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Abstract—Given a sequence of noise-affected codewords of an
unknown channel code, the problem of blind reconstruction of
channel codes consists of identifying this unknown channel code.
This problem has many applications in military surveillance and
cognitive radios. In this paper, we study this problem for the case
when the noise is introduced by the binary erasure channel (BEC)
and the unknown channel code is a binary cyclic code of known
length. We provide an algorithm to find the generator polynomial
of the unknown cyclic code. We also provide an analysis of our
algorithm where we provide a lower bound on the probability of
correctly identifying the factors of the generator polynomial.

I. INTRODUCTION

In the problem of blind reconstruction of channel codes, the
channel code that is used at the transmitter is not known at
the receiver. Such situations may arise in military surveillance
applications or in cognitive radios [1], where the channel
code corresponding to the received data is not known. The
receiver has access to the noise-affected sequence of this
unknown channel code and the aim is to identify the channel
code corresponding to it. This blind reconstruction problem
is in general known to be NP-hard [2]. While identifying a
particular channel code, it is typically assumed that the family
of the code, such as convolutional or linear block code, is
known. The underlying structure of this particular family is
then used to identify the code. This problem has been studied
for several families of channel codes such as convolutional
codes [3], [4], linear block codes [2], [5], LDPC codes [1],
[6], and cyclic codes [7]–[11].

For the case of binary cyclic codes, this problem has
been studied by Chabot [7], Lee et al. [8], Yardi et al. [9],
[10], and Zhou et al. [11]. Chabot, Lee et al., and Yardi et
al. consider the situation when the noise is introduced by
the binary symmetric channel and the situation of additive
white Gaussian noise is studied by Zhou et al. However, for
several communication systems of practical interests, there are
situations when the noise is modeled by BEC. In this paper,
we study this blind reconstruction problem for BEC under the
assumption that the unknown channel code is a binary cyclic
code of known length.

For BEC, one can provide a simple blind reconstruction
algorithm as follows. Consider the set of received vectors that
have no erasures and take the greatest common divisor (gcd)
of these received polynomials. For a cyclic code, since every
codeword is a multiple of the generator polynomial g(X)
of the code [12], this gcd will be equal to g(X) with high
probability. However in the presence of erasures and with

limited number of received polynomials, one might not be able
to find the generator polynomial with this naive algorithm.

For BEC, while a variety of such blind reconstruction algo-
rithms can be proposed, it may not be possible to analyze the
performance of all such algorithms or analytically characterize
metrics such as probability of correct identification of the
unknown code. The main contributions of this paper are:
(1) We first provide a blind reconstruction algorithm to iden-

tify the factors of g(X) (see Theorem 1).
(2) We provide a theoretical analysis of our algorithm, where

we provide a lower bound on correctly identifying the
factors of g(X) (see Theorems 2 and 3).

(3) Finally, we provide simulation results for the proposed
algorithm for a variety of cyclic codes and also compare
the lower bound versus its true value.

Organization: In Section II, we describe the system model
for the problem of blind reconstruction of cyclic codes over
BEC. The proposed blind reconstruction method is given
in Section III and a theoretical analysis of this method is
discussed in Section IV. In Section V, we provide simulation
results of the proposed algorithm for various cyclic codes and
finally provide some future directions in Section VI.

Notation: The finite field with two elements 0 and 1 is
denoted by F2 and F2[X] denotes the polynomial ring with
coefficients from F2. The set of natural numbers is denoted
by N. We use boldface letters to denote the vectors and lower
case letters for the components of a vector. For example, vector
w =

[
w0 w1 . . . wn−1

]
, where wi for i = 0, 1, . . . , n−1

are the components of w. The polynomial representation of
vector w, is given by w(X) = w0+w1X+ . . .+wn−1X

n−1.
The sequence of M vectors w1,w2, . . . ,wM is denoted by
wM

1 . The set of polynomials in F2[X] of degree strictly less
than l is denoted by Pl. The product of two polynomials f(X)
and f ′(X) is denoted by ff ′. Random variables are denoted
by capital letters and their realizations are indicated with
lowercase letters. For example, the realization of a random
variable X is denoted by x. The cyclic code of length n and
generator polynomial g(X) is denoted by C(n, g).

