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Abstract  25 

Introduction - The composition of fatty acids in the body is gaining increasing interest, and can be 26 

followed up noninvasively by quantitative MR spectroscopy (MRS). However, current MRS 27 

quantification methods have been shown to provide different quantitative results in terms of lipid 28 

signals, with possible varying outcomes for a given biological examination. Quantitative MR imaging 29 

using multigradient echo sequence (MGE-MRI) has recently been added to MRS approaches. In 30 

contrast, these methods fit the undersampled MR temporal signal with a simplified model function 31 

(expressing the triglyceride (TG) spectrum with only three TG parameters), specific implementations 32 

and prior knowledge. In this study, an adaptation of a MGE-MRI method to MRS lipid quantification is 33 

proposed.  34 

Methods - Several versions of the method – with time data fully or undersampled, including or 35 

excluding the spectral peak T2 knowledge in the fitting – were compared theoretically and on Monte 36 

Carlo studies to a time-domain peak-fitting approach. Robustness, repeatability and accuracy were 37 

also inspected on in vitro oil acquisitions and test-retest in vivo subcutaneous adipose tissue (SAT) 38 

acquisitions, adding results from the reference LCModel method. 39 

Results - On simulations, the proposed method provided TG parameter estimates with the smallest 40 

variability but with a possible bias, which was mitigated by fitting on undersampled data and 41 

considering peak T2s. For in vitro measurements, estimates for all approaches were correlated with 42 

theoretical values and the best concordance was found for the usual MRS method (LCModel and 43 

peak fitting). Limited in vivo test-retest variability was found (4.1% for PUFAindx, 0.6% for MUFAindx, 44 

3.6% for SFAindx), as for LCModel (7.6% for PUFAindx, 7.8% for MUFAindx, 3.0% for SFAindx).  45 

Conclusion – This study shows that fitting the three TG parameters directly on MRS data is one 46 

valuable solution to circumvent the poor conditioning of the MRS quantification problem. 47 

 48 

 49 

  50 
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Abbreviations used 51 

 FA, fatty acid;  52 

 SFA, saturated fatty acid;  53 

 MUFA, monounsaturated fatty acid;  54 

 PUFA, polyunsaturated fatty acid;ndb, number of double bonds;  55 

 nmidb, number of methylene-interrupted double bonds;  56 

 SFAindx, proportion of saturated fatty acid estimated by ndb and nmidb;  57 

 MUFAindx, proportion of monounsaturated fatty acid estimated by ndb and nmidb;  58 

 PUFAindx, proportion of polyunsaturated fatty acid estimated by ndb and nmidb; 59 

 CL, chain length;  60 

 SAT, subcutaneous adipose tissue;  61 

 SD, standard deviation 62 

 CV, coefficient of variation; 63 

 CRLB, Cramer Rao Lower Bound. 64 

 PDFF, proton density fat fraction 65 
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Introduction  67 

Interest in fat quantification has grown in recent years. In particular, the fat composition in the body 68 

could play a role in various inter-related pathologies or disorders such as obesity, inflammation, 69 

insulin resistance and cardiovascular disease risk. It is therefore worth developing accurate and 70 

robust tools to measure and follow the fatty acid composition in the body noninvasively. In this 71 

respect, Magnetic Resonance Spectroscopy (MRS) has been shown to be a quantitative, noninvasive 72 

technique that can assess this fat composition
1–6

. The spectral content of the 1H lipid spectrum, e.g., 73 

acquired in adipose tissue7,8, bone marrow2,8 or liver fat6,9, is related to the types of triglycerides 74 

(saturation, unsaturation, polyunsaturation). The different types of triglycerides are obtained from 75 

the quantification of the area under the curve (in the spectral domain) or equivalently from the signal 76 

amplitude (in the time domain) of the different proton components. In this context, Hamilton et al. 6 77 

introduced the notion of the number of double bonds (ndb), the number of double bonds separated 78 

by a single CH2 (nmidb, the number of methylene-interrupted double bonds) and chain length (CL). 79 

These triglyceride (TG) parameter values link the amplitude of each resonating peak. With these 80 

relations, indexes related to the percentage of saturated fatty acids (SFAindx), monounsaturated 81 

fatty acids (MUFAindx), and polyunsaturated fatty acids (PUFAindx) can be deduced. Until now, 82 

proton peaks have been quantified by quantification algorithms such as AMARES (Advanced Method 83 

for Accurate Robust and Efficient Spectral)10, LCModel (Linear Combination of Model spectra)11,12, 84 

Automated Quantification of Short Echo-time MRS (AQSES)-Lineshape13,14, and quantitation based on 85 

QUantum ESTimation (QUEST)15. However, as has been recently demonstrated in16, the 86 

quantification results can greatly differ from one quantification algorithm to another, which could 87 

influence the statistical outcome of a biological investigation. Moreover, next to these dedicated 88 

MRS quantification approaches, quantitative MR imaging using multigradient echo sequence (MGE-89 

MRI) has recently been proposed17-21 . These MGE-MRI approaches proved their ability to quantify TG 90 

fatty acid composition, from far fewer spectroscopic data points (i.e., 1024 points compared to 8–15 91 

echoes). To make this possible, this approach relies on more assumptions than in the MRS 92 

quantification approaches as well as directly estimated ndb, nmidb and CL based on a simplified 93 

model. Then the question arises as to whether MRI approaches can be adapted to the MR 94 

spectroscopic signal and how their statistical performance would compare with the usual MRS 95 

quantification methods. 96 

In this paper, we therefore investigated several quantification strategies – derived from the MGE-97 

MRI approach or employing the usual MRS approaches – in particular the quantitative analysis of the 98 

spectroscopic adipose tissue lipid signal. In the continuation of the work reported in 16 analyzing the 99 

results of different quantification methods, we analyzed possible sources of error and discrepancies 100 
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between different quantification approaches. The aim of this study was to evaluate and reduce the 101 

uncertainties and errors of estimates. After Monte Carlo studies examining several fitting 102 

implementations, the quantification results obtained with different quantification models, including 103 

results from the reference LCModel method, were analyzed for in vitro oil acquisitions and in vivo 104 

spectroscopy subcutaneous adipose tissue (SAT) acquisitions. These analyses resulted in a number of 105 

practical solutions and considerations for robust lipid composition assessment using MR 106 

spectroscopic signals. 107 

Materials and methods 108 

Model function and quantification strategies  109 

Most of the current MRS quantification methods are based on a nonlinear least squares analysis that 110 

fits the acquired spectroscopic data points with a parametric model function. Note that in the 111 

following “quantification” means “relative quantification” and the goal, for all the methods studied, 112 

is to determine from a MR spectroscopy signal, the relative contribution of PUFAindx, MUFAindx and 113 

SFAindx within the triglycerides. Here the model functions studied in this paper are presented. The 114 

constraints, prior knowledge used as well as several implementation details are also given. 115 

The relations, given in Table 1, link the proton peak amplitudes6 of a lipid spectrum by introducing TG 116 

parameter variables, especially ndb and nmidb. These parameter variables are 1) directly fitted as 117 

they are explicitly introduced into the parameterized model function used in the first quantification 118 

approach (called MTG_param, described below) or 2) deduced from the fitted component amplitude in 119 

the second quantification approach (called Mpeak, described below), as was done in previous MRS 120 

publications1–4. Once ndb and nmidb are estimated, the fatty acid composition (percentage of 121 

MUFAindx, PUFAindx and SFAindx) can be computed according to the relation given in Peterson and 122 

