker product (16)is equivalent to

χ̂⊤(QN + Γ⊤
N L̂(IN ⊗Aa) + Γ⊤

N L̂(Λ ⊗Ab)+

(IN ⊗A⊤
a )L̂ΓN + (Λ⊗A⊤

b )L̂ΓN + ǫΓ⊤
N L̂ΓN )χ̂ 6 0

(17)

with L̂ =
∑l

j=1 Λ
j ⊗ Lj andχ̂ = (S⊤ ⊗ Iρ)χ. Notice in this last inequality that the term between

χ̂⊤ andχ̂ is block-diagonal, as it is the sum of terms of the kindIN ⊗X or Λi ⊗X (i ∈ N). If we
defineχ̂i ∈ Rρ such that̂χ = [χ̂⊤

1 , χ̂
⊤
2 , ..., χ̂

⊤
N ]⊤, then (17) is equivalent to

∑N
i=1 χ̂

⊤
i (
∑ι

j=1 τjQj +
∑l

j=1 λ
j
i (Γ

⊤LjAa +A⊤
a LjΓ)+

∑l
j=1 λ

j+1
i (Γ⊤LjAb +A⊤

b LjΓ)+ǫ
∑l

j=1 λ
j
i (Γ

⊤LjΓ))χ̂i60.
(18)

The term of the sum fori = 1 is always6 0 due to (14) (as we choseλ1 = 0), so it can be
disregarded. Concerning the other terms, remember that thevectorsχi all contain1 in their first
entry, i.e.χi = [1 χ̃⊤

i ]
⊤, χ̃i ∈ Rρ−1. For eachχ̂i, the first entry is by its definition theith entry of

the vectore = S⊤
1, which contains zeros in all of its entries but the first (due to Lemma 2). So for

i = 2, ..., N , we have that̂χi = Π⊤Πχ̂i. So (18) is implied by
∑N

i=2 χ̂
⊤
i Π

⊤Π(
∑ι

j=1 τjQj +
∑l

j=1 λ
j
i (Γ

⊤LjAa +A⊤
a LjΓ)+

∑l
j=1 λ

j+1
i (Γ⊤LjAb +A⊤

b LjΓ) + ǫ
∑l

j=1 λ
j
i (Γ

⊤LjΓ))Π
⊤Πχ̂i 6 0

(19)

The set of LMIs in (15) and (14) imply (19), concluding the proof.

This theorem allows proving the convergence ofN agents with two sets ofN − 1 parameter-
dependent LMIs, whose matrix size is respectivelyn (i.e. the order of each agent taken alone) and
ρ− 1. This result is already interesting as its LMIs do not scale with Nn, i.e. the global system
order. If one were to study the consensus directly on theNn order dynamics, the use of SOS
would create linear matrix inequalities whose size would grow a lot more, due to the necessity
of creating all the combinations of products of the state variables up to orderd. For growing
values ofN , the computational complexity becomes quickly unmanageable. Let us consider an
example with third degree dynamics (d = 3), three agents (N = 3) and ordern = 1. The state
vector isx = [x1,1, x2,1, x3,1]

⊤. The use of sum of squares (see [28]) on theNn order system
would require constructing a vector of monomials with all combinations up to third degree,
i.e. ξ = [1, x1,1, x2,1, x3,1, x

2
1,1, x1,1x2,1, x1,1x3,1, x2

2,1, x2,1x3,1, x2
3,1, x

3
1,1, x

2
1,1x2,1, x

2
1,1x3,1,

x1,1x2,1x3,1, x1,1x
2
3,1, x1,1x

2
2,1, x3

2,1, x
2
2,1x3,1, x2,1x

2
3,1, x3

3,1], which has20 entries. Theorem 1
will rather produceN − 1 LMIs of depending on the size ofχi = [1, xi,1, x

2
i,1, x

3
i,1]

⊤, i.e. only4.
If N grows the situation gets worse: forN = 4, the size ofξ becomes35, whereasχi stays the
same (we just go from2 LMIs of size4 to 3 LMIs of size4). ForN = 4, the size ofξ becomes56,
whereasχi stays the same (we go from3 LMIs of size4 to 4 LMIs of size 4). ForN = 5, the size of
ξ becomes84, etc., which is already very bulky in terms of computationalcomplexity. Theorem 1
instead will let one deal with much higherN without any problems on a normal computer.