II. SYSTEM MODEL AND NOTATION

Suppose the binary cyclic code C(n, g) of length n, di-
mension k, and generator polynomial g(X) is used at the
transmitter. We assume that the length n of the code is
known at the receiver but g(X) and k are not known. We
assume that C(n, g) corrects at least one error, which implies



that its minimum distance dmin(C(n, g)) ≥ 3 [12]. Let
vM
1 =

[
v1 v2 . . . vM

]
be the sequence of transmitted

codewords, where M ∈ N. Each transmitted codeword is
independent and identically distributed (i.i.d.) according to the
uniform distribution over the set of codewords of C(n, g). The
transmitted codewords are affected by the noise introduced by
a BEC of erasure probability p to get the received sequence
yM
1 =

[
y1 y2 . . . yM

]
. For BEC(p), each bit in the

received sequence is erased with probability p. Let ej be the
number of erasures in yj , for j = 1, 2, . . . ,M . Since the
transmitted codewords are i.i.d., the received vectors are also
i.i.d. Hence, for the sake of simplicity we will drop parameters
j from vj , yj , and ej whenever the arguments are applicable
for any jth received vector. Using this notation, y is an erased
version of v with e the number of erasures. For the blind
reconstruction problem of the paper, the aim of the receiver is
to identify g(X) of the code using the received sequence yM

1 .

III. PROPOSED BLIND RECONSTRUCTION METHOD

In this section, we propose a simple blind reconstruction
method to find the generator polynomial g(X) of the code.
The set of factors of Xn+1 is the candidate set of polynomials
for the factors of g(X) [12]. Suppose g(X) is factorized as

g(X) =
∏
i

[fi(X)]mi , (1)

where fi(X) are irreducible factors of g(X) and mi are their
respective multiplicities. We identify g(X) by identifying its
irreducible factors and their multiplicities.

Recall that, y is an erased version of a transmitted codeword
v with e number of erasures. For the cyclic codes, it is known
that each bit is equally likely to be zero or one [12]. Hence
we substitute 0 and 1 in all the erased entries in y and obtain
a set of 2e vectors denoted by w2e

1 =
[
w1 w2 . . . w2e

]
.

In order to identify whether a given candidate factor f(X) of
Xn +1 is a factor of g(X) or not, we study the properties of
the set w2e

1 in the following theorem.

Theorem 1. Suppose y is the erased version of a trans-
mitted codeword of C(n, g) with e number of erasures. Let
w2e

1 =
[
w1 w2 . . . w2e

]
be the set of vectors obtained

by substituting all possible 2e values in the erased bits of y.
Let Y be the random vector corresponding to y. Then for a
factor f(X) of Xn + 1 we have the following two cases.
(a) If f(X) is a factor of g(X), then for every realization y

of Y, there exists wi, such that f(X) divides wi(X) for
some i, 1 ≤ i ≤ 2e.

(b) If f(X) is not a factor of g(X), then there exists a
realization y of Y such that f(X) does not divide wi(X),
for i = 1, 2, . . . , 2e.

Proof: We first consider the case when f(X) is a factor
of g(X). For any received vector y, the correct substitution
will always be a multiple of g(X) and f(X) will divide this
correct substitution. This completes the proof of part (a).

Let now consider the case when f(X) is not a factor of
g(X). In this case, we need to show the existence of a received

vector y that satisfies the condition of part (b). Note that the
random vector Y is obtained by choosing a codeword v ∈
C(n, g) with probability 1/2k and then erasing the coefficients
of v independently with probability p. Thus with probability
1/2k, codeword g corresponding to g(X) will be transmitted
and with probability (1−p)n none of the coefficient of g will
get erased. The corresponding received vector y will be equal
to g. Since f(X) is not a factor of g(X), this y satisfies the
conditions of part (b) and the proof is complete.

Theorem 1 can be used to distinguish between the factors
and non-factors of g(X). The basic idea of the algorithm
consists of substituting all possible values in the erased bits
of the received vectors y1,y2, . . . ,yM and find the factors
of g(X) using Theorem 1. When the number of received
vectors M tend to infinity, Theorem 1 guarantees that the true
generator polynomial g(X) will be identified with probability
one. However with limited amount of data, we observe that
some non-factors of g(X) may satisfy the condition (a) of
Theorem 1 and may get wrongly decided as factors of g(X).
Consider the following example to explain this observation.

