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Abstract

In this paper the generation of random fields when the domain is much larger than the
characteristic correlation length is made using an adaptation of the Karhunen–Loève
expansion (KLE). The KLE requires the computation of the eigen-functions and the
eigen-values of the covariance operator for its modal representation. This step can be
very expensive if the domain is much larger than the correlation length. To deal with
this issue, the domain is split in sub-domains where this modal decomposition can be
comfortably computed. The random coefficients of the KLE are conditioned in order to
guarantee the continuity of the field and a proper representation of the covariance
function on the whole domain. This technique can also be parallelized and applied for
non-stationary random fields. Some numerical studies, with different correlation
functions and lengths, are presented.

Keywords: Random fields generation, Karhunen–Loève expansion, Large scale
random fields

Introduction
The representation of fluctuating parameters by means of random fields is very common
inmany scientific domains. Samples of stationary random fields can be generated through
a sum of harmonic functions with random uniform phase and amplitude depending on
the spectral density [1,2]. This kind of representation can be performed in the spec-
tral domain [3–5], leading to the spectral representation method that can be efficiently
computed using the FFT [6]. In case of multi-dimensional random fields, the spectral rep-
resentation has been combined with the turning bands methods [7] for a more efficient
computation [8]. In a huge domain the numerical cost can be a major issue. In [9], to deal
with this problem, the domain is split in several small sub-domains in which the samples
of the random fields are generated. Then, samples on the whole domain are obtained by
using an overlapping technique.
Auto-regressive models, in which a state only depends linearly on its own previous

values, can also be employed to represent random fields [10–13]. The linear dependency
coefficients can be computed by maximizing a likelihood function or by solving a linear
system involving the inversion of a matrix representing the discretized covariance.
Other methods use the direct decomposition of the covariance to simulate generation

of the field. The Cholesky decomposition of the discretized covariance can be used to
correlate a set of random variables representing the discretization of the random field
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[14]. In some methods, when the random generation is required on a large size domain,
polynomial approximations of the square root of the covariance are computed [15,16].
The covariance decomposition can be combined with a ARMA representation to improve
the computational efficiency [17].
Another way for generating random fields is the Karhunen–Loève expansion (KLE,

[18,19]), which is based on the covariance kernel modal decomposition on a finite
domain [20,21]. The KLE has been extensively used for representing random fluctuating
properties in different engineering problems [22–24]. IWhile the spectral representation is
optimal in mean-square sense on an infinitely large domain, the KLE is optimal on a finite
domain. Moreover, one of the main advantages is that this expansion can also be directly
applied for non-stationary processes. Different numerical methods exist for solving the
covariance decomposition for the KLE [25,26]. In the case of stationary covariances, the
modal functions can be approximated by means of Fourier transforms [27–29] to reduce
the computational complexity, but the application of the KLE in a very large domain
compared to the correlation length still remains unaffordable. For a given mean-square
error, The number of needed terms in the KLE grows as shown in [30], with the size of
the domain. In some applications, for avoiding the KLE decomposition, known families of
polynomials are used to parametrize the random field [31,32], but they do not minimize
the mean-square error as the KLE does.
The aim of this paper is to generate samples of a random field using the KLE, when

the size of the domain is much larger than the correlation length and a direct KLE is not
affordable because of the computational effort. The technique presented in [33], that deals
with the representation of cross-correlated random fields using the KLE, is here adapted
to overcome this issue. At first the whole domain is split in small sub-domains (with a
size of few correlation lengths). The modal decomposition of the covariance operator is
computed in a small sub-domain where the computational effort is easily affordable and
a reduced number of terms are needed for the KLE. Then, independent random samples
are generated in each sub-domain and, finally, the assembling is made by conditioning
the KLE coefficients to obtain continuous samples of the random fields having the pre-
scribed covariance function. In [33] the authors model a set of correlated random fields by
imposing a correlation between the KLE coefficients of each random field. In this work,
the same idea is used for correlating sets of KLE coefficients related to local regions of a
large domain.
In this paperGaussian randomfields with different correlation structure are considered.

Non-Gaussian random fields can be obtained by using the Rosenblatt transform [34] that
allows to modify a Gaussian random field according to a chosen marginal first order
probability density function (memoryless transformation). This transform also changes
the correlation structure although, in most of the cases, one can deal with this issue by
modifying the original correlation function as done in [35–37], where stationary fields
are transformed into non-stationary fields. In other methods, non-Gaussian fields can be
obtained through transformations with memory [38]. These aspects are not discussed in
this paper, where only Gaussian fields are considered.
The proposed method is firstly presented for the case of 1-dimensional (1D) random

processes (“Karhunen–Loève expansion for large scale 1D random processes” section)
with an example of the application of the method. Some considerations about the con-
tinuity of the generated samples are discussed in “Continuity of the generated samples”
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section. The method is then generalized to 2D and 3D random fields (“Generation of
multi-dimensional random fields” section). Then, the generation of non-stationary fields
is discussed in “Extension to non-stationary random fields” section. In this work only
random fields with values inR are considered. Some numerical applications are provided
(“Numerical applications” section).

Karhunen–Loève expansion for large scale 1D random processes
In this section the Karhunen–Loève expansion is adapted to generate samples of a large
scale 1D stationary random process. In “Standard 1D Karhunen–Loève expansion” sec-
tion, the generalities of the standard KLE, applied on a domain of size equal to L, are
presented.
For simplicity, the method is firstly illustrated for a domain composed of just two sub-

domains (“Principles of the generationmethodon a large domain” section). The continuity
of the generated samples is investigated in “Continuity of the generated samples” section.
Then the extension to a domain composed of an arbitrary number of sub-domains is
discussed in “Extension of the expansion on an arbitrary large domain” section.

Standard 1D Karhunen–Loève expansion

Let (�,F , P) be a probability space and f (s, θ ) with θ ∈ � a centred stationary random
field, indexed by the variable s, whose covariance function C(|s − t|) is equal to:

C(|s − t|) = E[f (s, θ )f (t, θ )] (1)

For simplicity, the case of a stationary random field is treated in this section. An extension
to non-stationary fields is given in “Extension to non-stationary random fields” section.
For the application of the Karhunen–Loève expansion [18], the first step is an eigen-

value decomposition of the covariance operator:
∫ L

0
C(|s − t|)ϕi(s)ds = λiϕi(t) (2)

The deterministic spatial functions ϕi(s) and the coefficients λi are the eigen-functions
and the eigen-values of the covariance kernel operatorC(|s−t|) on the domain [0, L]. Note
that the eigen-values are real and non-negative because the covariance is semi-positive
definite:

∫ L

0

∫ L

0
C(|s − t|)g(s)g(t)dsdt ≥ 0 (3)

for any function g(s) having finite L2 norm with s ∈ [0, L]. The eigen-functions ϕi(s)
represent a complete orthonormal basis functions set:

∫ L

0
ϕi(s)ϕj(s)ds =δij

∞∑
i=0

ϕi(s)ϕi(t) =δ(s − t)
(4)

where δij represents the Kronecker delta and δ(s) is the Dirac distribution function. The
second equation is due to the completeness of the eigen-functions set [39].
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The random field f (s, θ ) and its covariance are therefore expressed as a truncated sum
of N terms on the domain s ∈ [0, L]:

f (s, θ ) ≈
N∑
i=1

√
λiϕi(s)ηi(θ )