Mansson18 and recalled in the Appendix. 123 

MTG_param quantification approach 124 

The first MTG_param quantification approach studied stems from lipid composition quantification using 125 

MGE-MRI19. It is based on the following model function: 126 
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𝑓(𝑡) = ((Aw ∗  𝑛𝑤𝑎𝑡𝑒𝑟 ∗ 𝑒
− 

(𝑇𝐸 + 𝑡)
𝑇2𝑤 + 𝐴𝑓

∗ ∑ (𝑛𝑘(𝑛𝑑𝑏, 𝑛𝑚𝑖𝑑𝑏) ∗  𝑒2𝜋𝑖𝑓𝑘𝑡 ∗ 𝑒
− 

(𝑇𝐸 + 𝑡)
𝑇2𝑘 )) ∗  𝑒

− 
𝑡

𝑇2′

8

𝑘=1

 ) 

[1] 

 127 

where Aw is the number of water molecules, Af the number of triglyceride molecules, 𝑛𝑤𝑎𝑡𝑒𝑟  the 128 

number of protons in a water molecule, 𝑛𝑘(𝑛𝑑𝑏, 𝑛𝑚𝑖𝑑𝑏, 𝐶𝐿) the number of protons for each 129 

resonance peak, as a function of ndb, nmidb and CL as described by Hamilton et al.6. 𝑓𝑘 is the 130 

frequency of each resonance, 𝑇2𝑘  the transverse relaxation time for each peak, 𝑇2𝑤  the transverse 131 

relaxation time of the water, and 𝑇2′ the global relaxation term due to 𝐵0 heterogeneities. The 132 

water resonance was used as the reference resonance, the frequencies 𝑓𝑘 were set at (𝑓0𝑘
− 4.7) ∗133 

𝐵0 ∗ 𝛾/2𝜋 with 𝑓0𝑘
 the chemical shift (see Table 1) of the kth peak (in ppm), 𝐵0 the static magnetic 134 

field (in T) and 𝛾 the gyromagnetic ratio of the proton (in Hz.T-1). TE is the echo time corresponding to 135 

the localized spectroscopy sequence used. The parameter ndb is the number of double bonds, nmidb 136 

the number of methylene-interrupted double bonds and CL the chain length. As detailed below, 137 

these three entities, plus Aw and Af, are estimated through a fitting procedure whose 138 

implementation is the same as the quantitative MGE-MRI method given in 19. Briefly in 19, ndb and 139 

nmidb are estimated separately, through three subprocesses and using strong assumptions linking 140 

ndb, nmidb and CL. The three subprocesses are 1) estimation of the proton density fat fraction (PDFF) 141 

and T2′, which are set in the next subprocess; 2) estimation of ndb while linking nmidb and CL to ndb 142 

and 3) estimation of nmidb while 𝑛𝑑𝑏 and CL are linked to nmidb 19. In the last two steps, the 143 

relations between 𝑛𝑑𝑏, 𝑛𝑚𝑖𝑑𝑏 and CL were: nmidb = 0.093*ndb
2 and CL = 16.8+0.25* 𝑛𝑑𝑏 as used by 144 

Bydder et al.17. The aim of this implementation was to have a robust fitting procedure. Note that it is 145 

possible, in the implementation, not to use any connection between ndb and nmidb.The other 146 

parameters, especially 𝑇2𝑘  and𝑇2𝑤 , are set to assumed values. 147 

When fitting in the time domain, the time samples used in the fitting procedure can be defined. 148 

Considering this point, we tested the possibility of applying the fit on undersampled data to come 149 

closer to what is performed in the quantitative MGE-MRI approaches. In these approaches, the 150 

sampling period is limited by echo spacing. Moreover, in the MGE-MRI methods, a single T2* for all 151 

peaks is fitted and there is no T2 weighting of the first point (expressed in equation 1 by exp(-TE/T2k)) 152 

because these methods are not subjected to the echo time delay of localized MR spectroscopy such 153 

as in the PRESS sequence.  154 
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Consequently, four implementations were studied using the MTG_param approach [1]: 1) with full 155 

sampling and without T2 correction (named MTG_param_fullsampling), 2) with full sampling and with 156 

individual T2 correction (named MTG_param_fullsampling_T2cor), 3) with undersampling and without T2 157 

correction (named MTG_param_undersampling) and 4) with undersampling and with T2 correction (named 158 

MTG_param_undersampling_T2cor). The undersampling of the data was defined with t=n*te with te = 1/(2*(4.7-159 

1.3)*B0* 𝛾/2𝜋 )  and n=32, while for full sampling te=1/BW with BW being the spectral bandwidth 160 

used in the acquisition. We also studied the effect on TG parameter estimation of transversal decay 161 

correction. Without correction, we considered a single T2* as a free parameter, i.e., all T2k and T2w 162 

were equal and the TE weighting was not taken into account, that is to say that TE was set to 0. All 163 

these versions were integrated in homemade software written in MATLAB. 164 

Mpeak quantification approach 165 

The second quantification approach (Mpeak) studied fits the lipid resonance peaks and the lipid 166 

composition is deduced after quantification from the relations given in Table 1. The quantification 167 

approach is based on a Voigt fitting method 22, which is close to the AMARES 10 method, by fitting 168 

either pure Lorentzian lines, pure Gaussian lines or a mixture of the two (Voigt lines). The model 169 

function used is described by: 170 

𝑓(𝑡) = 𝑒𝑖𝜑0 ∑ 𝑐𝑘 𝑒𝛼𝑘t+(𝛽𝑘t)²+𝑖2𝜋𝑓𝑘t

9

𝑘=1

  [2] 

 171 

where 𝜑0 is the zero-order phase, 𝑐𝑘 the amplitudes, 𝛼𝑘 the Lorentzian damping factors, 𝛽𝑘  the 172 

Gaussian damping factors and 𝑓𝑘 the frequency of the kth proton group. 173 

The algorithm implementing Mpeak
22 uses multiple random starting values for the frequency and 174 

damping factor parameters to compute, using linear least squares, the starting values of the 175 

amplitude and zero-order phase parameters as in AMARES. Then a nonlinear least squares algorithm 176 

(trust-region reflective algorithm in MATLAB) is employed to fit the global model function given 177 

in [2]. To take into account the T2 weighting on the peak amplitude, due to the localized MR 178 

spectroscopy sequence employed, the 𝑐𝑘 parameters were multiplied by exp(TE/T2k), with estimated 179 

T2k . 180 
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LCModel (Version 6.3-0L, Stephen Provencher, Oakville, ON, Canada), with the control parameter 181 

SPTYPE set to Lipid-8 (as described in the LCModel user’s manual) was also used on experimental 182 

data (described below) only. For lipid signals, this quantification method fits a flexible combination of 183 

Gaussian and Lorentzian line shapes to the lipid resonances23, but the exact model function used and 184 

the implementation details are unknown. As a result, the analysis of the Monte Carlo in light of the 185 

model function and implementation used, as performed for Mpeak and MTG_param approaches, was not 186 

allowed.  187 

Simulated data and Monte Carlo studies 188 

To compare the different quantification approaches (the four implementations with MTG_param and 189 

