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Consensus analysis of large-scale nonlinear homogeneous
multi-agent formations with polynomial dynamics

Paolo Massiorii Gérard Scorletti

SUMMARY

This paper concerns the consensus analysis of multi-agstems made of the interconnection of identical,
nonlinear agents interacting with one another through airected and connected graph topology. Drawing
inspiration from the theory of linear “decomposable systénwve provide a method for proving the
convergence (or consensus) of such multi-agents syterhe itese of polynomial dynamics. The method is
based on a numerical test, namely a set of linear matrix mléts (LMIS) providing sufficient conditions
for the convergence. We also show that the use of a genetalssion of the famous Kalman-Yakubovic-
Popov lemma allows the development of an LMI test whose s ot directly depend on the number of
agents. The method is validated in simulation on three el@snphich also show how the numerical test
can be used to properly tune a controller.

KEY WORDS: Multi-agent systems, nonlinear systems, cosisen polynomial dynamics, sum of
squares, linear matrix inequalities.

1. INTRODUCTION

Large-scale systems are an emerging topic in the systemaarticotcommunity, which is devoting
significant efforts on the development of analysis and absymthesis methods for them. This deep
interest can clearly be seen from the large number of work$ighed in the field in the last 40 years
[2,5,6,32[ 11, 11, 25, 1, 29,119,124, 22] 35,38, 39].

One of the main objectives of the studies is the developnmmehtalidation of “distributed control
laws” for obtaining a certain specified goal for a system a$ #ind. By “distributed control”,
opposed to “centralized control”, we mean a control actiwi is computed locally according to the
physical spatial extension of the system, which is seen @garonnection of simpler subsystems.
One of the main problems of large-scale systems is the “auirsimensionality” that goes with
them, i.e. the analysis and synthesis problems relatedrardical systems grow with the size, and
for system of very high order, such problems becomes cortipntdly infeasible. In the literature,
if we restrict to linear systems, we can find a few solutiors[[P1 [ 2] that can effectively overcome
the curse of dimensionality for a class of systems with aageregularity, namely for what we call
“homogeneous systems”, i.e. systems made of the interctioneof a huge number of identical
subunits (also sometimes called “agents”).

In this paper we focus on formations made of a high number ehtidal nonlinear
agents interacting with one another through a time-inwriandirected and connected graph
interconnection. The goal is being able to check whetheraiipents converge eventually to a
common trajectory. This problem, also known as consensusylchronisation of multi-agent
systems, has been largely investigated in the literaturédth linear and nonlinear dynamics; a
typical research problem is the determination of sufficamtditions which ensure the convergence
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for a specific class of agent dynamical equation (for exaniips order dynamics [26, 27], second
order dynamics [37, 36, 40], heterogeneous systems [4,ndholonomic vehicles [20, 3, 44],
etc.). In this case, we assume that the dynamical equatieadf agent is of any orderand it

is described by a generic polynomial in the state vector. ¥ tben show that a linear matrix
inequality (LMI) test can be devised in order to verify théate stability of such a formation. We
will also be able to formulate such a test in a form that is ¢ty depending on the formation
size, making it possible to check the stability of formasiomith virtually any number of agents,
basically extending the analysis results[of| [25, 12] to tbelimear (polynomial) case.

The generality of the proposed approach is of course paitlyfdhe conservatism of the result:
nevertheless, three examples are proposed to show thatdhesed LMI tests are successful in
proving the consensus of agent formations with very compleslinear dynamics. Two of the
examples show that the analysis results can also be usdtefeynhthesis of a controller, at the cost
of losing the convexity of the optimisation problem: the LlSlecome bilinear matrix inequalities
(BMIs); in most practical cases, an acceptable solutiorbegiound by executing an iterative search
on the controller parameters and solving for the corresipgndviis.