C(|s − t|) ≈
N∑
i=1

λiϕi(s)ϕi(t)
(5)

whereηi(θ ) are randomcentred uncorrelated (Gaussian if the process isGaussian) random
variables with unit variance defined as the projection of the random process onto the KLE
basis:

ηi(θ ) = 1√
λi

∫ L

0
f (s, θ )ϕi(s)ds

E[ηi(θ )ηj(θ )] = δij

(6)

In case of non-Gaussian processes, the probability distribution of the KLE coefficients
can be obtained by projecting an available set of realisations of the fields onto the KLE
basis [40] or by an iterative procedure [41,42].
When the random field is stationary, the KLE modes are alternatively symmetric or

skew-symmetric as demonstrated in [27,43]:

ϕi(s) = ±ϕi(L − s) (7)

An odd (even) i corresponds to a symmetric (skew-symmetric) mode.
The mean-square truncation relative error ε2KL is related to the sum of the eigen-values

ε2KL =

∫ L

0
E
[(
f (s, θ ) −

∑N
i=1

√
λiϕi(s)ηi(θ )

)2]ds
∫ L

0
E[f (s, θ )2]ds

= 1 −
∑N

i=1
λi∑∞

i=1
λi

(8)

The mean square truncation error decreases monotonically with the number of terms
retained in the expansion. This rate depends on the decay of the spectrumS(ω) of covari-
ance operator [44], where ω indicates the frequency. The larger the rate of the spectral
decay is (which means the more correlated the process is), the smaller the number of
terms needed in the expansion for a given error.
When L/lc → ∞ (where lc is the correlation length) theKLE is equivalent to the spectral

representation of random fields [30]. Equation (2) can be analytically solved in a few cases,
such as rational spectra processes as detailed in [45] or in case of Slepian processes where
the eigen-functions are finite trigonometric polynomial functions [46].However, generally
the problem has to be solved numerically. When the random field is discretized into ns
uniformly spaced points over a domain, Eq. 2 leads to a ns × ns eigen-value problem. This
corresponds to the optimal linear estimation method [25], which is used in this paper.
When the domain is huge and a fine discretization of the field is needed the eigen-problem
is very heavy to solve, havingO(n3s ) complexity.
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Other methods, described and compared in [26] can be used to approximate the eigen-
functions more efficiently, such as collocation and Galerkin integration [26]. In this case,
the eigen-functions are approximated by a set of ñs < ns basis functions, leading to
ñs × ñs matrix generalized eigen-problem whose complexity isO(2ñ3s ). However, since ñs
increases with the size of the domain, solving the eigen-problem still remains an obstacle
for large scale random fields. In the frame of this work, any numerical method can be used
of solving the KLE but, for simplicity, the optimal linear estimation method is employed.

Principles of the generation method on a large domain

The general principles of the random fields generation method, which is the main object
of this paper, are highlighted in this section through the explanation of a simple case.
In this section the eigen-functions and eigen-values calculated in Eq. (2), defined for

s ∈ [0, L], are used to generate a sample of the randomprocess in a domainwith s ∈ [0, 2L].
The size of the domain is thus doubled. The method can be straightforwardly extended to
an arbitrary-sized domain by iterating the technique presented in this section. The general
idea is to firstly generate two independent samples, each covering half of the domain, and
then impose a correlation between the KLE coefficients of the two samples. At the end,
continuous samples of the process on the whole domain with a respected correlation
structure are obtained.
f̄1(s, θ1) and f̄2(s, θ2), with θ1, θ2 ∈ �, are two independent samples sets of the random

field f (s, θ ) introduced in the previous section (see the black curves in Fig. 1):

f̄1(s, θ1) =
N∑
i=1

√
λiϕi(s)ηi(θ1) with s ∈ [0, L]

f̄2(s, θ2) =
N∑
i=1

√
λiϕi(s − L)ηi(θ2) with s ∈ [L, 2L]

(9)

Each one of the two KLE coefficients sets ηi(θ1) and ηi(θ2) is composed of normalized and
uncorrelated random variables as stated in Eq. (6). Since the two sets are independently
generated, they are uncorrelated, implying the decorrelation of the random fields:

E[ηi(θ1)ηj(θ2)] = 0 ∀i, j =⇒ E[f̄1(s, θ1)f̄2(t, θ2)] = 0 (10)

The expression of the covariance function C(|s − t|) of the field f (s, θ ) is known for
0 ≤ s, t ≤ 2L. K denotes the N × N matrix, here called coupling matrix, whose elements
are given by the projection of C(|s − t|), in the domain s ∈ [0, L] and t ∈ [L, 2L], onto the
basis ϕi(s):

Kij = 1√
λiλj

∫ L

s=0

∫ 2L

t̃=L
C(|s − t̃|)ϕi(s)ϕj(t̃ − L)dt̃ds

= 1√
λiλj

∫ L

s=0

∫ L

t=0
C(|s − t − L|)ϕi(s)ϕj(t)dtds

(11)

The matrix K represents the correlation that the two KLE coefficients sets (completely
uncorrelated since independently sampled) should have in order to represent a correlated
process on the complete domain.Thismatrixwill be therefore used to impose a correlation
structure between the two KLE coefficients set.
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Fig. 1 Example of generation of a random process with Gaussian correlation. Before (black solid line) and
after (red dashed line) conditioning. Correlation length lc = 0.15L. KLE error ε2KL = 0.001. Number of KLE terms
N = 12

L denotes the lower triangular matrices defined through Cholesky decomposition as:

I − KTK = LLT (12)

where I is the N × N identity matrix. Note that the matrices K and L are defined and
used in [33] for generating sets of correlated random fields. In this work they represent
the coupling between two sub-domains belonging to a large domain.
The positive definiteness of the matrix I − KTK is demonstrated in B. Note that the

numerical cost to perform this Cholesky decomposition is not related to the size of the
whole domain: it is related to the size of the sub-domain L and the KLE truncation error
ε2KL (which determines the number of terms N ).
H is a N -dimensional column vector gathering all the KLE coefficients ηi(θ ). Therefore

the matrices K and L are used to condition the second KLE coefficients generation set:

H̃(θ2, θ1) = KTH(θ1) + LH(θ2) (13)

This new set of coefficients η̃i(θ2, θ1), gathered in the vector H̃(θ2, θ1), is then used to
generate samples of the random fields f̃ (s, θ1, θ2) defined on the domain [0, 2L]:

f̃ (s, θ1, θ2) =
⎧⎨
⎩
∑N

i=1
√

λiϕi(s)ηi(θ1), if s ∈ [0, L]∑N
i=1

√
λiϕi(s − L)η̃i(θ2, θ1), if s ∈ (L, 2L]

(14)

An example of the generation by doubling the size of the domain is shown in Fig. 1 for
a random process characterized by a Gaussian correlation function with the correlation
length equal to 0.15L and a KLE truncation error set to 0.001 (which leads to 12 retained
terms). As shown, in the second part of the domain the realization is modified according
to the generation in the first part of the domain. Note that themodification effect ismostly
localised near the breaking point s = L, while it is weak far from this point.
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Correlation structure across the coupled sub-domains

In Eq. (14), the samples are piecewise generated in the two sub-domains. The KLE coeffi-
cient set related to the second sub-domain has been correlated to the first one in Eq. (13).
This correlation imposed to the KLE coefficients sets determines the cross-covariance

between the two sub-samples:

E[ηi(θ1)η̃j(θ2, θ1)] =Kij =⇒

E[f̃ (s, θ1, θ2)f̃ (t, θ1, θ2)] =
N∑
i=1

N∑
j=1

Kij
√

λiλjϕi(s)ϕj(t − L)

=
N∑
i=1

N∑
j=1

(∫ L

0

∫ 2L

L
C(|s′ − t ′|)ϕi(s′)ϕj(t ′ − L)dt ′ds′

)
ϕi(s)ϕj(t − L)

(15)

for s ∈ [0, L] and t ∈ (L, 2L]. In practice, the correlation structure across the two sub-
domains is approximated under its projection onto the KLE basis ϕi(s). This basis, as
explained in “Standard 1D Karhunen–Loève expansion” section, is optimal for the repre-
sentation of the covariance C(|s − t|) in one sub-domain (Eq. 2). As said the basis terms
are selected according to a truncation error decaying as the spectrumS(ω), which is the
Fourier transform of the covariance C(|s − t|).
When N → ∞, because of the basis completeness (Eq. 4), the expression in Eq. (15)

is exactly equal to C(|s − t|). Otherwise, in the same way as the standard KLE, the cross-
covariance is approximated. The cross-spectrum of the two sub-samples is equal to
S(ω)e−ıωL. The more similar the decays ofS(ω) and cross-spectrum are, the fewer extra
terms are needed for a good approximation of the correlation structure.
While thematrixK imposes a correlation between two sets of KLE coefficients (coupling

effect), the matrix L guarantees that the new KLE coefficients H̃(θ2, θ1) are uncorrelated
between them, i.e. Eq. (6) is still satisfied. This means that the KLE representation of the
correlation structure, in the second sub-domain, is preserved:

E[H̃(θ2, θ1)H̃(θ2, θ1)T] = I =⇒

E[f̃ (s, θ1, θ2)f̃ (t, θ1, θ2)] =
N∑
i=1

λiϕi(s − L)ϕi(t − L)
(16)

for s ∈ [L, 2L] and t ∈ [L, 2L].

Continuity of the generated samples

Let us suppose that the process f (s, θ ), defined in “Standard 1D Karhunen–Loève expan-
sion” section, is almost surely continuous, i.e. almost all its sample paths are continu-
ous [47], for s ∈ [0, L]:

P

⎡
⎣ ⋂
t∈[0,L]

{
lim
s→t−

f (s, θ ) = lim
s→t+

f (s, θ )
}⎤
⎦ = 1 (17)

If this condition is satisfied, then the KLE eigen-functions ϕi(s) are continuous on their
domain. Note that the almost-sure continuity condition is supposed (in the sub-domain)
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for simplicity. When this condition is not fulfilled, the KLE can still be used. Concerning
the samples piecewise-generated in Eq. (14), the continuity is not automatically ensured at
the breaking point (s = L). In this section, the continuity of the sample paths is investigated
in this location.
Let us introduce f̃ (s, θ1, θ2) as the two random variables corresponding to the left and

right limits of the random fields calculated at the breaking point locations (s = L):

ll(θ1) = lim
s→L− f̃ (s, θ1, θ2) =

N∑
i=1

√
λiϕi(L)ηi(θ1)

lr(θ1, θ2) = lim
s→L+ f̃ (s, θ1, θ2) =

N∑
i=1

√
λiϕi(0)η̃i(θ2, θ1)

(18)

The following continuity error εc is defined as:

εc = E[(ll(θ1) − lr(θ1, θ2))2]
2E[ll(θ1)2]

= 1 − E[ll(θ1)lr(θ1, θ2)]
E[ll(θ1)2]

= 1 −
∑N

i=1
∑N

j=1 Kij
√

λiλjϕi(L)ϕj(0)∑N
i=1 λiϕi(L)2

(19)

where the expectations are calculated using Eqs. (5) and (15). This error compares the
variance of the difference between the two-sided limits to the variance of the limits. In
other words, if the covariance of the two limits is equal to their variance, the two limits
are equal. When this error is small enough, one can assume that the discontinuity jump,
at the breaking point, is small compared to the variance of the process.
Note that, because of the completeness of the KLE basis (Eq. 4), whenN → ∞ the error

tends to zero, making equal to one the probability that the left and the right limits take
the same value (satisfying the continuity at the breaking location s = L).
In numerical applications, the random process is discretized in ns steps with discretiza-

tion step equal to 
l = L
ns

. The continuity error εc can still be evaluated as:

ε̄c = 1− E[f̃ (L, θ1, θ2)f̃ (L + 
l, θ1, θ2)]
E[f̃ (L, θ1, θ2)f̃ (L − 
l, θ1, θ2)]

= 1−
∑N

i=1
∑N

j=1 Kij
√

λiλjϕi(L)ϕj(
l)∑N
i=1 λiϕi(L)ϕi(L − 
l)

(20)

In practice, the covariance evaluated across the breaking point is compared to the covari-
ance at the lag equal to 
l for s = L (at the border of the first sub-domain). For instance,
when the correlation at the lag equal to 
l is very weak, just a few terms in the sum will
make the error ε̄c small. The decay of the continuity error is numerically evaluated in
“Inuence of the correlation kernel” section for different correlation structures.
Note that an overlapping method for representing large scale random fields is proposed

in [9]. This overlapping strategy can be applied to any random fields generation methods
(KLE included). By overlapping the sub-domains the continuity issues are avoided, but an
error on the correlation representation is introduced. In this paper, the correlation across
the sub-domains is imposed. Then the continuity error that can be reduced by adding
more terms in the expansion. Since the modal decomposition is affordably performed in
one sub-domain, adding more terms in the expansion is not a numerically expensive task.
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Extension of the expansion on an arbitrary large domain

The sequential extension on an arbitrary long domain is straightforward.ML is the length
of the domain composed of M sub-domains. M independent realizations are generated
in each sub-domain. Then, the M independently generated random coefficients sets are
sequentially correlated:

H̃(m)(θm, θm−1, . . . , θ1) = KTH̃(m−1)(θm−1, . . . , θ1) + LH(m)(θm) (21)

with m = (2, . . . ,M) and H̃(1) = H(1)(θ1). This generation implies that, in each sub-
domain, the random processm is conditioned by them − 1 previous parts:

f̃m(s, θm, θm−1, . . . , θ1) =
N∑
i=1

√
λiϕi(s − (m − 1)L)η̃i(θm, θm−1, . . . , θ1) (22)

with s ∈ ((m− 1)L,mL]. By assembling all the parts f̃m(s, θm, θm−1, . . . , θ1), with f̃1(s, θ1) =
f1(s, θ1) generated as in Eq. (9), samples of the process f̃ (s, θ1, . . . , θM) are generated on the
whole domain.
In this section the generation in each sub-domain is performed sequentially. Some

aspects concerning the parallelisation are discussed in “Parallel computing of the random
field generation” section.