Notice that Theorem 1 only provides sufficient condition, i.e. the multi-agent system might
achieve consensus but the LMI test might still fail. In orderto have more chances of getting
a solution, one can either increasel (give more degrees of freedom to the Lyapunov candidate
function), or increased (embed the given polynomial functions into a space of polynomials of
higher degree). Both options of course imply a higher computational cost.

In the next section, we explore whether it is possible to further reduce the computational
complexity.
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5. VARIATION ON THE MAIN RESULT

We now introduce a generalised version of the Kalman-Yakubovich-Popov (KYP) lemma [31]. This
lemma turns a parameter-depending LMI into a parameter-independent one.

5.1. The Kalman-Yakubovic-Popov lemma

The Kalman-Yakubovic-Popov lemma or KYP [31] is a widely celebrated result for dynamical
systems that allows turning frequency-dependent inequalities into frequency-independent ones, by
exploiting a state-space formulation. It turns out that such a result can be adapted and generalised
to inequalities depending on any scalar parameter. Namely,we will use the following generalised
version of the KYP.

Lemma 3(Generalized KYP [9])
Consider

M(ξ) = M0 +

η
∑

i=1

ξiMi, (20)

with ξ ∈ Rl a vector of decision variables andMi = M⊤
i ∈ RnM×nM , i = 1, ..., η. The quadratic

constraint
φ(θ)

⊤
M(ξ) φ(θ) ≺ 0 for θ ∈ [θ, θ] (21)

is verified if and only if there existD = D⊤ ≻ 0 andG = −G⊤ such that
[

C̃⊤

D̃⊤

]

M(ξ)
[

C̃ D̃
]

+

[

I 0

Ã B̃

]⊤[ −2D (θ + θ)D + G
(θ + θ)D − G −2θθD

][

I 0

Ã B̃

]

≺0 (22)

with Ã ,B̃, C̃ andD̃ such that

φ(θ) = D̃ + C̃θI(I − ÃθI)−1B̃ = θI ⋆

[

Ã B̃

C̃ D̃

]

, (23)

where the operator⋆ implicitly defined above is known as the Redheffer product [45]. The lemma
still holds if the sign≺ in (21) is replaced by�: in this case replace≺ with � in (22).

5.2. Second main result

Let us define
λ = max

26i6N
{λi}, λ = min

26i6N
{λi}. (24)

Then, forθ ∈ [λ, λ], the following set of LMIs
∑l

j=1 θ
jLj ≻ 0 (25)

Π(
∑ι

j=1 τjQj +
∑l

j=1(θ
j(Γ⊤LjAa +A⊤

a LjΓ + Γ⊤LjΓ)+

θj+1(Γ⊤LjAb +A⊤
b LjΓ) + ǫθj(Γ⊤LjΓ))Π

⊤ � 0
(26)

“embeds” the set of LMIs in (13) and (15) (notice that we have moved from a discrete set of values
to a continuous interval which includes them all). Subsequently, Lemma 3 can be used to turn the
θ-dependent LMIs in (25) and (26) into parameter-independent ones. The dependence of the terms
in (25) and (26) fromθ (which is ultimatelyλi) is polynomial, so we need to define

φν(θ) =
[

θceil((l+1)/2)Iν , θceil((l+1)/2)−1Iν , ..., Iν

]⊤
(27)

which requires

Ãν = Uν ⊗ In, B̃ν =

[

0(ν−1)×1

1

]

⊗ In,

C̃ν =

[

Iν
01×ν

]

⊗ In, D̃ν =

[

0ν×1

1

]

⊗ In.

(28)
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whereUν ∈ Riν×ν is a matrix containing1’s in the first upper diagonal and0’s elsewhere, andν = n
for (25) andν = ρ− 1 for (26). We can now formulate the second main result.