2. PRELIMINARIES

2.1. Notation

We denote byN the set of positive integers, ti/the set of real numbers and B*™ the set of
realn x m matrices.A" indicates the transpose of a matrx I,, is the identity matrix of size:,
0,.xm IS @ matrix of zeros of size x m and1,, € R"® a column vector that contairisin all of its
entries. The notatiod = 0 (resp.A = 0) indicates that all the eigenvalues of the symmetric matrix
A are positive (resp. negative) or equal to zero, whereas0 (resp.A < 0) indicates that all such
eigenvalues are strictly positive (resp. negative). Theimiial coefficient is denoted by

() = e

The symbol® indicates the Kronecker product, for which we remind theidopsoperties(A ®
B)(C ® D)= (AC®BD),(A® B)T = (AT ® B"), (A® B)~! = (A~! ® B~!) (with matrices

of compatible sizes). We employ the symbdb complete symmetric matrix expressions avoiding
repetitions.

2.2. Agent dynamics

We consider a set aV € N identical agents or subsystems of orderwhich interact with one
another. Each agent, if taken alone, is supposed to be Heddny polynomial dynamics, of the
kind

& = fa(xi) = Aaxi 1)

wherei = 1,...,N, z; = [;1, Ti2, ..., Tin] € R is the state of thé" agent,f, is a polynomial
function of degreel € N, A, € R**? andy; € R? is the vector containing all the monomials in
z; up to degreel (for example, ifn = 2, d = 2, thenx; = [1, xi1, Ti2, 23, Ti1Ti2, 7, ). The
value ofp is given (see[28]) by the expression ’

,,(”Zd) 2)

This approach is based on the sum of squares (SOS) literf28}ewhich basically allows the
relaxation of polynomial problems into linear algebrais.this context, it is possible to express
polynomialsp up to degreed as quadratic forms with respect 19, i.e. p(z;) = x,/ Xxi, with

X = XT e RP*r, This quadratic expression is not unique, due to the fadtdifferent products
of monomials iny; can yield the same result, for exampig, is eitherz?, times1 or z;
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timesz; 1. This implies that there exist linearly independent slagkoesQ, = Q; € R?**, with

k=1,...,csuch thaty] Qrx; = 0. The number of such matrices (seel[28]) is
1 d+n\> d+n n+2d
=30+ ()-8 @

We also define
I'= [On><1 I 0n><(p—n—2)]a (4)
a matrix that picks the elements of the state veetdrom y;, i.e. such that'y; = z;.
As a clarifying example, consider;, = [1, x;1, z7,]. Then it is possible to express a polynomial
up to degre@ as a linear function of;, for examplei + 2,1 + 455371 = [124]x;. Itis also possible
to express a polynomial up to degreas a quadratic form i, for example

1 1 2—-7
142z 1 + 433?71 + 61?71 — xﬁl =x; 1 27 3 Xi (5)
2—7 3 -1

where the value of is not important as it always cancels out, which means thatittrix coefficient

0 0 -1
Q=0 2 0 (6)
~1.0 0

is a slack matrix, for which it can be verified that Qx; = 0.

2.3. Formations

Moving from one single agent to a whole formation, we empldpatern” matrix? € RV <" to

describe the interactions among the agents. Basi¢allya sparse matrix whose entries in tife
row and;" column indicate whether th& agent is influenced by the state of tfi& according to
the definition that follows.

Definition 1(Formation)
We call a formation (of non-linear agents with polynomiahdynics) a dynamical system of order
nN, withn, N € N, described by the dynamical equation

:b:(IN®Aa+P®Ab)X (7)

where z = [2{, 25, .., 2§]T €R™, x=[x{, X9, - XN €RYN (x; is the vector of
monomials inz; up to degreel), P € RV*N andA,, A, € R"*~.