Generation of multi-dimensional random fields
In this section, the random fields generation method presented in “Karhunen–Loève
expansion for large scale 1D random processes” section for 1D processes is generalized to
2D and 3D random fields. Note that the term “multi-dimensional” refers to the dimension
of the indexing variable of the fields. In this work only random fields with values in R

are considered. The principle of the method is essentially the same as what has been
presented in “Standard 1D Karhunen–Loève expansion” section. The only difference is
that, in case of multi-dimensional random fields, one sub-domain must be conditioned
with more sub-domains along the different directions (and not only one direction as for
1D processes).
In this section the generationmethod is described for a general case. If the tensorization

is possible, the computational cost for themodal decomposition of the covariance and the
randomfield generation can be reduced. The case generationwith tensorizable correlation
is reported in A.
f (s, θ ) is centred random field, indexed by the variable s ∈ R

d (with d being the dimen-
sionality), with covariance function equal to C(s, t).
For the application of theKLE, over the domainD = [0, L]d , themodal decomposition of

the covariance operator is performed as in Eq. (2) withmulti-dimensional eigen-functions.
Then,N eigen-values and eigen-functions are retained in the expansion to obtain realiza-
tions of the field on the domain D as in Eq. (5).
In this section a larger domain of size D̂ = [0,ML]d is considered. The steps of the

method are here summarized. For clarity purposes, a 2D example is illustrated step-by-
step.

• Step 1: Domain subdivision
The first step consists in the domain subdivision into Md sub-domains Dk (with
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Fig. 2 Example of a 2D domain subdivision. Sub-domain numbering indicated in the grid

k = 1, . . . ,Md), each one Ld sized. An example of the domain subdivision in a 2D
case withM = 3 is shown in Fig. 2.

• Step 2: Determination of the coupling matrices
The next step is the computation of the coupling matrices. Each sub-domain is con-
nected with the surrounding sub-domains. K(pq) indicates the coupling matrix con-
cerning the sub-domains Dp and Dq . Its elements are calculated as:

K (pq)
ij = 1√

λiλj

∫
s∈Dp

∫
t∈Dq

C(s, t)ϕi(s − op)ϕj(t − oq)dsdt (23)

with ok = [min s1, . . . ,min sd] | s ∈ Dk . Note that, when the field is stationary,
K(pq) = K(qp)T. Moreover, two coupling matrices are equal if the relative posi-
tion between their respective sub-domains is the same in stationary conditions. For
instance, with respect to Fig. 2, K(12) = K(23), K(14) = K(47), K(15) = K(59), and
so on. In this way the number of coupling matrices, and the consecutive Cholesky
decompositions, is reduced.

• Step 3: KLE coefficients conditioning
The third step is the conditioning of theKLE coefficients sets in each sub-domainwith
respect to its neighbour sub-domain. At first, the order in which the KLE coefficients
sets are conditioned is chosen. Different strategies can be adopted. For example,
referring to Fig. 2, the order can be chosen by simply using the domain numbering.
Then, each set is generated and conditioned with the sets of all its neighbour sub-
domains that have been already generated.

Dk is the sub-domainwhich is connectedwith nk sub-domains already generatedwhose
indices are gathered in the set Ik . For the sub-domains already generated the following
equation holds:

E[H̃(p)(θp)H̃(q)T (θq)] = K(pq) (24)

where p, q ∈ Ik and H̃(p)(θp) is a vector gathering the KLE coefficients in the sub-domain
Dp.
A linear system of nk coupled matrix equations is defined such that each equation takes

the form:

Xq +
∑

p∈Ik\{q}
K(pq)Xp = K(qk) (25)
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where q ∈ Ik and Xq are the nk (N × N sized) matrix unknowns. There are nk coupled
matrix equations, each oneN×N sized. This leads toN linear systems of equations having
the samecoefficientmatrix of sizenkN×nkN . This coefficientmatrix is symmetric positive
definite.
After its resolution, the matrix L(k) is defined trough Cholesky decomposition:

I −
∑
q∈Ik

K(kq)Xq = L(k)L(k)T (26)

Finally the set of KLE coefficients H̃(k)(θk) in the domain Dk is generated as:

H̃(k)(θk) =
∑
q∈Ik

XT
qH(q)(θq) + LH(k)(θk) (27)

where θk = [θ1, . . . , θk].
The structure of the linear system ensures that the cross-correlation between the neigh-

bour sets is taken into account: by using the expectation of Eq. (24) and the definition of
the system in Eq. (25) it can be proven that: E[H̃(k)(θk )H̃(q)T (θq)] = K(kq). This ensures
the respect of the correlation structure in the same way as for the 1D case (Eq. 15).
As for the computation of the coupling matrix described in the previous step, if the

field is stationary, the linear system solution and the Cholesky decomposition are the
same if two sub-domains take the same relative position with respect to their neighbour
sub-domains previously generated. For example, with respect to the sequential generation
shown in Fig. 2, this situation occurs for the sub-domains 2 and 3, 4 and 7, 5 and 8, and so
on.

• Step 4: Random field generation

The last step is the generation of the field in each sub-domain:

f (s, θk) =
N∑
i=1

√
λiϕi(s)η̃(k)i (θk) with s ∈ Dk (28)

Parallel computing of the random field generation
In this section the strategies to adopt for parallelizing the generationmethod are discussed.
The sequential conditioning presented above is simply applicable but, since each part is
conditioned by the previous ones iteratively, this technique is not parallelizable. When
one wants to use several processors to generate a very large sample of the field another
strategy is more advisable.
The first part of this section discusses the parallelization of the 1D processes gener-

ation technique. Then, the parallelization strategy for general multi-dimensional fields
generation is described.
In this section the parallelization is performed with respect to the indexing variable of

the random field (computation of several sub-domains at the same time). However, it is
always possible to run distributed computations along the statistical axis, if one needs to
sample several realizations of the random fields.
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Fig. 3 Example of generation of a random process with Gaussian correlation. Before (black solid line) and
after (red dashed line) conditioning. Correlation length lc = 0.15L. KLE error ε2KL = 0.001

1D processes generation parallel computing

Let us consider thatM is odd, without loss of generality. At first,M sets of KLE coefficients
are independently generated (H(θ1), . . . ,H(θM)). Then each part corresponding to an even
m is conditioned by the parts at the left and the right:

H̃(m)(θm, θm−1, θm+1) = KTH(m−1)(θm−1) + KH(m+1)(θm+1) + RH(m)(θm) (29)

withm = 2 × (1, . . . , (M − 1)/2) and R being the lower triangular matrix such that:

I − KTK − KKT = RRT (30)

The correlation structure, as in the case of the one-sided conditioning (“Principles of
the generation method on a large domain” section), is ensured by the correlation between
the KLE coefficients sets: because of the conditioning in Eq. (29), it follows that

E[H̃(m)(θm, θm−1, θm+1)H(m−1)(θm−1)] = KT,
E[H̃(m)(θm, θm−1, θm+1)H(m+1)(θm+1)] = K

(31)

In this way, each even part can be parallely conditioned and, then, the KLE coefficients
sets are used to generate the sample in each sub-domain. The coefficients corresponding
to the odd parts are not changed. Therefore onlyM − 1 coefficients sets are conditioned.
An example to show how this technique works is presented in Fig. 3 withM = 3.
Note that when M is even, the only difference is that the last sub-domain (m = M) is

only conditioned from the left side (as done in “Principles of the generation method on a
large domain” section).