Corollary 1
Consider (7) with givenN , Aa, Ab andP statisfying Assumption 1; excluding the first eigenvalue
of P , which is equal to0, we have thatλ 6 λi 6 λ, with i = 2, ... N . If for a chosenl ∈ N, there
exist τi ∈ R, and matricesLi = L⊤

i ∈ Rn×n, and there existDνk ,Gνk ∈ Rνk×νk , Dνk = D⊤
νk

≻ 0

andGνk = −G⊤
νk

such that (14) holds and

[∗]⊤Mk

[

C̃νk D̃νk

]

+ [∗]⊤
[

−2Dνk (λ+ λ)Dνk + Gνk

∗ −2λλDνk

][

Iνk 0

Ãνk B̃νk

]

≺0 (29)

for k = 1, 2, with ν1 = n, ν2 = ρ− 1, and withÃνk , B̃νk , C̃νk , D̃νk , φνk defined in (28), (27), and
M1, M2 defined by

φν1(λi)
⊤M1φν1 (λi) = −

l
∑

j=1

λj
iLj (30)

φν2 (λi)
⊤M2φν2(λi)=

Π(
∑ι

j=1 τjQj+
∑l

j=1(λ
j
i(Γ

⊤LjAa+A⊤
aLjΓ+Γ⊤LjΓ)+λj+1

i (Γ⊤LjAb+A⊤
bLjΓ)+ǫλj

i(Γ
⊤LjΓ))Π

⊤,

(31)
whereǫ > 0, Γ = [0n×1 In 0n×(ρ−n−2)] (i.e.Γχi = xi) andΠ = [0(ρ−1)×1 Iρ−1],
thenlimt→∞ ||xi − xj || = 0, ∀i, j ∈ {1, ..., N} (Problem 1).

Proof
A direct application of Lemma 3 forM1 andM2 implies that the hypotheses of Theorem 1 are
satisfied if the hypotheses here are.

With this corollary, we replace the two sets ofN − 1 LMIs of size n and ρ− 1, with only
two LMIs of matrix sizen ceil((l + 3)/2) and(ρ− 1) ceil((l + 3)/2). This is an interesting result
because the computational complexity is no longer depending onN , i.e. the number of agents. On
the other hand, the choice of a biggerl will improve the chances of solving the LMIs for high values
of N .

Remark 1
The matricesM1 andM2 in Corollary 1 are implicitly defined by (30) and (31). In order to help the
understanding of the paper, here are provided the explicit expressions ofM1 for l = 3:

M1 = −





0 1
2L3 0

1
2L3 L2

1
2L1

0 1
2L1 0



 , φν(λi) =





λ2
i Iν

λiIν
Iν



 (32)

andl = 5:

M1 = −









0 1
2L5 0 0

1
2L5 L4

1
2L3 0

0 1
2L3 L2

1
2L1

0 0 1
2L1 0









, φν(λi) =







λ3
i Iν

λ2
i Iν

λiIν
Iν






. (33)

6. EXAMPLES

In order to provide a few challenging examples of application of the proposed method, we focus
on a problem widely studied in the nonlinear dynamics community, namely the synchronisation of
oscillators [30, 34]. The approach here is of course numerical and different (or complementary)
with respect to those found in such a literature, where the objective is usually to find a control
law and then prove stability. Here we just propose a control law and we test numerically whether
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it will make the subsystems converge or not. We first considertwo famous examples of nonlinear
systems, namely the Van der Pol oscillator [14] and the Lorenz attractor [23], and we conclude with
an example based on the dynamics of spintorque oscillators [16]. All the LMI problems have been
coded in Matlab using Yalmip [21], and using SeDuMi [33] as solver.

6.1. Van der Pol oscillator

We consider a system ofN agents of equation

{

ẋi,1 = xi,2 + σri
ẋi,2 = µ(1− x2

i,1)xi,2 − xi,1 − cri
(34)

for whichn = 2, with ri = −(xi−1,1 + xi−1,2) + 2(xi,1 + xi,2)− (xi+1,1 + xi+1,2) (where the first
indexi is to be considered as moduloN , i.e.0 → N , N + 1 → 1). The degree of the polynomial is
d = 3, for whichχi = [1, xi,1, xi,2, x

2
i,1, xi,1xi,2, x

2
i,2, x

3
i,1, x

2
i,1xi,2, xi,1x

2
i,2, x

3
i,2]

⊤. For

Aa =

[

0 0 1 0 0 0 0 0 0 0
0 −1 µ 0 0 0 0 −µ 0 0

]

,

Ab =

[

0 2σ 2σ 0 0 0 0 0 0 0
0 −2c −2c 0 0 0 0 0 0 0

]

,

P =











1 −0.5 0 0 . . . 0 −0.5
−0.5 1 −0.5 0 . . . 0 0

...
...