This definition extends and adapts the definition of “decosapte systems” found for example
in [25,[10] to polynomial dynamics. In the linear case, a fation defined above boils down to the
dynamical equation

t=(Iy® A+ P AT, 8)

In [25] it has been shown that # is diagonalisable, then this system (of ordéY) is equivalent

to a set of parameter-dependent linear systems of ord@iis is obtained with the change of
variablesz = (S ® I,,)%, wherez = [, 21, ..., 2] € R*¥ and S is the matrix diagonalising

P, i.e. S~1PS = A, with A diagonal. This turns{8) inta: = (In ® Ay + A ® Ap)Z, which is

a block-diagonal system equivalent to the set of equatibns (Ag + NiAp)z; fori=1,..., N,

with \; the i!" eigenvalue ofP. This idea of decomposing a distributed system into a set of
parameter-varying systems is very practical and it hasiredpseveral works in the domain of
consensus and distributed control [[L8] 41], (10, 7]. Howetés, idea as it is cannot work if the
dynamics is polynomial, as it can be seen by means of a simplm@e. Consider the dynamics
in (@) with only two subsystems\ = 2) of order one{ = 1), second-degree dynamies 2, so



4 MASSIONI, SCORLETTI

x =1, 211, 23,, 1, 221, 23] "), and a pattern matrix

1 -1 . . 1 1 1
P = [ 1 ] diagonalised by;’:ﬁ { 1 1 } . (9)
Applying the change of variables= (S ® I,,)z andx = (S ® I,)x leads to the apparently useful
expressiorzéi = (A4 + MiAp) . The problem is that the vect@; does not contain the monomials
of the powers of;, but linear combinations of the powers®f which means that the decomposition
is only apparent. In fact fof = (S~! ® I,)x we have

| 2 1 0
X1 = 75 | “ +Z21 |, X2 = 7 T11 — 22,1 (10)
m%g + x%,l m%g - x%,l
and
N T11 1 1 r11+ X271

= | "B = (s I = — , I 11

. [ T2,1 ] ( ® L) V2 [ T1,1 — 22,1 ] 1)

It is clear thaty; 3 = %(xil + a3 ) is not the second power df; ; = \/%(:cl,l + 22,1) which

means that the&; ; and; » have not really been decoupled. Nevertheless, it is stikjide to
adapt the idea of decomposition to polynomial dynamicst esdescribed in the rest of this paper.
To our knowledge, this is the first time that the idea is appitenonlinear systems.

2.4. Problem formulation

The topic of this paper is to find a proof of convergence of ttaesof the agents under given
dynamics expressed as [d (7). We do not require that each hyétself converges to a point, but
that they all converge eventually to the same state, whidkddoe either an equilibrium point or a
trajectory. In order to do so, we formulate first an assunmptio the pattern matri®.

Assumption 1
The pattern matri®® € RV*V in (@) is symmetric and it has one and only one eigenvaluel¢qua
0, associated to the eigenvectioy, i.e P1y = 0.

This assumption is very common in the literature, it bagjcahsures that the interconnection
matrix is a (generalised) graph Laplacian of an undirectethected graph [8]. Such matrices have
real eigenvalues and eigenvectors. We can then formulatertdblem on which this paper focuses.

Problem 1
We consider[{[7) with initial conditions(0) € R*V. Find a numerical test that is sufficient condition
for lim;_, o ||z; — ;|| =0, V4,5 € {1, ..., N}, for any initial condition.

3. FORMATION LYAPUNOV FUNCTION

In order to be able to prove the convergence of all the agentiset same trajectory, we define a
formation Lyapunov function, a special choice (quadradici function tending to zero when the
agents are converging. We summarise these notions in atéefiand a lemma.

Definition 2(Formation Lyapunov function candidate)
We define as “formation Lyapunov function candidate” a fiorct

!
V(r)=a" <Z P'® LZ-) r=ux' L (12)

with L; = LZ-T e R"™*", 1 €N, I < N. The reason for this special structure will be clear later on
in fact it allows the block-diagonalisation of the Lyapunmatrix in the same way &B can be
diagonalised; increasing the numbef addends also increases the number of degrees of freedom
of V, making it more likely that a solution is found.
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Lemma 1
Consider[(¥) and a formation Lyapunov function candidédte) = =" £z as in [12). Letl}; €
RY*(N=1) pe the orthogonal complement bf;, i.e.[1y 1%]is full rank and1 ;1% = 0.