Multi-dimensional fields generation parallel computing

For parallelizing the multi-dimensional fields generation method presented in “Genera-
tion of multi-dimensional random fields” section, the only difference with the sequential
conditioning technique is the sub-domains ordering. Indeed, if two sub-domains do not
interact, i.e. they are enough far to consider their correlation equal to zero, they can be
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Fig. 4 Example of parallel 2D random field generation steps. Gaussian 2D correlation function, with
correlation lengths equal to lc1 = 0.2L and lc2 = 0.1. KLE truncation error ε2KL = 0.001. Number of terms
N = 139

processed at the same time. Then the equations for the conditioning are the same as in
“Generation of multi-dimensional random fields” section.
One possible strategy is to condition, sequentially, as many not connected sub-domains

as available. Subdividing the domain in (ML)d , withM odd, a total number of 2d steps, in
which more sub-domains are parallely processed, are needed. For each r going from 0 to
d there will be

(d
r
)
steps in which the number of running processes is equal to:

nproc(r) =
(M + 1

2

)d−r (M − 1
2

)r
for

(d
r

)
steps (32)

For instance, with respect to Fig. 2 where d = 2 andM = 3, the sub-domains 1–3–7–9
are processed parallely and independently. Then the sub-domains 4 and 6 are parallely
computed, followed by the numbers 2 and 8 (computed at the same time). At the end the
sub-domain number 5 is processed.
A total number of 4 steps are needed for generating a 2D random field. This sequential

generation with parallel computing is illustrated in Fig. 4 for a case when M = 5. The
generation is performed in 4 steps. The top row of the figure shows the generationwithout
conditioning the KLE random variable, while the middle row shows the generation after
the conditioning. Note that the steps 2 and 3 cannot be combined in a single step because
the sub-domains generated in step 3 are conditioned by the sub-domains generated in
step 2, just around their corners.

Extension to non-stationary random fields
All themethods cited above concern stationary random fields. The representation of non-
stationary random fields can be achieved by modifying a stationary field (already gener-
ated) using one of the methods described in the introduction or the method proposed in
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this paper. A stationary process can be multiplied by a deterministic slowly-varying func-
tion for reproducing a non-stationary effect as in [48,49]. In [3,50] the spectral represen-
tation is extended to non-stationary processes with evolutionary power spectrum [51], i.e.
when the power spectral density can be modulated by a deterministic function depending
on the frequency and the support variable, with the possibility to improve the compu-
tation by using the FFT [52]. Concerning the ARMA method, it has been extended to
non-stationary processes by introducing time-dependent coefficients [53].
Conversely, the application of the KLE does not require that the random field is station-

ary. C(s, t) is the covariance of a non-stationary random field. After splitting the domain
of sizeML inM parts, to apply the method described in “Karhunen–Loève expansion for
large scale 1D random processes” section, the covariance decomposition has to be per-
formed in each sub-domain since the covariance kernel depends on the indexing variable:

∫ mL

(m−1)L
C(s, t)ϕ(m)

i (t)dt = λ
(m)
i ϕ

(m)
i (s) (33)

with m = 1, . . . ,M and s ∈ [(m − 1)L,mL]. The coupling matrix, defined in Eq. 11, also
depends on the domain part:

K (m)
ij = 1√

λ
(m)
i λ

(m+1)
j

∫ mL

(m−1)L

∫ mL

(m−1)L
C(s, t + L)ϕ(m)

i (s)ϕ(m+1)
j (t)dsdt (34)

with s, t ∈ [(m − 1)L,mL].
When the field is non-stationary and the variance varies along the indexing variable, it

is not possible to condition the KLE coefficients from the left and the right side, i.e. the
decomposition in Eq. 30 is not possible. For this reason the conditioning is sequential:

H̃(θm, θm−1, . . . , θ1) = K(m)TH̃(θm−1, . . . , θ1) + L(m)H(θm) (35)

with:

I − K(m)TK(m) = L(m)L(m)T (36)

Examples of generation, with M = 3 and covariance shown in Fig. 5, are illustrated in
Fig. 6.
Note that, because of covariance non-stationarity, the sets of eigen-functions (and also

their number) ϕ
(m)
i (s) and ϕ

(m+1)
i (s) related to two sub-domains can be different. For this

reason, the matrices K(m) and L(m) are not necessarily square.

Numerical applications
Example of generation on a large domain

In this section the generation of a sample of a 2D randomfield on the domainD ∈ [0,ML]2,
withM = 21 is presented. The random field is characterized by the following (anisotropic
and non-tensorizable) correlation function:

C(s, t) = exp

⎛
⎝−

√( s1 − t1
lc1

)2
+

( s2 − t2
lc2

)2
⎞
⎠ (37)

with lc1 = 0.2L and lc2 = 0.1L.
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Fig. 5 Wiener (left) and Brownian (right) bridge covariance function

Fig. 6 Example of generation of a non-stationary random process with Wiener (left) and Brownian bridge
(right) covariance. Before (black solid line) and after (red dashed line) conditioning. KLE error ε2KL = 0.001

The field is discretized into (nsM)2 steps, with ns = 100. The KLE truncation error
ε2KL is set to 0.001, giving a number of retained terms in the expansion N equal to 9600.
Using directly the standard KLE on such a large domain as the one here considered is
unaffordable: using the optimal linear estimation method [25] would require an eigen-
decomposition of a (nsM)2 × (nsM)2, i.e. 4,410,000 × 4,410,000, sized matrix.
The method described in “Generation of multi-dimensional random fields” section is

employed in this section to generate the sample. No parallel computing is performed: this
field is generated sequentially in each sub-domain.
The computational time for the generation is indicated in Table 1. Note that the com-

putation of the coupling matrices is the most step of the process. This fact is due to the
number of retained KLE terms, which determines the size of the coupling matrices and
therefore the complexity of the linear systems (solved using the Cholesky decomposition
of the coefficient matrix) formulated in “Generation of multi-dimensional random fields”
section. A sample of the random field thus generated is shown in Fig. 7.
The correlation functionof the generated randomfield is shown inFig. 8 for twodifferent

locations. The correlation structure is well respected in the proximity of the junction point
(s = [L, L]). Note that in this location the error is lower than the chosen truncation error.
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Table 1 Computational time for generating a 2D random field with correlation function as
in Eq. (37) on an extended domain [0, ML]2, withM = 21 using the conditioned KLE

Operation Elapsed time (s)

Kernel modal decomposition 56.31

Conditioning matrices computation 2220.17

Random field sampling 1351.95

Computed on Intel® Xeon® CPU E5-2695 v3 @2.30GHz. 1 processor used

Fig. 7 Sample of the random fields having the correlation function of Eq. (37), generated using the
conditioned KLE, on the domain [0, ML]2, withM = 21. The right figure presents a zoom on the left lower
corner. The black dotted lines delimit the sub-domains

Fig. 8 Correlation function of the generated random field for s1 = s2 = L and t ∈ [0.5L, 1.5L]2, on the left,
and absolute difference with the theoretical correlation on the right. The blue dotted lines delimit the
sub-domains

Computational complexity

In this section the computation time of the standard KLE is compared with the generation
method proposed in this work in the case of tensorizable and non-tensorizable correla-
tion functions. A 2D random field defined on the domain s ∈ [0,ML]d , with d being
the dimension. The modal decomposition is solved using the optimal linear estimation
method [25] inwhich the domain is uniformly discretized. Let us indicate as ns the number
of discretization steps of a segment of length L along one of the directions. The domain is
thus discretized in (nsM)d parts.
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Table2 Numerical complexity of the standard KLE and the conditioned KLE

Operation Standard KLE Conditioned KLE

Kernel modal decomposition O((nsM)3d ) O(n3ds )

Conditioning matrices computation – O(N3(3d − 1)3)

Random field sampling O(nds M
2dN) O((nsM)dN)

Non-tensorizable covariance kernel. ns number of discretization steps of a segment of length L,M number of prolongations
in one direction, d dimension,N total number of retained KLE terms forM = 1

Table3 Numerical complexity of the standard KLE and the conditioned KLE

Operation Standard KLE Conditioned KLE

Kernel modal decomposition O((nsM)3d) O(n3s d)

Conditioning matrices computation – O(N̄3d)

Random field sampling O(nds M
d+1N̄) O((nsM)dN̄)

Tensorizable covariance kernel. ns number of discretization steps of a segment of length L,M number of prolongations in
one direction, d dimension, N̄ maximal number of retained KLE terms among all the directions (dimensions) forM = 1

In the first part of this section, an example concerning a tensorizable 2D random field
is presented. In the second part, the numerical complexity of the standard and the condi-
tioned KLE are compared.
In Tables 2 and 3 the complexity of the standardKLE and the conditionedKLE proposed

in this work are compared for the case of, respectively, non-tensorizable and tensorizable
kernel covariance. In these tables N indicates the total number of retained KLE terms,
while N̄ indicates the maximal number of retained KLE terms among all the directions
(dimensions) forM = 1.