. ..
. . .

.. .
...

...
−0.5 0 0 0 . . . −0.5 1











(35)

(34) fits within the framework of (7). Notice thatP is a symmetric graph Laplacian, whose (real)
eigenvalues are guaranteed to be in the[0, 2] interval by the Perron-Frobenius theorem [11]. The
numerical values are taken arbitrarily asµ = 0.5, N = 8 and l = 8. The interconnection between
each oscillator is given by two terms. The first term isσ, which we set arbitrarily asσ = 0.1; it
gives a repulsive contribution which destabilises the system. The second interconnection term isc,
which can be interpreted as a proportional feedback gain that we want to tune in order to achieve
consensus. The interconnection structure is depicted in Figure 1. Forc = 0, it can be verified that

Figure 1. Interconnection graph for the coupled Van der Pol oscillators.

the system is unstable and the states diverge to infinity. Intuitively, ac high enough should make the
agents converge to one another. By running a dichotomic search on the value ofc, it has been found
that the smallest value for which a solution for the LMIs in Corollary 1 is found, guaranteeing the
convergence, isc = 4.8. Figure 2 and Figure 3 show the evolution of the system duringa simulation
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Figure 2. Evolution of the state of the8 coupled Van der Pol oscillators, forc = 4.8.

0 2 4 6 8 10 12
t

10-5

100

V

Figure 3. Value of the formation Lyapunov functionV for the coupled Van der Pol oscillators (c = 4.8).

for this value ofc, the individual states are shown, together with the value ofthe Lyapunov function
over time.

Due to the fact that Corollary 1 is conservative, the minimumvalue ofc guaranteeing consensus is
probably overestimated. In fact, the simulations show apparent convergence also for slightly smaller
values: we say “apparent” because it is not possible to provethe convergence for all the possible
initial conditions by means of simulation. In any case, for this example, Corollary 1 provides an
efficient and reliable method to safely tune the controller.

6.2. Lorenz attractor

We now consider a system ofN agents of equation







ẋi,1 = σl(xi,2 − xi,1)− cri,1
ẋi,2 = xi,1(ρl − xi,3)− xi,2 − cri,2
ẋi,3 = xi,1xi,2 − βlxi,3 − cri,3

(36)
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with ri,j = −xi−1,j + 2xi,j − xi+1,j (j = 1, 2, 3, again the indexi is taken moduloN ). The
equations fit in the framework of (7) ford = 2, n = 3 and with a pattern matrixP that has the same
structure as the one in (35). We arbitrarily setρl = 28, σl = 10, βl = 8/3, N = 4 and l = 4. This
time Theorem 1 has been used; for the arbitrary value ofc = 50, the LMIs in Theorem 1 are satisfied,
successfully yielding a formation Lyapunov function and thus proving that a consensus is eventually
reached. Figure 4 and Figure 5 again show the evolution of thesystem during a simulation, with
individual states. The value of the Lyapunov function is also verified to be decreasing. Notice that
the Lorenz oscillator does not converge to a limit cycle but to a chaotic trajectory.

0 0.05 0.1 0.15 0.2 0.25 0.3
t

0

10

20

30

40

st
at

es

x
i,1

x
i,2

x
i,3

Figure 4. Evolution of the state of the coupled Lorenz systems.

-10

0

-20

10

20

30

x i,3

40
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30-10 20

x
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0 10

x
i,2

010 -1020 -20

starting
points

Figure 5. Tridimensional visualisation of the state of the coupled Lorenz systems of the example (the
trajectories eventually converge to the consensus trajectory).

6.3. Spintorque oscillators

Spintorque oscillators are microscopic devices with several potential applications in modern
radiofrequency electronics [16]. It is a relevant researchproblem to investigate how such oscillators
can be syncronised [43, 42].
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The simplified dynamics of a network ofN coupled spintorque oscillators can be described by
equations of the kind [42]

{

ṙi = −grrr,i
φ̇i = 1 + r2i − gφφr,i

(37)

with rr,i = − 1
N−1

∑

j 6=i rj + ri andφr,i = − 1
N−1

∑

j 6=i φj + φi. This definition implies a different
interconnection topology compared to the previous examples, namely one given by the pattern

P =











1 − 1
N−1 − 1

N−1 . . . − 1
N−1 − 1

N−1

− 1
N−1 1 − 1

N−1 . . . − 1
N−1 − 1

N−1
...