Mpeak), their statistical performance was assessed using simulated signals through Monte Carlo 190 

studies. The two models were also compared within the Information Theory framework (known as 191 

identifiability analysis), which will be referred to as the theoretical results, with details and results 192 

given in the Appendix. The fatty acid composition of human subcutaneous abdominal adipose tissue 193 

published by Garaulet et al.24 was used as a reference in the simulated data. The targeted 194 

composition was set to 18% PUFAindx, 54.6% MUFAindx and 27.4% SFAindx, corresponding to 195 

ndb
target = 2.7 and nmidbtarget = 0.54, note that in this case 𝑛𝑚𝑖𝑑𝑏/𝑛𝑑𝑏2 = 0.074 which was different 196 

from the relationship assumed in the fitting. The PDFF was set to 97%, corresponding to Aw = 1 and 197 

Af = 37. Four sets of Monte Carlo simulations were performed using the ten-peak signal (nine peaks 198 

for lipid and one peak for water) whose peak amplitudes are related to the fatty composition (see 199 

Table 1 and Table A1 in the Appendix). For each Monte Carlo study, a gold standard signal was 200 

designed with the target TG parameter variables and 100 Gaussian noise realizations with zero mean 201 

and a variance determined according to the desired signal-to-noise ratio (SNR) (varying from 60 to 202 

300 in increments of 60) were randomly generated and added. Since several effects or imperfections, 203 

such as Voigt line shape, different T2s, or phase distortions are encountered in real acquisition, the 204 

gold standard signal was gradually complicated in the Monte Carlo studies. In the first one, the 205 

simulated signal had a simplified behavior. Indeed, all the T2k were assumed to be the same for all 206 

peaks resulting in a common Lorentzian damping factor (α) for each peak, set to 1/T2* with T2* set 207 

to 22.4 ms and a null Gaussian damping factor (β). In the second set, the peak amplitudes were 208 

multiplied by exp(-TE/T2k) with TE = 14 ms and T2k = 65 ms, and the signal was damped by a common 209 

Lorentzian damping factor α (which equals 1/T2k), and a common Gaussian damping factor β at 210 

27.29Hz (T2' = 22 ms  β =  √
1

4∗log(2)∗ 𝑇2′∗ 𝑇2′) and a zero-order phase set to 0. The third set of Monte 211 

Carlo simulations was performed with the same definition of parameters except that each peak had a 212 

different T2 (T21 = 47.3 ms, T22 = 30.5 ms, T22b = 34.3 ms, T23 = 45.0 ms, T24 = 41.8 ms, T25 = 35.8 ms, 213 
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T26 = 29.0 ms, T27 = 83.0 ms, T28 = 54.7 ms, T2w = 300 ms). For the fourth and last set, the same 214 

settings as for the third set were used, with a SNR similar to the one encountered in vivo, i.e., 210. 215 

Additionally, phase distortions were introduced to simulate the effect of eddy currents, as illustrated 216 

in Figure 1. Finally, the absolute error mapping of ndb and nmidb was computed using the same 217 

settings as used in the third set and by varying the ndb
target and nmidbtarget values (from 0 to 6 for ndb 218 

and from 0 to 3 for nmidb). In the following, the estimated TG parameters deduced from the Mpeak 219 

approach or fitted by the MTG_param approaches will be indicated with the superscript est.  220 

In vitro and in vivo data 221 

Eight edible oils were used for in vitro data. Their compositions were characterized by gas 222 

chromatography (details in supplementary information) performed by Functionnal Lipidomics 223 

platform of INSA and given as a pair of values (ndb, nmidb): avocado (2.58, 0.21), canola (3.35, 0.63), 224 

hazelnut (2.92, 0.23), walnut (4.35, 1.73), olive (2.60, 0.17), pistachio (3.11, 0.59), grape-seed (3.89, 225 

1.37) and sesame (3.17, 0.78). In vitro MRS signals were acquired on a preclinical 4.7T BioSpec Bruker 226 

system, using a PRESS sequence with TR = 5000 ms, TE = 14.1 ms, VOI of 4×4×4 mm3, one signal 227 

average and 4-kHz bandwidth, 4096 data points, without outer-volume saturation. The oil vials were 228 

15 mm in diameter and 930 mm long. The 4×4×4-mm3 VOI was positioned in the center of the bottle. 229 

A large bandwidth of the exciting pulse was used to reduce the effect of the chemical shift artifact 230 

(5400 Hz for first pulse and 6840 Hz for the second and third pulses of the PRESS sequence).  231 

Nine volunteers underwent a STEAM sequence, using respiratory triggering, on a Philips Ingenia 3T 232 

system with the following parameters: TR = 3000 ms, multiple TE = n*10+4 ms where n was an 233 

integer ranging from 1 to 6, TM = 16 ms, 20×20×20-mm3 VOI, four signal averages, 2048-Hz 234 

bandwidth and 1024 data points. The single voxel was located in the posterior left part of the 235 

abdominal subcutaneous adipose tissue at the level of the L4 vertebra. The MR spectrum was 236 

acquired twice in a row to perform a test and retest and to measure the repeatability of the 237 

quantification approaches. No water suppression was used. The phase of the signal of the first echo 238 

(TE1 = 14 ms) was corrected with the phase of the second echo (TE2 = 24 ms), which was less 239 

impacted by eddy current effects. This correction was considered possible because 1) the methylene 240 

(CH2n) amplitude peak was the single preponderant component and 2) TE=TE2-TE1 was small 241 

compared to the lipid T2 and 1/J, where the J scalar coupling constants were between 4 and 8 Hz for 242 

in vivo fatty acid spectrum. The quantification methods were applied only on the spectrum of the 243 

first echo; the other echoes were acquired to estimate the T2s of each resonance peak.  244 

For in vitro and in vivo data, no T1 relaxation correction was required, because the T1 relaxation 245 

times were much shorter than TR25. The SNR was calculated in the time domain as the ratio between 246 
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the absolute amplitude of the real part of the first point and the standard deviation of the noise 247 

calculated with the 150 last points of the signal.  248 

T2k estimation 249 

For in vivo data, apparent T2k estimation was made in the frequency domain, for each resonance, 250 

with a nonlinear least squares estimation of the monoexponential Sk(TE) = S0k*exp(-TE/T2k), where 251 

Sk(TE) was the measured integrals of the kth peak at TE (six echoes varying regularly from 14 ms to 64 252 

ms), S0k the amplitude at TE=0 and T2k the T2 of the kth peak. This nonlinear regression was 253 

performed using the MATLAB lsqcurvefit function. The starting values that were used in the fitting 254 

were defined using the results of a linear fitting with the equation log(Sk(TE)) = log(S0k)*(-TE/T2k). For 255 

in vitro data, the T2k were set at T21=40.8 ms, T22=17.5 ms, T23=48.6 ms, T24=27.7 ms, T25=34.0 ms, 256 

T26=17.6 ms, T27=49 ms, T28=37.9 ms 26. 257 

Comparison of the quantification results 258 

For the Monte Carlo studies, the quantification results were compared to the theoretical parameter 259 

values used to generate the signal and biases, and the variabilities on the TG parameter estimations 260 

were assessed and compared. For the oil acquisitions, the quantification results were compared 261 

according to their concordance to the known oil composition. For the SAT in vivo acquisitions, for 262 

each index or parameter of interest and each subject, a percent difference was calculated as the ratio 263 

between the absolute difference between the two estimations and the mean of these two 264 

estimations. The variability percentage (𝑉𝑎𝑟) of the test-retest was then the average of these 265 

percent differences computed on the nine subjects (n=9):  266 

𝑉𝑎𝑟 =
1

n
∑

|𝑡𝑒𝑠𝑡𝑖− 𝑟𝑒𝑡𝑒𝑠𝑡𝑖|

(𝑡𝑒𝑠𝑡𝑖+ 𝑟𝑒𝑡𝑒𝑠𝑡𝑖)/2
∗ 100%𝑁

𝑖=1   267 

where testi and retesti are the estimation and second estimation, respectively, of one of the 268 

parameters of interest (ndb, nmidb, MUFAindx, PUFAindx, SFAindx). For each index or parameter of 269 

interest, the average of the two estimations was then compared to the fatty acid composition found 270 

in the literature24,27,28.  271 

In vivo spectra before and after eddy current correction and in vitro spectra were also quantified with 272 