If (1% ® I,,) "L (1% ® I,,) > 0, thenwe have; = z; Vi, j € {1, ..., N} ifand only if V(z) = 0.

Proof
Necessity is almost obvious:if = z; Vi, j € {1, ..., N}, thenz = 15 ® z;; the factthaP1ly =0
implies thatV (z) = 0.

We prove the sufficiency by contradiction, i.e. we suppose there exist andj for which
z; # xj andV (z) = 0. The vector: must then have at least one orthogonal component with respec
to the columns of1y ® I,,), becausély ® I,,) contains columns with all the corresponding agent
states equal. So, based on the fact hat ® 1,,) " £ (15 ® I,,) > 0, thenV (x) > 0 contradicting
the hypothesis. O

4. MAIN RESULT

We are now ready for our main result. A preliminary lemmawaiadiagonalising the Lyapunov
function in the same way as a linear system is decompose&jn [2

Lemma 2

If Assumption[1 holds, then 1) there exist a matixc RV*Y such thatS"™S = SST = Iy,
and STPS = A, with A diagonal (matrix of the eigenvalues &f). Moreover, we have that 2)
ST1y =T = [t1 t2 ... tn], witht; € RY = 0 if the eigenvalue\; = A; ; # 0.

Proof

The first part is proven by the fact that all symmetric masiaee diagonalisable by an orthonormal
matrix S (i.e. S~' = ST) [13]. For the second part, due to Assumptidni}; is an eigenvector
of P with eigenvalue); S contains the normalised eigenvectorsfoin its columns, and all these
eigenvectors are orthogonal to one another becélise= . So each; is the dot product between
1 and thei" eigenvector, and it is non zero if and only\f = 0. O

Theorem 1

Consider [(¥) with givenV, A,, A, and P statisfying Assumptionll; moreover, we order the
eigenvalues ofP so that the first eigenvalue is the one equal to zero)i.e= 0. If for a chosen

I € N, there exist;; € R, and matriced,; = L] € R"*" such that

Zl )\z Lj =0 (13)

j=1
> =1 TR 20 (14)

I, mQ; + 22210\{ (TTLjA, + AT L,T +TTL;I)+

: . 15
NFYTTL A + Al LD) + eX(TTL,ONIT <0 13)

fori=2,.. N, wherell = [0(,_1)x1 I,—1], € > 0 (small), the slack matriceQ; for j =1,...,:
with ¢ defined in[(B) are such that' Q;x; = 0, and wherd" is defined in[(#),
thenlim;_, o |li — 2| =0, Vi, j € {1, ..., N} (Problenil).

Proof

Assuring the convergence of the agents requires assuengptiditions stated in Lemré 1, namely
that a functionV (z) = 2 Lz exists, with and1% @ I,,) " £ (1% ® I,,) > 0, and thaf/’(z) < 0 for
V(x) > 0. For the conditior{1y; ® I,,) " £ (1% ® I,,) > 0, consider thaf contains a scaled version
of 1 in its first column and 7; in the rest of the matrix. Knowing that = (S ® I,,L)(ZE:1 AN®
L;)(ST ® I,,) thanks to LemmA@l2, this condition is equivalentfdl (13).
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For what concerns the conditidn(z) < 0 for V(z) > 0, it is satisfied ifV () < —ex " Lz, i.e.