...
. ..

.. .
...

...
− 1

N−1 − 1
N−1 − 1

N−1 . . . − 1
N−1 1











, (38)

which is depicted in Figure 6.

Figure 6. Interconnection graph for the spintorque oscillators example.

The valuesgr andgφ are unknown feedback control gains, for which it is interesting to find values
that guarantee the synchronisation of the oscillators. In order to do so, it is convenient to rely on
Theorem 1, because the patternP in (38) has identical non-zero eigenvalues, which automatically
turns its set ofN − 1 LMIs into just one LMI (regardless ofN ).

By executing a random seach on the values ofgr andgφ, it can be found that forgr = 20 and
gφ = 0.1 the LMIs in Theorem 1 have a solution withl = 2, proving the global convergence of the
oscillators. Figure 7 shows a simulation in the case ofN = 8.

Notice that in this case, we have been able to choose a value ofl which is much smaller compared
to N (in fact, for l = 2 we are able to prove convergence for anyN ). This is probably due to the
highy connected topology that has been chosen, where every oscillator is connected to all of the
others. This also suggests that in general the numberl can be reduced if the interconnection among
the agents is increased.

7. CONCLUSION

We have introduced a new method for proving convergence or consensus of multi-agent system with
polynomial dynamics. This method is the generalisation of the analysis methods in [25] and it has
proven effective in test cases featuring dynamical oscillators. Further research will investigate if the
limitation given by the hypothesis of homogeneity and time invariance of the interconnection can
be dropped, for example following the approach of [24, 15].
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26. U. Münz, A. Papachristodoulou, and F. Allgöwer. Nonlinear multi-agent system consensus with time-varying

delays. IFAC Proceedings Volumes, 41(2):1522–1527, 2008.
27. K.-K. Oh and H.-S. Ahn. Formation control and network localization via orientation alignment.IEEE Transactions

on Automatic Control, 59(2):540–545, 2014.
28. P.A. Parrilo. Semidefinite programming relaxations forsemialgebraic problems.Mathematical programming,

96(2):293–320, 2003.
29. A.P. Popov and H. Werner. A robust control approach to formation control. InProc. of the 10th European Control

Conference, Budapest, Hungary, August 2009.
30. M. Pourmahmood, S. Khanmohammadi, and G. Alizadeh. Synchronization of two different uncertain chaotic

systems with unknown parameters using a robust adaptive sliding mode controller.Communications in Nonlinear
Science and Numerical Simulation, 16(7):2853–2868, 2011.

31. A. Rantzer. On the Kalman-Yakubovich-Popov lemma.Systems & Control Letters, 28(1):7–10, 1996.
32. G. Scorletti and G. Duc. An LMI approach to decentralizedH∞ control. International Journal of Control,

74(3):211–224, 2001.
33. J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.Optimization

Methods and Software, 11–12:625–653, 1999.
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42. M. Zarudniev. Synthèse de fréquence par couplage d’oscillateurs spintroniques. PhD thesis, Ecole Centrale de
Lyon, 2013.

43. M. Zarudniev, E. Colinet, P. Villard, Ur. Ebels, M. Quinsat, and G. Scorletti. Synchronization of a spintorque
oscillator array by a radiofrequency current.Mechatronics, 22(5):552–555, 2012.

44. H.-T. Zhang, Z. Chen, and M.-C. Fan. Collaborative control of multivehicle systems in diverse motion patterns.
IEEE Transactions on Control Systems Technology, 24(4):1488–1494, 2016.

45. K. Zhou, J.C. Doyle, and K. Glover.Robust and optimal control, volume 40. Prentice Hall New Jersey, 1996.


	Introduction
	Preliminaries
	Notation
	Agent dynamics
	Formations
	Problem formulation

	Formation Lyapunov function
	Main result
	Variation on the main result
	The Kalman-Yakubovic-Popov lemma
	Second main result

	Examples
	Van der Pol oscillator
	Lorenz attractor
	Spintorque oscillators

	Conclusion