LCModel, for comparison with MTG_param quantification versions and Mpeak quantification on the 273 

experimental data. 274 

  275 
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Results  276 

Visual fitting results vs quantitative results 277 

Figure 2 shows the fitting results of two different methods (LCModel and Mpeak) applied on the same 278 

in vivo spectrum. In both cases, the residual signal (i.e., the difference between the fitted spectrum 279 

and the original spectrum) appears to be very small and similar, but the quantitative results differ 280 

noticeably between the two methods (3.8% PUFAindx, 43% MUFAindx and 53.6% SFAindx with the 281 

Voigt model and 9.6% PUFAindx, 50% MUFAindx and 40.5% SFAindx with LCModel), hence the need 282 

to quantify the methods to be studied in terms of their statistical performance (bias and variance on 283 

the parameter estimation) and their sources of instability or error. 284 

Results of the Monte Carlo studies  285 

The results of the first Monte Carlo study, which mimicked in vivo acquisitions, were consistent with 286 

the identifiability analysis given in the Appendix. The standard deviation (SD) of the relative 287 

difference between the estimated value and the target value (which is proportional to the 288 

percentage root mean square error) was compared with the theoretical uncertainty (based on the 289 

Cramér Rao Lower Bounds computation) derived from quantification approaches including 290 

subprocessing. Regarding ndb, the SD was 1.04% for the MTG_param_fullsampling, 1.46% for 291 

MTG_param_undersampling and 13.79% for the Mpeak. These values were slightly higher than the uncertainties 292 

computed in the identifiability analysis (Table A2 in the Appendix) – 0.9% for the MTG_param_fullsampling, 293 

1.35% for the MTG_param_undersampling and 4.89% for the Mpeak – but they showed the same trend. The 294 

same observation was made for the SD of nmidb: 2.51% for the MTG_param_fullsampling, 4.51% for the 295 

MTG_param_undersampling and 21.45% for the Mpeak compared to the theoretical uncertainties of 1.61%, 296 

2.45% and 18.98%, respectively. We observed the same tendency for the other Monte Carlo 297 

simulations. 298 

In the second Monte Carlo study (Figure 3A, B), the results using the MTG_param showed the best 299 

results with the smallest variability but had a bias of −6.34 ± 0.11% for ndb (respectively, 42.05 ± 300 

0.35% for nmidb) for the undersampling and a bias of −20.28 ± 0.08% (respectively, −20.18 ± 0.17% 301 

for nmidb) for the full sampling. The Mpeak quantification provided the lowest biased estimations (bias 302 

of 0.72 ± 0.78% for ndb and −0.78 ± 4.77% for nmidb) but with higher variability. Here, as one can 303 

expect, when all peaks have the same T2 relaxation times, the introduction of T2 as a priori 304 

knowledge in the MTG_param quantification has no effect on the estimation. On the contrary, when the 305 

simulated data have different T2 values for each peak as in the third Monte Carlo study (Figure 3C, 306 

D), the introduction of T2 a priori knowledge in the MTG_param approach reduces the absolute bias for 307 

both undersampling and full sampling. In the last Monte Carlo study (Figure 3E, F), the fitting using 308 
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the Mpeak approach was greatly influenced by the distortion of the baseline, unlike the MTG_param. The 309 

estimation of nmidb was the most influenced, with a bias of up to 400%. When all lipid peaks had 310 

different T2s, the MTG_param quantification with undersampling and T2 correction had the smallest 311 

variability but some biased estimated values. This bias could also be influenced by the assumed 312 

relation between ndb and nmidb, here nmidb = 0.093*ndb² while the ones used in the simulation are 313 

different. Besides the pair of values – ndb and nmidb – which moved off this relation showed larger 314 

biases, especially for the estimation of nmidb (see Figure 4). 315 

In vitro results 316 

The mean SNR for in vitro data was 2062 (range, 1769–2360). In the particular case of in vitro data, 317 

where the MR spectroscopic signal show high SNR and good spectral resolution in the 318 

implementation of  MTG_param , the constraint linkink ndb and nmidb  has not been used as the 319 

relationship ( nmidb = 0.093*ndb
2) was not found for all oils in the results from gas chromatography.  320 

In the present case, nmidb was freely fitted in the last step, which enabled to improve the accuracy 321 

of MTG_param approach results. Figure 5 shows the oil quantification results taking the composition 322 

characterized by gas chromatography as the gold standard reference. For each quantification 323 

approach studied, estimated values correlated well with the theoretical values (with a coefficient of 324 

determination r² close to 1). However, Mpeak quantification slightly underestimated ndb and 325 

MTG_param_undersampling overestimated it. The MTG_param_undersampling_T2cor (with a priori knowledge on T2s 326 

included in the model) gave good estimation of ndb, as well as LCModel. For nmidb, Mpeak gave the 327 

best estimation, MTG_param_undersampling_T2cor and LCModel slightly overestimated nmidb. In the range of 328 

expected in vivo nmidb (0.30–1.0), LCModel and MTG_param_undersampling seemed to give a good 329 

estimation of the nmidb value.  330 

In vivo results   331 

The nine male volunteers, aged 26.1 ± 6.3 years, had a BMI of 24.8 ± 1.4 kg/m². The SNR of the MR 332 

spectra varied between 203 and 314. Of the 18 acquisitions (test and retest acquisitions together) 333 

the mean and the standard deviation of T2k were the following: T21 = 47.3 ± 3.0 ms, T22 = 30.5 ± 2.3 334 

ms, T22b = 34.3 ± 2.4 ms, T23 = 45.0 ± 17.1 ms, T24 = 41.8 ± 4.6 ms, T25 = 35.8 ± 1.7 ms, T27 = 83.0 ± 335 

2.4 ms, T28= 54.7 ± 6.1 ms. T26 was not estimated because the peak at 1.6 ppm was indistinguishable 336 

from the peak at 1.3 ppm. T2k values were used in the MTG_param quantification to correct estimated 337 

amplitudes of the Mpeak and LCModel quantification. 338 

For the in vivo results (Table 2), the test-retest variability was the smallest for the 339 

MTG_param_undersampling_T2cor. Note that, in the implementation,the relationship linking ndb and nmidb  340 

enabled the MTG_param_undersampling_T2cor  fitting approach to reduce the test-retest variability on in vivo 341 
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spectra (22.3% vs 4.1% for nmidb estimation and 7.3% vs 2.0% for ndb estimation). This model (using 342 

or not  the ndb-nmidb connection) seemed to give values close to the literature values taken as 343 

reference. LCModel showed good test-retest variability- similar to the one obtained with  344 

MTG_param_undersampling_T2cor  and a ndb-nmidb connection in its implementation but with different 345 

estimated parameter values.  346 

LCModel was applied on the spectrum at the first TE and the results were compared with and 347 

without phase correction. The mean estimated values of ndb, nmidb, PUFAindx, MUFAindx and 348 

SFAindx were equivalent in both cases: the values without correction were equal to 1.49 ± 0.18, 0.39 349 