X (On +THL(IN ® Ay) +THL(P @ Ap)+

(In ® AT )LDy + (P ® A] )LDy + DL LT )y < 0 (16)

wherel'y = (Iy ®T) (soT'yx =z) andQy = Iy ® Z;Zl 7;Q; (for which, by definition ofQ;,
x " Qnx = 0 for all values of ther;). By the fact thatP = SAST andIy = SST (Assumptiorl
and LemmaR), using the properties of Kronecker produdti€léyuivalent to

XT(ON +THL(IN © Aa) + TRL(A ® Ap)+

R A . 17
(IN®A)LTN + (A® A] )LD N + eD L LTN) Y <0 (47

with £ = 22:1 AN ® Ljandy = (ST ® I,)x. Notice in this last inequality that the term between
x " andy is block-diagonal, as it is the sum of terms of the kilRd® X or A’ ® X (i € N). If we
definey; € R? such thaty = ¢/, X3 , -, XAl ", then[[IT7) is equivalent to

Zjvlgz (Zg 1TJQ3+ZJ 1)\] FTLA —i—ATL F)+

S ML Ay + Al LT)+e S M(DTL;T))x: <0.

(18)

The term of the sum foi = 1 is always< 0 due to [I#) (as we chosg = 0), so it can be
disregarded. Concerning the other terms, remember thatetttersy; all contain1 in their first
entry, i.e.x; = [1 X, ", X: € R°—L. For eachy;, the first entry is by its definition thé" entry of
the vectore = ST 1, which contains zeros in all of its entries but the first (duéémmd2). So for
i=2, .., N,we have thak; = II"IIx;. So [18) is implied by

Zz 2XTHTH(ZJ 1 i +ZJ 1)‘j (DT LjAq + Ag LiT)+
S NPT LA+ AT LT + e N rTL SINITIIR, <0

=1

The set of LMIs in[(I5) and(14) imply (19), concluding the pfo O

(19)

This theorem allows proving the convergenceNofagents with two sets oV — 1 parameter-
dependent LMIs, whose matrix size is respectively.e. the order of each agent taken alone) and
p — 1. This result is already interesting as its LMIs do not scainwn, i.e. the global system
order. If one were to study the consensus directly onXheorder dynamics, the use of SOS
would create linear matrix inequalities whose size wouldwge lot more, due to the necessity
of creating all the combinations of products of the statéaides up to order. For growing
values of N, the computational complexity becomes quickly unmanalgedlet us consider an
example with third degree dynamicg £ 3), three agentsX = 3) and ordern = 1. The state
vector isz = [z1.1, 22,1, 731] ' . The use of sum of squares (seel[28]) on ftie order system
would require constructing a vector of monomials with alimtmnations up to third degree,
ie. & =1, 211, 552 1, 23 1733% 15 T1,172,1, T1,123,1, x% 15 332 13,1, 553 15 fC‘f 15 IC% 12,1, IC% 123,1,
T11%21%3,1, T1,103 1, L1,185 1, T3, :c% 13,1, L2103 1, 25 4], which has20 entries. Theorerfll 1
will rather produceV — 1 LMIs of dependlng on the size of; = [1, z;1, z7,, 3,]7, i.e. only4.

If N grows the situation gets worse: fof = 4, the size of¢ becomes35, whereasy; stays the
same (we just go frord LMIs of size4 to 3 LMIs of size4). For N = 4, the size of becomes$6,
whereagy; stays the same (we go fro3rLMIs of size4 to 4 LMIs of size 4). ForN = 5, the size of
£ becomess4, etc., which is already very bulky in terms of computatiocadnplexity. Theorerhll
instead will let one deal with much highaf without any problems on a normal computer.

Notice that Theorenil1 only provides sufficient conditior, ithe multi-agent system might
achieve consensus but the LMI test might still fail. In orderhave more chances of getting
a solution, one can either increaks¢give more degrees of freedom to the Lyapunov candidate
function), or increasel (embed the given polynomial functions into a space of patyiads of
higher degree). Both options of course imply a higher comiarial cost.

In the next section, we explore whether it is possible tohertreduce the computational
complexity.
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5. VARIATION ON THE MAIN RESULT

We now introduce a generalised version of the Kalman-YakidhePopov (KYP) lemmé.[31]. This
lemma turns a parameter-depending LMI into a parametexgieddent one.