Kernel modal decomposition

Themodal decomposition complexity does not depend onMwhen the conditionedKLE is
employed. For the standard KLE, this complexity grows withO(M3), when the covariance
kernel is tensorizable, andO(M3d) when not. This is the main limit for directly using the
KLE on the whole domain.

Conditioningmatrices computation

The computation of the matrices used for conditioning the KLE coefficients, described in
“Generation ofmulti-dimensional randomfields” section, requires someCholesky decom-
positionoperations. Its complexity doesnot dependonM, but on thenumberofKLE terms
(depending on the truncation error) and the sequential prolongation strategy. In fact, the
size of the linear system in Eq. (25), that is solved with Cholesky decomposition of the
coefficient matrix, depends on the number of connections of the considered sub-domain.
The complexity, indicated in Table 2, for the non-tensorizable kernel case is referred to
the resolution of the largest linear system (the one that is associated with the sub-domain
having the largest number of neighbours).

Random field sampling

The sample generation is the only operation growingwithM when the conditioned KLE is
used: in this case the complexity grows withO(Md). The use of the standard KLE requires
a complexity, for this stage, of O(M2d), in case of non-tensorizable kernel andO(Md+1),
in case of a tensorizable kernel. Another advantage of using the method proposed in this
work, is the possibility, due to the domain splitting, of storing separately each part of the



Panunzio et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:20 Page 18 of 29

Fig. 9 Computational time of the standard KLE (blue circle markers) and the generation by KLE prolongation
(red cross markers). Tensorizable correlation function in Eq. (38) on the left. Non-tensorizable correlation
function of Eq. (37) on the right. KLE truncation error ε2KL = 0.001. Slope of the dashed lines indicated on the
figures

sample corresponding to a sub-domain. This can prevent memory issues when the total
size of the domain is huge.
As example, the evolution of computational costs for the random field generation when

the numbers of sub-domains increases (using the standard and the conditioned KLE) is
analysed for two cases: non-tensorizable correlation of Eq. (37) and tensorizable correla-
tion defined as:

C(s, t) = exp
(

−
( |s1 − t1|

lc1

)2
)
exp

(
−

( |s2 − t2|
lc2

)2
)

(38)

with lc1 and lc2 respectively equal to 0.3L and 0.2L. The KLE truncation error is chosen
to be equal to 0.001 (corresponding to a number of terms N = 54 when the size of the
domain is [0, L]2).
The evolution of the computation cost is shown in Fig. 9. The slopes indicated on the

figures are coherent with the complexities (with respect to the numbers of sub-domains
M) indicated in Tables 2 and 3.
Since the modal decomposition is the most expensive stage, it is convenient to partition

the domain in smaller sub-domains, even tough, in this case, the random field sampling
stage will be more expensive. However, the correlation structure should be well repre-
sented in one sub-domain, i.e. the correlation should tend to zero at a lag equal to L. This is
because, with the method proposed in this paper, the correlation across two sub-domains
which are not neighbour is neglected.

Influence of the correlation kernel

In this section the influence of the correlation kernel is discussed when the conditioned
KLE is employed. Four 1D random processes, indexed by the variable s ∈ [0,ML], are
considered in this section. For the numerical representation, the processes are discretized
into nsM steps, such that 
l = L

ns
= 0.01L. Their correlation functions and their power

spectral densities (PSDs) are respectively shown in Figs. 10 and 11. Their analytical



Panunzio et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:20 Page 19 of 29

Fig. 10 Correlations functions used in “Inuence of the correlation kernel” section, from the left: exponential,
triangular, damped sine and Gaussian correlation. Their analytical expression is indicated in Table 4

Fig. 11 Power spectral densities related to the correlations functions used in in “Inuence of the correlation
kernel” section, from the left: exponential, triangular, damped sine and Gaussian correlation. Different scales
for the ordinate axis

Table 4 Correlation functions used in “Inuence of the correlation kernel” section and
relative truncation errors, number of retained KLE terms and continuity errors, with
lc = 0.15L in all the cases and τ = |s− t|
Kernel name Function Truncation error ε2KL Retained termsN Continuity error εc

Exponential exp
(

− τ

lc

)
0.001 98 1.7 × 10−6

Triangular max
(
1 − τ

lc
, 0
)

0.001 86 1.8 × 10−3

Damped sine
lc
10τ

sin
(
10τ
lc

)
0.001 24 1.9 × 10−2

Gaussian exp
(

− τ

lc
,

)2

0.001 12 9.2 × 10−3

expression is indicated in Table 4. The parameter lc (here called correlation length) is
equal to 0.15L for all the cases.
The KLE truncation error ε2KL (Eq. 8) is set to 0.001. The choice of this truncation

error determines the number of retained KLE terms N and the continuity error (defined
in Eq. 19), that are indicated in Table 4. Note how the number of terms increases as
the spectral density decay (Fig. 11) is slower. For instance, the exponential correlated
processed requires more than 8 times more terms than the Gaussian correlated process.
The couplingmatricesK of each randomprocess are displayed in Fig. 12.Note that, even

though the number of required KLE terms to guarantee the same error is the largest one
for the exponential correlated process, only fewfirstmodes are significant for the coupling.
Conversely, for the sine damped correlated process, only the last modes are important for
the coupling. In fact, the last (less energetical) modes represent the oscillation (not totally
damped for s = L) of this correlation function. This oscillation is fundamental for the
coupling. Concerning the triangular correlation function, all the modes interact for the
coupling.
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Fig. 12 Example of the coupling matrixK, Eq. (11), related to the correlation functions in Table 4, from the
left: exponential, triangular, damped sine and Gaussian correlation

Fig. 13 Example of generation of a random process using the conditioned KLE. Correlation functions in
Table 4, from the top left to the bottom right: exponential, triangular, damped sine and Gaussian correlation.
Before (black solid line) and after (red dashed line) conditioning

Examples of generated samples, when the size of the domain is split into two sub-
domains (M = 2), are shown in Fig. 13. Note that, in all the cases except the damped
sine correlated process, the corrections due to the conditioning of the KLE terms only
concern the region around the breaking points (s = L), while the process samples are
weakly modified far from this location. In case of the damped sine correlation function,
the correction modifies the sample in the whole second sub-domain. This is due to the
oscillating behaviour of the correlation function (Fig. 10).
The evolution of the continuity error defined in Eq. (19) is shown in Fig 14 and compared

with the KLE truncation error (Eq. 8) for correlation kernels considered in this section
(Table 4) with three different correlation lengths. Note how the continuity error, for the
damped sine correlation, is firstly constant before suddenly decaying after adding more
terms. For the triangular correlation, this error decays not continually.