± 0.08, 13.0 ± 2.6%, 23.6 ± 9.5%, 63.4 ± 7.5%, respectively, compared to the values in Table 2. 350 

However, the test-retest variability percentage was better with the phase correction than without 351 

this correction: 2.0% vs 4.5% for ndb, 7.6% vs 15.2% for nmidb, 7.6% vs 15.2% for PUFAindx, 4.7% vs 352 

12.5% for MUFAindx and 4.0% vs 8.3% for SFAindx.   353 

Discussion  354 

Lipid MRS is a simple and fast tool to analyze metabolic modification when quantifying fatty acid: it 355 

could be advantageous in the follow-up of the lipid composition modification in adipose tissues in 356 

weight gain or weight loss phases, in the evaluation of fat surrounding a tumor or in inflammatory 357 

tissue23,29. However, the fatty composition modifications could be very small in comparison to the 358 

measurement uncertainties related to the current methods. Moreover, as often encountered in 359 

quantitative MRI or MRS, validation of the quantification method taking into account the 360 

reproducibility on different imaging systems from different manufacturers is a major problem. This 361 

paper has demonstrated that, in the particular case of in vivo lipid signal analysis, the MTG_param 362 

approach could be a solution to be considered for fatty acid composition assessment as  thisfitting 363 

solution appears to be robust to in vivo conditions .  364 

The MTG_param quantification approach, where there is a linear relationship between the estimated 365 

parameters and the proportion of fatty acid types to be determined, has been qualified as a direct 366 

estimation method. With this approach, the relative error in the estimation of fatty acid composition 367 

would be the same as that of the estimated parameter (e.g., nmidb with PUFAindx) or the sum of 368 

parameter errors (e.g., MUFAindx and SFAindx). In the Mpeak approach, the fatty acid composition is 369 

determined by ratios of peak amplitudes1–4, which is qualified as an indirect determination. In this 370 

case, small errors on the estimation of two peak amplitudes would increase errors and therefore 371 

result in greater variability of the results.  372 
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The variability of the results could be anticipated by experimental design, by studying the properties 373 

of the model function employed (calculating the condition number of the Jacobian matrix) as well as 374 

the theoretical uncertainties, as described in the Appendix. A too large condition number expresses 375 

an ill-conditioned problem and the parameters to estimate cannot be solely determined from the 376 

signal acquired, as for the Mpeak approach, which also showed higher theoretical uncertainties than 377 

the MTG_param approach. The same observations were made in the Monte Carlo studies for the 378 

variability of the different approaches. The test-retest variabilities obtained with the in vivo data also 379 

corroborate these assessments and allow saying that MTG_param provides robust with small test-retest 380 

variability percentage estimates. This small variability percentage is mainly due to the relationship 381 

linking ndb and nmidb with a quadratic function which narrows the scope of the solutions while 382 

letting some latitude in the fit results. If no constraints or relationship are imposed, ndb and nmidb 383 

are correlated and higher variability is found. . 384 

As a result, in the particular case of adipose tissue, in vivo MRS lipid quantification, the model 385 

function simplification used in the MTG_param appears to be a  key leverage point to increase the 386 

precision of the result, at the expense of a possible bias.  387 

Bias considerations 388 

Reducing the number of parameters enabled us to decrease the variability of the results but this 389 

might have induced a bias in estimating the fatty acid composition. We investigated several sources 390 

of error and several implementations of MTG_param that could bias the estimations. With the Monte 391 

Carlo studies, biases on ndb and especially nmidb estimations were observed because the 392 

relationship between ndb and nmidb assumed in the fitting algorithm was not checked in the 393 

parameters used to simulate the signal. This mismatch was implemented on purpose to underline 394 

the importance of the assumption linking ndb and nmidb in the MTG_param approach, which 395 

participates in the robustness of the method but also constitutes a limitation of the method. Biased 396 

estimations could also occur if lipid multi-peak T2 weightings are simplified to a single lipid T2 in the 397 

fitting model. When different T2 weightings were used for the different lipid peaks involved in the TG 398 

parameter variables (as was case on in vivo data), their inclusion in the computation process 399 

appeared to be important to avoid bias in estimating the fatty acid composition. For LCModel and 400 

Mpeak, the amplitudes need correcting by the factor exp(TE/T2k) prior to estimating the fatty acid 401 

composition, as emphasized earlier2,3. Of course, the correction is unnecessary if the two resonance 402 

peaks used in the ndb or nmidb relation have the same T2 relaxation time. For MTG_param, the T2k 403 

correction needs to be included in the model and T2ks need to be estimated before. Note that the 404 

contribution of glycerol (5.19 ppm) was considered to be part of the olefinic contribution (5.29 ppm) 405 
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because these two peaks were too close to be distinguished. Therefore, we considered that the two 406 

peaks had the same T2 relaxation time. Considering that T2 weighting can bias the estimations of the 407 

fatty acid composition, it could be advantageous to use an ultra-short echo time sequence30. It 408 

should also be noted that the PUFAindx calculation, here made from nmidb, was not an absolute 409 

quantification but a coherent index of polyunsaturation, in contrast to the other types of fatty acid. 410 

Using this calculation, the maximum possible proportion of PUFA is calculated. When the most 411 

frequently identified PUFA was di-unsaturated fatty acid, this PUFAindx calculation led to consistent 412 

results. On the other hand, it could be possible to quantify the proportion of PUFA more precisely by 413 

calculating the proportion of ω-331,32 and correcting the present calculation. 414 

In this case, the effect of T2 weighting will have to be considered. In this study, we focused on the 415 

quantification of fatty acids where lipids were largely predominant (PDFF ~ 95% in oil and in adipose 416 

tissue). In fat/water mixtures, Perterson et al. 33 showed that the most critical point to achieve a 417 

reduction of errors for the quantitative imaging method was to correctly estimate the T2 of water 418 

and the 1.3-ppm peak. This would also be true for the MTG_param approach. 419 

In the case of fat liver quantification, Hamilton et al.34 showed that the fatty acid quantification 420 

results depend on the 1H MRS sequence used to collect data. Fat peak areas normalized by the water 421 

peak were consistently greater on PRESS than on STEAM and the relative amplitudes of the methyl 422 

and methylene peaks were found different in STEAM compared to PRESS due to different apparent 423 

T2 correction. Note that these considerations also depend on the quantification method used (in this 424 

case AMARES). Consequently, Hamilton et al.7 used the STEAM sequence, with mixing time and echo 425 

time optimized to minimize J-coupling effect, to estimate the adipose tissue fatty acid composition.  426 

In the present in vitro study, estimations of ndb and nmidb, corrected with T2 values, were close to 427 

the theoretical values for all the fitting approaches, which suggests that fatty acid composition can 428 

also be estimated using the PRESS sequence.  It has also been demonstrated that PRESS or STEAM 429 

can yield consistent fatty acid composition by using long echo time (~120 ms for STEAM and ~180 ms 430 

for PRESS)32. In this latter case, the optimized echo time for each sequence has been experimentally 431 

defined at 3T to match high resolution NMR measurements. The undersampling used in the 432 

MTG_param_undersampling method focused the analysis on the methylene peak time domain evolution. For 433 

this method, the importance of taking into account the spectral pattern due to J-coupling modulation 434 

is less critical. 435 

The time domain quantification approach can go back and forth between the full sampling (enabling 436 

the spectrum to be inspected after Fourier transform) and the constrained sampling achieved in 437 