5.1. The Kalman-Yakubovic-Popov lemma

The Kalman-Yakubovic-Popov lemma or KYP_[31] is a widelyeadmiated result for dynamical
systems that allows turning frequency-dependent inetigginto frequency-independent ones, by
exploiting a state-space formulation. It turns out thathsacesult can be adapted and generalised
to inequalities depending on any scalar parameter. Nawelywyill use the following generalised
version of the KYP.

Lemma JGeneralized KYP[9])
Consider

n
M(&) = Mo+ _ &M, (20)
=1

with ¢ € R a vector of decision variables and; = M,” € Rrv*nv =1, ... n. The quadratic
constraint B
$(0) " M(€) ¢(0) < 0for 0 € [0,0] (21)

is verified if and only if there exisD = D' = 0 andG = —G ' such that

{g:}M(é)[é DHB gr{(gfgigg (Q+§£D+QH£1 %]w 22)

with A ,B, C andD such that

$(0) =D+ COI(I — AOI) ™' B = 01 * [ (23)

A B
¢ D
where the operator implicitly defined above is known as the Redheffer produ8j[Zhe lemma
still holds if the sign< in (1) is replaced by: in this case replace with < in (22).

5.2. Second main result

Let us define

A= max {Ai}, A=2£gN{Ai}- (24)

m.
2<i<
Then, for € [\, A, the following set of LMIs
S 6L -0 (25)

j=1
(3, 7@+ > (#/(TTLjAg + ATL,T + TTL;T)+
GITYTT LAy + A] L;iT) + €6/ (TT L) <0
“embeds” the set of LMIs if{13) an@(IL5) (notice that we havaved from a discrete set of values
to a continuous interval which includes them all). SubsetjyeLemmaB can be used to turn the
9-dependent LMIs in[(25) an@ (R6) into parameter-independeas. The dependence of the terms
in 28) and[(26) fromd (which is ultimately);) is polynomial, so we need to define

(26)

b, (0) = |:9cei1((l+1)/2)IV’ geell(t+1/2-1p IV]T 27)
which requires
bt ~ 0 _
Au:Uy®In7 Bl/: |: ( 11)><1 :| ®In7
(28)

~ Il/ N 01/><1
N R L L
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whereU, € R**¥ is a matrix containing’s in the first upper diagonal artitk elsewhere, and = n
for (29) andv = p — 1 for (26). We can now formulate the second main result.

Corollary 1
Consider[(Y) with givenV, A,, A, andP statisfying Assumptionl1; excluding the first eigenvalue
of P, which is equal t®, we have thap < \; < A, withi =2, ... N. If for a chosen € N, there
existr; € R, and matrices.; = L, € R"*", and there exisD,,,G,, € R**", D, =D, >0
andg,, = —G,)_such that[(T4) holds and

([ G Dy ] bT| P RE B G R D g

* —2)\D,, 3

A, B, (29)

for k = 1,2, with vy = n, v, = p— 1, and withA4,,, B, , C,,, D,,, ¢., defined in[(ZB),[(27), and
My, M, defined by
l
Sun (M) T Midy, (M) = =Y NI (30)
j=1

) ¢V2 ()‘i)TMQ(bVQ ()‘1): )
i, Tij+Z§.:1(Ag(rTLjAa+A§Ljr+rTLjr)+Ag“(rTLjAb+A;Ljr)+eAg(rTLjr))nT,

(31)
wheree > 0, ' = [0,x1 In, 0y x(p—n—2)] (i.€.T'x; = x;) andIl = [0(,—1)x1 I,—1],
thenlim;_, ||z; — z;|| =0, Vi, j € {1, ..., N} (Probleni1).
Proof
A direct application of Lemma]3 fol/; and M, implies that the hypotheses of TheorEin 1 are
satisfied if the hypotheses here are. O

With this corollary, we replace the two sets of — 1 LMIs of size n and p — 1, with only
two LMIs of matrix sizen ceil((I + 3)/2) and(p — 1) ceil((I + 3)/2). This is an interesting result
because the computational complexity is no longer depgnatinV, i.e. the number of agents. On
the other hand, the choice of a biggevillimprove the chances of solving the LMIs for high values
of N.