Panunzio et al. Adv. Model. and Simul. in Eng. Sci. (2018) 5:20 Page 21 of 29

Fig. 14 Evolution of the KLE truncation error (solid lines) and the continuity error (dashed lines) for a random
process with correlation functions in Table 4, from the top left to the bottom right: exponential, triangular,
damped sine and Gaussian correlation. Correlation length lc = 0.05L (black), lc = 0.15L (dark grey), lc = 0.25L
(light grey)

Note that the sample-path continuity of the field is ensured only if the number of
terms in the KLE tends to infinity (use of a complete orthonormal basis). In the other
cases, the sample-path continuity is not recovered in the breaking points locations, but
the discontinuity jump can be reduced in order to be enough small for the numerical
applications.

Conclusion
Solving the KLE modal decomposition, when the domain is much larger than the corre-
lation length and a small discretization step is needed, represents a computational issue
that can become unaffordable. To deal with this issue, a “conditioned” Karhunen–Loève
expansion is proposed.Thedomain is subdivided in sub-domainswhere themodal decom-
position can be comfortably computed. Then, parts of the field are generated in each
sub-domain and conditioned with their neighbours in order to ensure the continuity and
the correlation structure.
This generation method is applicable to multi-dimensional fields with a strong simplifi-

cation in case of tensorizable covariance kernels. The capability of the KLE for generating
non-stationary random fields is also preserved with the proposed generation method. In
every case the computational cost is largely reduced. Another important advantage is that
the proposed technique can be easily parallelized to further reduce the computational
time.
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Moreover, another advantage of using the method proposed in this work is the possibil-
ity, due to thedomain splitting, ofworking locally oneachpart of the sample corresponding
to a sub-domain.This canpreventmemory issueswhen the total size of the domain is huge.
The method presented in this paper concerns Gaussian centred random fields. Non-

Gaussians fields can be obtained by transforming the generated Gaussian fields by the
application of the Rosenblatt transformation to obtain the prescribed first order marginal
probability function.
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Appendix A: Tensorizable correlation function
In this section the general randomfields generationmethod, described above, is simplified
in case of tensorizable covariance kernel. Indeed, in this situation, one does not need
to solve the modal decomposition in a multi-dimensional space. By combining the 1D
random processes generation (presented in “Karhunen–Loève expansion for large scale
1D random processes” section) along each dimension, a multi-dimensional realization is
obtained.

ν = [ν1, . . . , νd] denotes a d-dimensional index with ν1, . . . , νd ∈ N
+. A tensorizable

correlation function can be written in the form:

C(s, t) =
d∏

l=1
Cl(|sl − tl |) (39)

The KLE decomposition is simplified. For the application of the KLE, over the domain
D = [0, L]d , the modal decomposition of the covariance operator can be performed
separately along each dimension. The multi-dimensional KLE solutions are obtained by
the tensor product of the eigen-functions and the product of the eigen-values related the
the 1D KLE in each dimension:

λν =
d∏

l=1
μνl and ϕν(s) =

d∏
l=1

ψνl (sl) (40)
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Fig. 15 Optimal T̃ (red cross markers) and uniform T (blue circle markers) truncation sets. KLE error for the
optimal set ε2KL = 0.001. Tensorizable Gaussian correlation function with correlation lengths lc1 = 0.25L and
lc2 = 0.15L

By sorting the eigen-values λν by decreasing order, a truncation d-dimensional set T̃
(containing the indices of the retained eigen-values) is chosen for a given KLE truncation
error (Eq. 8). This multi-dimensional set, which is optimal in the sense of the �2 error, is
composed of d uni-dimensional sets Tl = {1, . . . , Nl}. For each multi-index ν ∈ T there
are d indices νl ∈ Tl . Choosing a KLE truncation error the set T̃ and the corresponding
sets Tl are automatically defined.
However, for keeping the notation simple, without loss of generality, in this section a

uniform multi-dimensional grid T is chosen as truncation set. This means that the set T
is obtained by tensorizing the sets Tl (that are derived from the set T̃ ) and T̃ ⊆ T . The
sets T̃ and T are shown in Fig. 15 for a case involving a tensorizable Gaussian correlation
function with correlation lengths lc1 = 0.25L and lc2 = 0.15L and choosing a KLE error
for the optimal set ε2KL = 0.001.
Therefore, in the domain D, the field is generated as:

f (s, θ ) =
∑
ν∈T

√
λνϕν(s)ην(θ ) =

d∏
l=1

⎛
⎝∑

νl∈Tl

√
μνlψνl (sl)

⎞
⎠ ην(θ ) (41)

For the randomfields generation on a large domain of size [0,ML]d , the 1Dprolongation
technique (“Principles of the generation method on a large domain” section) is used in
each dimension. The steps are here reported.

• Step 1: Domain subdivision
The first step is the same as for the non-tensorizable correlation case: (ML)d sub-
domains are obtained.

• Step 2: Determination of the conditioning matrices
In this step the matrices used for conditioning the KLE coefficients are computed.
Differently from the non-tensorizable case, where the matrices are computed for all
possible multi-dimensional directions, here for each uni-dimensional direction there
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is one coupling matrix K(l) and one triangular matrix L(l) computed as in Eqs. (11)
and (12).

• Step 3: Iterative 1D random generation
As suggested from Eq. (41), the random generation can be performed in a drop-down
way starting from the dimension d and arriving to the first dimension.

– Sub-step a
Let us consider the 1D random process f (d)(sd, θ ), with sd ∈ [0,ML], whose correla-
tion function is equal to Cd(|sd − td |) and represented through KLE (on the domain
[0, L]) as:

f (d)(sd, θ ) =
Nd∑

νd=1

√
μνdψνd (sd)ηνd (θ ) (42)

Using the method described in “Extension of the expansion on an arbitrary large
domain” section, its realizations are extended on the domain sd ∈ [0,ML] by using
the matrices D(d) and L(d) computed at the previous step.

– Sub-step b
Let us consider the randomfield f (d−1)(sd−1, sd , θ ) whose correlation function is equal
to Cd−1(|sd−1 − td−1|)Cd(|sd − td |) and represented on the domain sd−1 ∈ [0, L] and
sd ∈ [0,ML]:

f (d−1)(sd−1, sd , θ ) =
Nd−1∑

νd−1=1

√
μνd−1ψνd−1 (sd−1)f (d)νd−1

(sd , θ ) (43)

where f (d)νd−1 (sd, θ ) are random processes sampled as in Eq. (42). Its realizations are
extended along the direction d − 1 on the domain sd−1 ∈ [0,ML] by using the
method described in “Extension of the expansion on an arbitrary large domain” sec-
tion, regardless the dimension sd (∀sd ∈ [0,ML]).

By recursively iterating the sub-step b, until the first dimension, a complete realization
of f (s, θ ) is obtained on the whole domain s ∈ [0,ML]d .