MGE-MRI. On simulated data with different T2s for each peak, it was demonstrated that the MTG_param 438 
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using a regular undersampling reduced bias. Undersampling was also found to reduce bias 1) when 439 

the parameterized model function had pure Lorentzian damping factors while the data to adjust had 440 

a Voigt line shape (i.e., a mixture of Gaussian and Lorentzian damping factors) and 2) when the data 441 

presented phase distortions. Note that undersampling was made possible in MTG_param because the 442 

number of parameters to estimate was reduced. The undersampling method used in this paper 443 

concentrated the least squares minimization on data samples with a good SNR, as the frequency 444 

sampling was set on the methylene peak frequency. Moreover, since it resulted in fewer data 445 

samples in the minimization procedure, the estimates are less influenced by the mismatch of the 446 

exponentially decaying envelop between the model and the original data.  447 

Undersampling also reduces the processing time. For example, in this study, on the in vivo spectrum 448 

the MTG_param_undersampling had a processing time of around 10 s versus 25 s for MTG_param_fullsampling and 449 

versus 80 s for our implementation of Mpeak. The time domain fitting approach could also be useful in 450 

future investigations for irregular sampling of the acquisition35,36.  451 

 452 

Validating a quantification strategy is a difficult task. The methodology proposed to study and 453 

validate different quantification strategies has limitations inherent to the use of simulated/in vitro/in 454 

vivo data. Monte Carlo simulation analysis is always biased because the model and variations studied 455 

are necessarily only an approximation and simplification of real-life data. Nevertheless, Monte Carlo 456 

simulation analysis has the advantage of studying possible sources of error separating those leading 457 

to variability and increased uncertainties from those resulting in systematic under- or overestimation 458 

(bias). The in vitro validation also shows limitations for the validation of a quantification strategy that 459 

aimed to accurately fit in vivo acquired data. Indeed, in vitro acquisitions show a different spectral 460 

pattern from in vivo acquisitions due to different homogeneity field conditions. As a result, the line 461 

shape is different from in vivo spectra and the resonating groups depict multiplets that are better 462 

spectrally resolved. Nevertheless, this work shows that the standard MRS method (Mpeak and 463 

LCmodel) lead to valuable results on in vitro oil acquisitions. Validation of the in vivo results is also a 464 

difficult task: a strict gold standard could be a countermeasure provided, for example, by gas 465 

chromatography analysis 26. This technique should be performed with selective analysis of major 466 

classes of lipids (triglyceride, phospholipid, cholesterol) so that it can be easily compared to MRS 467 

measurements. However, this technique requires biopsies, which can be unjustified from an ethical 468 

point of view when working, as here, on human volunteers. Gas chromatography analysis would be 469 

feasible in the context of future animal studies. To validate these results, we opted for a repeatability 470 
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assessment (with a test-retest approach) and for a likelihood assessment by comparing the 471 

estimated lipid composition with Garaulet et al.24, Hodson et al.27 and Field et al.28. 472 

Quantification results obtained with LCModel software, widely used in the in vivo MRS community 473 

23,37, were included. The results obtained by LCModel seem to present good in vitro and in vivo 474 

properties, with good repeatability, providing a seemingly plausible fatty acid composition. By 475 

looking at the LCModel results and fits, it is most probable that the LCModel quantification strategy 476 

employed regularization to handle small baseline variations (due to a possible eddy current effect at 477 

short echo times or short first-order phases). In our view, this regularization should have been done 478 

in a specific way, i.e., based on prior knowledge of the relative peak amplitudes, but the exact 479 

implementation of this is unknown. 480 

It should be noted that what matters most in the quantification process is the correct (i.e., with the 481 

least variability and least bias) estimation of peak amplitude parameters. However, a strong 482 

interdependence exists in the estimation of the peak amplitude parameter and the estimation of the 483 

corresponding lineshape/damping parameters. The key question is how to handle this 484 

interdependence while mathematically converging to a solution that has a physical meaning. 485 

Moreover, the estimation should be repeatable, robust to some signal variation; would it be noise or 486 

small phase/baseline variation. The final estimates are expected to be sufficiently sensitive to detect 487 

possible disease-related metabolic variations. When adopting a model that is intended to fit the 488 

whole lipid spectrum pattern, the parameters are so dependent on each other that the inverse 489 

problem to solve becomes increasingly ill-conditioned. Two alternatives are then possible: a) either 490 

simplify the model, in other words reduce the number of parameters to fit with sufficient and correct 491 

prior knowledge to alleviate multicollinearity effects resulting from correlated parameters or b) find 492 

a regularization strategy that can handle the ill-posed problem (as most probably performed by 493 

LCModel). The ndb-nmidb quadratic link17, assumed in MTG_param might hide physiologically relevant 494 

information. As the result, the user is advised to carefully question the constraints and prior 495 

knowledge used in the fitting procedure. 496 

Conclusion 497 

A Quantification approach inspired from quantitative MGE-MRI has been compared to standard MRS 498 

method and shows interesting properties in terms of robustness and test-retest variability, at the 499 

expense of a possible bias. This work contributes to assembling the quantification approach used in 500 

quantitative MRI and the historical gold standard spectroscopy.  501 

 502 
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APPENDIX  513 

Theoretical comparison of the quantification approaches 514 

Here, an approach based on Information Theory is used for theoretical comparison of the MTG_param 515 

and Mpeak approaches. For each model function, realistic parameter values were used (described in 516 

Table A2) to correspond to in vitro and in vivo conditions. The condition number of the Jacobian 517 

matrix (cond-J), the correlation matrix and the parameter uncertainty 
Δ𝜃

𝜃
 were computed (the 518 

relative CRLBs 
Δ𝜃

𝜃
=  𝜎0 ∗

√𝐹(𝜃)−1

𝜃
, where 𝜃 = {𝑛𝑑𝑏, 𝑛𝑚𝑖𝑑𝑏 or 𝑐1, 𝑐3, 𝑐8}, 𝐹−1 = ℜ(𝐽𝑇. 𝐽)−1; the 519 

inverse Fisher matrix and 𝜎0 the standard deviation of noise, and for PUFAindx, MUFAindx and 520 

SFAindx the calculation is detailed in Table A1). 521 

The resonance frequencies𝑓𝑘, relaxation times 𝑇2𝑤  and 𝑇2𝑘  were assumed to be fixed and equal as 522 

if they had been previously estimated. TE was set to 0. For the MTG_param quantification case, five 523 

parameters (Aw, Af, ndb, nmidb, T2*) were considered as estimated. For the Mpeak quantification, 2*9 524 

parameters (𝛼1, … , 𝛼9, 𝑐1, … , 𝑐9) were considered as estimated. To be sure that the two models 525 

described mathematically the same signal and to simplify the comparison, for the Mpeak 526 

quantification we used the following parameters: 𝜑0 = 0, 𝛼𝑘 =  − (
1

𝑇2′ +
1

𝑇2𝑘
) =  − 

1

𝑇2∗  , 𝛽𝑘 =527 

0 , 𝑐𝑘 = 𝐴𝑓 ∗  𝑛𝑘(𝑛𝑑𝑏, 𝑛𝑚𝑖𝑑𝑏, 𝐶𝐿) 𝑓𝑜𝑟 𝑘 = {1, . . ,8}, 𝑐9 = 𝐴𝑤 ∗ 𝑛𝑤𝑎𝑡𝑒𝑟  , 𝛼9 =  − (
1