Remark 1
The matrices\/; and M, in Corollary(d are implicitly defined by (30) and (31). In orde help the
understanding of the paper, here are provided the expkipiessions of\/; for [ = 3:

0 3L3 O M1,
Mi=—| 3Ly Lo Ly |, 6= | ML (32)
0 1L, 0 I,
andl = 5:
0 1Ly 0 0 NI,
1 1 2
sLs Ly 5L3 0 AiLy
—__ | 2 2 i) = ¢
My = 0 $Ls Lo 3Ly |’ 9v(Xi) = Al | (33)
0 0 %Ll 0 I,
6. EXAMPLES

In order to provide a few challenging examples of applicatié the proposed method, we focus
on a problem widely studied in the nonlinear dynamics comiyunamely the synchronisation of
oscillators [30/_34]. The approach here is of course nurakend different (or complementary)
with respect to those found in such a literature, where theatie is usually to find a control

law and then prove stability. Here we just propose a conawldnd we test numerically whether
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it will make the subsystems converge or not. We first considerfamous examples of nonlinear
systems, namely the Van der Pol oscillator [14] and the Loegtractor([23], and we conclude with
an example based on the dynamics of spintorque oscillat@is All the LMI problems have been
coded in Matlab using Yalmip[21], and using SeDuMil[33] ak/en

6.1. Van der Pol oscillator

We consider a system & agents of equation

{ Ti1 = Ti2+ 0Ty (34)

x-i72 = /L(]. — Zil)xi,g — 41 —Cry
for whichn = 2, with r; = —(xi_Ll + CL‘:L'_LQ) + 2(1‘1'71 + xi72) — ($i+171 + xi+172) (Where the first

indexi is to be considered as moduM, i.e.0 — N, N + 1 — 1). The degree of the polynomial is
d= 3, for Wthth = [1, Ti1, Ti,2, 33'2271, Ti,1%4,2, QC?_’Q, L]Z‘Z‘-{l, 33'2271331‘72, Zi_rllﬂiz, LL‘Z‘-{Q]T. For

L_f00 10000 0 00
“=10 -1 4 0000 —u 00|

4 _[0 20 20 0000000
®= 10 —=2¢ =2¢ 00 0 0 0 0 0|’
(35)
1 -05 0 0 0 —05
05 1 —05 0 0 0
P=1 . ) . )
—05 0 0 0 -05 1

(34) fits within the framework of{7). Notice tha is a symmetric graph Laplacian, whose (real)
eigenvalues are guaranteed to be in[the] interval by the Perron-Frobenius theorémi[11]. The
numerical values are taken arbitrarily as= 0.5, N = 8 and! = 8. The interconnection between
each oscillator is given by two terms. The first ternviswhich we set arbitrarily as = 0.1; it
gives a repulsive contribution which destabilises theeystThe second interconnection ternm,is
which can be interpreted as a proportional feedback gainnbavant to tune in order to achieve
consensus. The interconnection structure is depictedguar€lil. Forc = 0, it can be verified that

Figure 1. Interconnection graph for the coupled Van der Baillators.

the system is unstable and the states diverge to infinityitively, ac high enough should make the
agents converge to one another. By running a dichotomiclkearthe value of, it has been found
that the smallest value for which a solution for the LMIs inr@tary[1 is found, guaranteeing the
convergence, i8 = 4.8. Figurd2 and Figuriel 3 show the evolution of the system duaisignulation
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states

0 2 4 6 8 10 12
t

Figure 3. Value of the formation Lyapunov functidhfor the coupled Van der Pol oscillators-£ 4.8).

for this value ofc, the individual states are shown, together with the value@Lyapunov function
over time.