Appendix B: Positive definiteness condition
In this section some considerations about the positive definiteness condition needed
to perform the Cholesky decomposition of Eq. (12) are discussed. It is shown that the
Cholesky decomposition is always possible.
The matrixKTK is symmetric, real and semi-positive definite, because it is a product of

a real matrix and its transpose. It follows that the matrix I − KTK is real and symmetric.
The Sylvester’s criterion asserts that a real and symmetric matrix is positive definite if

and only if all its leading principal minors are positive. The application of this criterion to
Eq. (12) gives the following condition for the required positive definiteness:

det
(Ir − (KTK)r

)
> 0, with r = 1, . . . , N (44)

where the subscript r indicates the r × r top left corner sub-matrix. The above equation
represents a necessary and sufficient condition for the positive definiteness of the matrix
I − KTK.
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Since the matrix KTK is semi-positive definite, all its leading minors are non-negative.
Using the properties of the determinants, it follows that:

det
(Ir − (KTK)r

) ≥ 1 ± det
(
(KTK)r

) ≥ 1 − det
(
(KTK)r

)
(45)

An upper bound for the leading minors of the matrix KTK is given by:

r
√
det

(
(KTK)r

) ≤ 1
r tr

(
(KTK)r

) = 1
r

r∑
i=1

N∑
j=1

K 2
ij (46)

By replacing the expression of the elements of the matrix K, given in Eq. (11), it follows
that:

N∑
j=1

K 2
ij =

N∑
j=1

∣∣∣∣
∫ L

0

∫ L

0
C(s, t + L)

ϕi(s)ϕj(t)√
λiλj

dsdt
∣∣∣∣
2
, with i = 1, . . . , N (47)

By introducing the power spectral density S(ω) of the considered random process in
Eq. (2), where the modal decomposition of the covariance kernel operator is performed,
the following equation is obtained:

∫ L

0
C(s, t)ϕi(s)ds =

∫ L

0

∫ ∞

−∞
S(ω)eıω(s−t)ϕi(s)dsdω

=
∫ ∞

−∞
S(ω)�i(ω)e−ıωtdω = λiϕi(t)

(48)

where �i(ω) = ∫ L
0 ϕi(s)e−ıωsds and the over bar represents the complex conjugate. From

the above equation, the following property is derived:

∫ ∞

−∞
S(ω)�i(ω)e−ıωtdω = λiϕi(t) = λi

∫ ∞

−∞
�i(ω)e−ıωtdω =⇒ S(ω)�i(ω) = λi�i(ω)

(49)

By the same way it can be derived thatS(ω)�i(ω) = λi�i(ω).
By using the orthonormality and the completeness of functions ϕi(s) basis set (Eq. (4)),

the following property is obtained:

∫ ∞

−∞
S(ω)�j(ω)�i(ω)dω = δijλi (50)

Note that the functions �i(ω) are a complete set of orthonormal basis functions
equipped with the following inner product:

∫ ∞

−∞
�i(ω)�j(ω)dω = δij (51)
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S(ω) denotes the power spectral density that can be introduced in Eq. (47). By using
the properties derived above, one can assert that:

K 2
ij =

∣∣∣∣
∫ L

0

∫ L

0
C(s, t + L)

ϕi(s)ϕj(t)√
λiλj

dsdt
∣∣∣∣
2

=
∣∣∣∣
∫ L

0

∫ L

0

∫ ∞

−∞
S(ω)eıω(s−t−L) ϕi(s)ϕj(t)√

λiλj
dωdsdt

∣∣∣∣
2

=
∣∣∣∣
∫ ∞

−∞
S(ω)

�j(ω)�i(ω)√
λiλj

e−ıωLdω

∣∣∣∣
2

=
∣∣∣∣
∫ ∞

−∞
�j(ω)�i(ω)e−ıωLdω

∣∣∣∣
2

(52)

By the application of the Bessel’s inequality, the expression in Eq. (47) is upper bounded
for each i = 1, . . . , N :

N∑
j=1

K 2
ij =

N∑
j=1

∣∣∣∣
∫ ∞

−∞
�i(ω)e−ıωL�j(ω)dω

∣∣∣∣
2

≤
∫ ∞

−∞
�i(ω)e−ıωLeıωL�i(ω)dω = 1

(53)

Note that the above inequality becomes an equality when N → ∞ leading to the
Parseval’s theorem.
Finally, by applying this bound toEq. (46), it follows that, for every considered correlation

function:

1
r

r∑
i=1

N∑
j=1

K 2
ij ≤ 1, with r = 1, . . . , N (54)

Note that this upper bound, derived through the application of the Bessel’s inequality
in Eq. (53), is strictly lower than one for every i = 1, . . . , N except whenN → ∞ or when
the correlation function is constant. In this latter particular case the matrix KTK has
one only diagonal element equal to one and all the other elements equal to zero, leading
to a null determinant for the matrix KTK (in this case there is not a unique Cholesky
decomposition). In practice, a constant correlation function means that each sample of
the random field is constant in the whole domain.
For all the other correlation functions, the application of the boundof Eq. (54) in Eq. (45),

with a strict inequality, states that all the leadingminors of thematrix I − KTK are greater
than zero, satisfying the Sylvester’s criterion (Eq. 44) andmeaning the positive definiteness
of that matrix.

Appendix C: Influence of the sub-domain size
TheCholesky decomposition in Eqs. (12)–(30) implies a positive definiteness of thematrix
to decompose. After imposing a correlation between two KLE sets using the matrix K
(Eq. 11), the matrices L and R guarantee that, in each sub-domain, the KLE coefficients
are normalized and uncorrelated, i.e. that the generated random field has a prescribed
correlation structure.
In “Appendix B”, it is shown that the Cholesky decomposition is always possible when

the sub-domain is only conditioned from one side.When trying to correlate the KLE coef-
ficients with the left and the right sets, as in “1D processes generation parallel computing”
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Fig. 16 Minimal eigen-value of the matrix I − KKT − KTK according to the number of KLE terms and the
correlation lengths for the correlation functions listed in Table 4. The step used to discretize the fields is
chosen to be equal to 0.01L. White areas indicate a negative minimal eigen-value. The blue line indicates the
limit. From the left to the right right: exponential, triangular, damped sine, and Gaussian correlation functions

section, the positive definiteness of the matrix I − KKT − KTK needs to be checked. In
B it has been shown that

∑N
j=1 K 2

ij ≤ 1 for every i (Eq. 53). When imposing a correlation
from two sides, the same constraint is twice imposed. The latter sum must be lower than
0.5 to ensure the positive definiteness condition:

2
N∑
j=1

K 2
ij ≤ 1 (55)

Addingmore terms in theKLE increases the value of the sum that can exceed the value of
0.5. In fact, when more KLE terms are added for representing the random field, although
the correlation structure is better represented (the KLE truncation error is reduces), a
larger number of constraints act on the KLE coefficients set.
The correlation length is another limitation. For a given correlation structure and trun-

cation error, the more correlated (lower ratio
L
lc
) the process is, the fewer number of KLE

terms are needed [30]. This means that, for highly correlated processes, few terms are
needed to represent the correlation and therefore the left and right constraints condition-
ing constraint: the condition in Eq. (55) can be exceeded with few terms.
The minimal eigen-value of the matrix I − KKT − KTK is shown in Fig. 16 according

to the number of KLE terms and the correlation lengths (parameter lc) for the correlation
functions listed in Table 4. The step used to discretize the fields is chosen to be equal
to 0.01L. For shorter correlation lengths the conditioning operation is possible since the
eigen-values are positive. For the damped sine correlation a negative eigen-value appears
suddenly when the number of terms is increased. This is due to the periodic behaviour
of the correlation function. Note that, for the triangular correlation, the conditioning is
always possible, even when the correlation length is equal to the size of the sub-domain.
In order to prevent this problem, a larger size of the sub-domain can be chosen (increas-

ing the ratio
L
lc
).
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