𝑇2′ +
1

𝑇2𝑤
) =528 

 − 
1

𝑇2∗ . 529 

The results on this theoretical model comparison are summarized in Table A2. The condition number 530 

of the Mpeak were 10^3 times higher than the condition number of the MTG_param. As expected, the 531 

uncertainties increased when the condition number was higher, so the Mpeak had uncertainties higher 532 

than the MTG_param. The segmented process of the MTG_param gave uncertainties lower than if we 533 

estimated all the parameters all at once (Table A2). The condition number of the MTG_param was 534 

greatly influenced by the Af and Aw values without impacting the uncertainty values of ndb and 535 

nmidb. It appeared that if we normalized the Af and Aw values by the factor (1/( Af +Aw)), the 536 

condition number was lower, so we used this correction for the results summarized in Table A2. The 537 

correlation matrix of the Mpeak indicated that 𝛼𝑘 and 𝑐𝑘 were strongly correlated with a Pearson 538 

coefficient (r) of 0.71 for each resonance. For the MTG_param with no constraint on parameters ndb and 539 

nmidb, the correlation matrix showed a strong correlation between ndb and nmidb (r = 0.80), and a 540 

moderate  correlation between Af and ndb (r=0.62), Af and nmidb (r=0.42), and Af and T2’ (r = 0.41).  541 

 542 

543 
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Table 1: Knowledge of the theoretical relative amplitude of the resonance associated with the chemical structure of a 
typical triglyceride can be either injected in the model (MTG_param) or be used a posteriori for fat composition assessment 
(Mpeak). 𝐟𝟎𝐤

 chemical shift of each resonance k; ndb number of double bonds; nmidb number of methylene-interrupted 

double bonds; CL chain length (6). 

 

 Parameters conditioning the fat spectrum models 

 

 

 
MTG_param 

(Aw, 𝐴𝑓, 𝑛𝑑𝑏, 𝑛𝑚𝑖𝑑𝑏, 𝑇2∗) 

Mpeak 

 (𝛼1, … , 𝛼9, 𝑐1, … , 𝑐9) 

K  𝒇𝟎𝒌
 (ppm)  𝒏𝒌(𝒏𝒅𝒃, 𝒏𝒎𝒊𝒅𝒃, 𝑪𝑳) 𝒄𝒌 

1 -CH=CH- 5.29 2*ndb+1 𝐴𝑓 ∗ (2 ∗ 𝑛𝑑𝑏 + 1) 

2 -CH2-COO 4.2 2 𝐴𝑓 ∗ 2 

2b -CH2-COO 4.3 2 𝐴𝑓 ∗ 2 

3 
-CH=CH-CH2-

CH=CH- 
2.75 2*nmidb  𝐴𝑓 ∗ 2*nmidb 

4 -CH2-CH2-CO 2.24 6 𝐴𝑓 ∗ 6 

5 
-CH=CH-CH2-

CH2- 
2.02 4*(ndb – nmidb) 𝐴𝑓 ∗ 4*(ndb – nmidb) 

6 -CH2-CH2-CO 1.6 6 𝐴𝑓 ∗ 6 

7 -(CH2)n- 1.3 6*(CL-4)– 8*ndb + 2*nmidb 𝐴𝑓 ∗ (6*(CL-4)– 8*ndb + 2*nmidb) 

8 -CH3 0.9 9 𝐴𝑓 ∗ 9 

9 H2O 4.7 𝑛𝑤𝑎𝑡𝑒𝑟 =2 𝐴𝑤 ∗ 2 
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Table 2: For in vivo measurements, test-retest variability was calculated. MTG_param undersampling with T2 correction 
seemed to have the best results with the least variability and estimated values close to the theoretical values. * 
PUFAindx, MUFAindx and SFAindx values estimated using ndb and nmidb values. **in the original paper, the 
polyunsaturated index (PUI) and unsaturated index (UI) were used and corresponded to ndb = 9/2xUI and nmidb = 
9/2xPUI 

  

 

Test-retest variability 

 

ndb nmidb PUFAindx MUFAindx SFAindx 

MTG_param_undersampling_T2cor 2.0 % 4.1 % 4.1 % 0.9 % 3.6 % 

MTG_param_undersampling_T2cor 

(without constraints on ndb - 

nmidb relationship) 7.3 % 22.3 % 22.3 % 8.7 % 16.8 % 

Mpeak  12.5 % 98.1 % 98.1 % 11.6 % 12.7 % 

LCModel 2.7 % 7.6 % 7.6 % 7.8 % 3.0 % 

 

Mean ± SD estimated values 

Values from the 

literature 

Gas chromatography 

Garaulet et al. (24) 

Hodson et al. (27) 

Field et al. (28) 

MRS  

Hamilton et al. (7) 

Machann et al. (8) 

 

 

ndb 

2.81 

2.60 

2.76 

ndb 

2.83 ± 0.20 

2.67** 

 

nmidb 

0.63 

0.50 

0.45 

nmidb 

0.74 ± 0.15 

0.49** 

 

PUFA 

18.0 

16.5 

14.4 ± 2.7 

PUFAindx 

24.6* 

27* 

 

MUFA 

54.6 

54.0 

57.5 ± 3.1 

MUFAindx 

54.1* 

40* 

 

SFA 

27.4 

29.5 

26.0 ± 3.0 

SFAindx 

30.3* 

33* 

MTG_param_undersampling_T2cor  2.52 ± 0.23  0.60 ± 0.11  19.9 ± 3.7*   44.3 ± 0.5*  35.8 ± 4.0* 

MTG_param_undersampling_T2cor 

(without constraints on ndb - 

2.92 ± 0.26 0.65 ± 0.15 21.6 ± 5.1* 54.2 ± 8.5* 24.2 ± 6.8* 
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nmidb relationship) 

Mpeak  1.39 ± 0.29 0.01 ± 0.02 0.3 ± 0.5* 46.2 ± 9.6* 53.5 ± 9.6* 

LCModel 1.58 ± 0.17 0.35 ± 0.04 11.6 ± 1.3* 30.0 ± 5.6* 58.4 ± 5.5* 
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Table A1: Definition of PUFAindx, MUFAindx and SFAindx calculations with parameters estimated with the two models 
studied and their measurement uncertainty calculations. 

Definition of PUFAindx, MUFAindx and SFAindx calculations with parameters estimated with the two 

models studied and their measurement uncertainty calculations. For the MTG_param the uncertainties 

of ndb and nmidb were given directly by the relative CRLBs; for the Mpeak quantification they were 

calculated with the ratio of amplitude 𝒄𝒌. 

 Calculations Measurement uncertainty calculations 

ndb and nmidb calculations for the Mpeak with estimated parameters 

ndb =
1

2
∗ (9 ∗ 

𝑐1

𝑐8
− 1) 

Δ𝑛𝑑𝑏

𝑛𝑑𝑏
 =  

Δ𝑐1

𝑐1
+ 

Δ𝑐8

𝑐8
 

nmidb =
9

2
∗ 

𝑐3

𝑐8
 

Δ𝑛𝑚𝑖𝑑𝑏

𝑛𝑚𝑖𝑑𝑏
 =  

Δ𝑐3

𝑐3
+ 

Δ𝑐8

𝑐8
   

PUFAindx, MUFAindx and SFAindx calculations for the two models  

PUFAindx =  100 ∗
𝑛𝑚𝑖𝑑𝑏

3
  

Δ𝑃𝑈𝐹𝐴𝑖𝑛𝑑𝑥

𝑃𝑈𝐹𝐴𝑖𝑛𝑑𝑥
 =

𝛥𝑛𝑚𝑖𝑑𝑏

𝑛𝑚𝑖𝑑𝑏
 

MUFAindx =  100 ∗ ( 
𝑛𝑑𝑏 − 𝑛𝑚𝑖𝑑𝑏 

3
− 

𝑛𝑚𝑖𝑑𝑏

3
) 