Due to the fact that Corollafy 1 is conservative, the mininuatue ofc guaranteeing consensus is
probably overestimated. In fact, the simulations show egagaconvergence also for slightly smaller
values: we say “apparent” because it is not possible to piteeeconvergence for all the possible
initial conditions by means of simulation. In any case, tuistexample, Corollari]1 provides an
efficient and reliable method to safely tune the controller.

6.2. Lorenz attractor
We now consider a system &f agents of equation
&i1 = o01(Ti2 — xi1) — CTin

Tio =mi1(pr — Ti3) — Tig — Cria (36)
Ti,3 = Ti1%i,2 — BiTi3 — €33
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with r; ; = —z;-1; + 22, ; — zi+1,; ( =1,2,3, again the index is taken moduloN). The
equations fit in the framework dfl(7) far= 2, n = 3 and with a pattern matri® that has the same
structure as the one ii(35). We arbitrarily get= 28, oy = 10, 5; = 8/3, N = 4 andl = 4. This
time Theorerfll has been used; for the arbitrary value-e60, the LMIs in Theorerill are satisfied,
successfully yielding a formation Lyapunov function andglproving that a consensus is eventually
reached. FigurEl4 and Figure 5 again show the evolution o$ystem during a simulation, with
individual states. The value of the Lyapunov function i®alsrified to be decreasing. Notice that
the Lorenz oscillator does not converge to a limit cycle b thaotic trajectory.

states

0 0.05 0.1 0.15 0.2 0.25 0.3
t

Figure 4. Evolution of the state of the coupled Lorenz system

50 -
40

30 -
220 4 AN
X <
10 A

0 -

-10 -
20 0 20 30
0 1 0 10
20 20 10

Figure 5. Tridimensional visualisation of the state of tlmumed Lorenz systems of the example (the
trajectories eventually converge to the consensus taject

6.3. Spintorque oscillators

Spintorque oscillators are microscopic devices with saveotential applications in modern
radiofrequency electronics [16]. It is a relevant reseanrctblem to investigate how such oscillators
can be syncronised [43,42].
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The simplified dynamics of a network &f coupled spintorque oscillators can be described by
equations of the kind [42]
{ TL = _g’r'r'r,i (37)

¢ =1+ 7‘1'2 - grbd)r,i

withr.; = — 5= >y Hriande,; = - >4 ®j + ¢i. This definition implies a different
interconnection topology compared to the previous exasypl@mely one given by the pattern

. -1 1 S S I
N-—-1 N-—-1 N—-1 N-—1
S T e T A T
N—-1 N-—-1 N—-1 N-1
AR SRR U IS T
N—-1 N-—-1 N-—-1 N—-1

Figure 6. Interconnection graph for the spintorque odoitlaexample.

The valueg;, andg, are unknown feedback control gains, for which it is intéresto find values
that guarantee the synchronisation of the oscillators.rdieroto do so, it is convenient to rely on
Theorentl, because the pattétrin (38) has identical non-zero eigenvalues, which autarahyi
turns its set ofV — 1 LMIs into just one LMI (regardless aV).

By executing a random seach on the valueg,0fnd g,, it can be found that fog, = 20 and
gs = 0.1 the LMIs in Theoreni ]l have a solution with= 2, proving the global convergence of the
oscillators. Figurgl]7 shows a simulation in the cas&/cf 8.

Notice that in this case, we have been able to choose a valwehich is much smaller compared
to N (in fact, for! = 2 we are able to prove convergence for asy. This is probably due to the
highy connected topology that has been chosen, where egeijator is connected to all of the
others. This also suggests that in general the nurindeem be reduced if the interconnection among
the agents is increased.

7. CONCLUSION

We have introduced a new method for proving convergencerwarmsus of multi-agent system with
polynomial dynamics. This method is the generalisatiorhefdnalysis methods in [25] and it has
proven effective in test cases featuring dynamical ogoilta Further research will investigate if the
limitation given by the hypothesis of homogeneity and timeariance of the interconnection can
be dropped, for example following the approachiof [24, 15].
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