Δ𝑀𝑈𝐹𝐴𝑖𝑛𝑑𝑥

𝑀𝑈𝐹𝐴𝑖𝑛𝑑𝑥
 =

𝛥𝑛𝑑𝑏 + 2 ∗  𝛥𝑛𝑚𝑖𝑑𝑏

𝑛𝑑𝑏 − 2 ∗ 𝑛𝑚𝑖𝑑𝑏
 

SFAindx = 100 ∗ (1 −  
𝑛𝑑𝑏 − 𝑛𝑚𝑖𝑑𝑏 

3
) 

Δ𝑆𝐹𝐴𝑖𝑛𝑑𝑥

𝑆𝐹𝐴𝑖𝑛𝑑𝑥
 =

𝛥𝑛𝑑𝑏 +  𝛥𝑛𝑚𝑖𝑑𝑏

𝑛𝑑𝑏 − 𝑛𝑚𝑖𝑑𝑏
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Table A2: Results of measurement uncertainty calculations of ndb, nmidb PUFAindx, MUFAindx and SFAindx with in vivo parameters correspond to the expected fatty acid composition of 
human subcutaneous abdominal adipose tissue (18% PUFA, 54.6% MUFA and 27.4% SFA (23). The condition number of J explodes for Mpeak. For MTG_param, undersampling reduces the 
condition number of J for “in vitro”. Uncertainties were good for each model but increased when J was poorly conditioned. 

Spectrum Vector of parameters θ Sampling 
Condition 
number of the 
Jacobian matrix 

Δ𝑛𝑑𝑏

𝑛𝑑𝑏
 in % 

Δ𝑛𝑚𝑖𝑑𝑏

𝑛𝑚𝑖𝑑𝑏
 in % 

Δ𝑃𝑈𝐹𝐴𝑖𝑛𝑑𝑥

𝑃𝑈𝐹𝐴𝑖𝑛𝑑𝑥
 

in % 

Δ𝑀𝑈𝐹𝐴𝑖𝑛𝑑𝑥

𝑀𝑈𝐹𝐴𝑖𝑛𝑑𝑥
 

in % 

ΔS𝐹𝐴𝑖𝑛𝑑𝑥

𝑆𝐹𝐴𝑖𝑛𝑑𝑥
 

in % 

In vivo 
Aw=1.0*1E-6; 
Af=3.7*1E-5; 
ndb = 2.7; 
nmidb = 0.54; 
T2*=22.4ms 
SNR = 210 

(Aw, 𝐴𝑓, 𝑛𝑑𝑏, 𝑛𝑚𝑖𝑑𝑏, 𝑇2∗) Full 91.58 0.99 6.54 6.54 6.02 7.40 

(Aw, 𝐴𝑓, 𝑛𝑑𝑏, 𝑛𝑚𝑖𝑑𝑏, 𝑇2∗) Under 121.40 1.52 10.15 10.15 9.30 11.41 

(Aw, 𝐴𝑓, 𝑛𝑑𝑏, 𝑛𝑚𝑖𝑑𝑏, 𝑇2∗) 
with sub-process 

Full 33.00 0.90 1.61 1.61 2.57 3.92 

(Aw, 𝐴𝑓, 𝑛𝑑𝑏, 𝑛𝑚𝑖𝑑𝑏, 𝑇2∗) 
with sub-process 

Under 33.99 1.35 2.45 2.45 3.89 5.92 

(𝛼1, … , 𝛼9, 𝑐1 , … , 𝑐9) Full 2.18E+03 3.85 14.90 14.90 16.34 21.94 

(𝛼1, … , 𝛼9, 𝑐1, … , 𝑐9, 𝑓1, … , 𝑓9) 
 

Full 1.13E+04 4.89 18.98 18.98 20.80 27.91 

(𝛼1, … , 𝛼9, 𝑐1, … , 𝑐9, 𝛽1, … , 𝛽9, 𝑓1, … , 𝑓9) 
 

Full 1.22E+06 8.51 34.20 34.20 36.98 49.33 
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Figure 1 : Simulated adipose tissue lipid MR spectra used in the Monte Carlo studies, with different degrees of baseline 
distortion, simulating the eddy current effect; SNR = 210. The phase variation was simulated using the following 

exponential model: 𝝓𝒊(𝒕) = 𝒆𝒙𝒑 (−
𝒕

𝝉𝒊
) , 𝝉𝒊 =

𝟓𝟎+𝟓𝟎∗𝒊

𝟑
𝒎𝒔 for 0≤t≤100ms, with i=0…5, for the 6 spectra above.  
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Figure 2 : In vivo MRS was fitted with two models: Mpeak (Voigt model) on the left and LCModel on the right. For 
botmodels, the fitted curve is represented by a red line. For the left spectrum the original spectrum is represented with a 
blue line, the residual is a black line and the absolute residual is a green line on the same window. For the right 
spectrum, the residual is represented with a black line in a separate window just above the spectrum. Different peaks are 
noted as well: 1, olefinic (-CH=CH-); 2 and 2b, glycerol (-CH2-O-CO- ); 3, dyacil (-C=C-CH2-C=C-); 4, α-carboxyl (-CO-CH2-
CH2-); 5, α-olefinic (-CH2-CH=CH-CH2-); 6, β-carboxyl (-CO-CH2-CH2-); 7, methylene (-CH2-); 8, methyl (-CH3). For this 
example, even if the residual is very small the fatty acid compositions found with the two models are clearly different 
(3.8% PUFA, 43% MUFA and 53.6% SFA with the Voigt model and 9.6% PUFA, 50% MUFA and 40.5% SFA with LCModel). 
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Figure 3 : Monte Carlo simulation results. The simulated signal was composed with ndbtarget = 2.7 and nmidbtarget = 0.54, 
and a PDFF of 97%. These parameters should model a spectrum close to the in vivo spectrum. Bar plots showing the 
mean ± SD of the difference as a percentage between the estimated value (est) by different quantification methods and 
the target value (target) of ndb (A,C,E) or nmidb (B,D,F). The results are obtained from 100 random draws of noise added 
to simulated signals with the same T2 for each peak (A, B), with different T2s for each peak (C, D) with a phase distortion 
(E, F). 
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Figure 4 : Absolute quantification errors on ndb and nmidb according to the FA composition for the 
MTG_param_undersampling_T2cor with undersampling and T2 correction. The black area has no physical meaning (nmidb > ndb) 
and has not been evaluated. The error varies according to FA composition. The part with nmidb varying from 0.30 to 0.80 
and ndb varying from 1.90 to 2.80 correspond to the excepted in vivo values.  
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Figure 5 : Estimated values as a function of theoretical values for ndb (A) and nmidb (B) from in vitro MRS acquired with 
a PRESS at 4.7T on eight vegetable oils (avocado, canola, hazelnut, walnut, pistachio, grape-seed, sesame and olive). 
Black line represents the y=x relation. Mpeak-Voigt (in blue), LCModel (in red), MTG_param_undersampling (in green) and 
MTG_param_undersampling_T2cor (undersampling with T2 correction, in purple) show a good correlation between estimated 
values and theoretical values. LCModel estimated ndb values in closer agreement with the theoretical values. Voigt 
model gave the best estimation of nmidb but underestimated ndb values. LCModel and MTG_param_undersampling_T2cor gave 
consistent values of ndb and nmidb. 

 