Example 1. Suppose C(n, g), with n = 7 and g(X) = X3 +
X2 + 1 is used at the transmitter. Suppose the number of re-
ceived vectors M is equal to one. Suppose v = [1 0 1 1 0 0 0]
and y = [1 0 ? ? 0 0 0], where ? denotes the erasure. The set
of polynomials obtained by substituting [0 0], [0 1], [1 0], [1 1]
at the erased locations is {1, (X + 1)(X2 + X + 1), (X +
1)2, (X3 + X2 + 1)}. The condition (a) of Theorem 1 is
satisfied by the factors X +1 and X3+X2+1 of X7+1. �

In Example 1, since g(X) is a factor of X7 + 1, we can
remove the non-factors of X7 + 1 from the set of substituted
polynomials. The corresponding set will be {1, (X+1), (X+
1), (X3+X2+1)}. Observe that the cyclic code corresponding
to all the wrong substitutions has a minimum distance strictly
less than three. Since for the true code dmin(C(n, g)) ≥ 3, we
can discard the substituted entry if the cyclic corresponding to
it has the minimum distance strictly less than three. We use this
idea to propose a blind reconstruction method in Algorithm 1.

IV. A THEORETICAL PERFORMANCE OF THE PROPOSED
ALGORITHM

In Algorithm 1, all factors of g(X) are always correctly
identified. In order to study the performance of this algorithm,
the key step is to find the probability that a given non-factor
is correctly decided as a non-factor of g(X). Suppose f(X)
is a factor of Xn+1 but it is not a factor of g(X). This f(X)
is correctly declared as a non-factor if there exists a received
vector y that satisfies the condition (b) of Theorem 1 in step
(ii) of Algorithm 1. To find the probability of receiving such
a y, one needs to condition over all possible 2k codewords
in C(n, g) and all possible 2n erasure patterns. Since the
number of codewords and erasure patterns are exponential in
number, finding this probability is in general computationally
intractable. Hence in this section, we find an lower bound
on receiving such a y. Since all the received vectors are
i.i.d., we find this lower bound when the number of received



Algorithm 1 Proposed blind reconstruction algorithm
(i) Preprocessing step: For the received vector yj with ej

erasures, substitute 0 and 1 at each erased location to
obtain the set of vectors w2ej

j,1 , for j = 1, 2, . . . ,M .
Perform the following operations on the set w2ej

j,1 .
(a) Factorize each wj,i(X) = uj,i(X)hj,i(X) such that

uj,i(X) is not a factor of Xn + 1 and hj,i(X) is a
factor of Xn + 1.

(b) Discard wj,i(X) if the cyclic code generated by
hj,i(X) has minimum distance strictly less than
three. Let wj,1(X),wj,2(X), . . . ,wj,sj (X) be the
set of non-discarded polynomials.

(ii) Decision step: Declare f(X) as a non-factor of g(X)
if there exists yj for some 1 ≤ j ≤ M such that f(X)
does not divide wj,l(X) for l = 1, 2, . . . , sj , otherwise
f(X) is declared as a factor of g(X) (see Theorem 1).

(iii) Find multiplicity: If f(X) is declared as a factor of
g(X) in step (ii), then we need to find its multiplicity
(see (1)). Similar to step (ii), find an integer m such that
[f(X)]m is a factor of g(X) but [f(X)]m+1 is not. This
m will be the multiplicity of f(X).

(iv) Repeat steps (ii) and (iii) for all irreducible factors of
Xn + 1 and obtain g(X) from equation (1).

vectors is equal to one, i.e., M = 1. For M > 1 received
vectors, the desired y can be any one of the received vector. In
Algorithm 1, we remove the substituted entry if the cyclic code
corresponding to it has minimum distance strictly less than
three. For a given non-factor f(X), depending on whether its
minimum distance dmin(C(n, f)) ≥ 3 or dmin(C(n, f)) < 3,
we provide bounds in Sections IV-A and IV-B respectively.

A. Lower Bound for non-factor f(X) with dmin(C(n, f)) ≥ 3

Theorem 2. Suppose f(X) is an irreducible factor of Xn+1
such that f(X) not a factor of g(X) and dmin(C(n, f)) ≥ 3.
Let A(f) be the event that f(X) is declared as a non-factor in
step (ii) of Algorithm 1, when the number of received vectors
M is equal to one. Then a lower bound on P

[
A(f)

]
is,

P
[
A(f)

]
≥

deg(f)−1∑
e=0

(
1− 2e

2deg(f)

)(
n

e

)
pe(1− p)n−e.

Proof: We condition on the number of erasures and find
a lower bound on P[A(f)]. Suppose the number of erasures in
received y is equal to e. The probability of this event is equal
to
(
n
e

)
pe(1 − p)n−e. Let {l1, l2, . . . , le} be the set of erasure

locations in y, where 0 ≤ l1 < l2 < . . . < le < n. The set of
vectors obtained by substituting all possible 2e values in these
erasure locations is given by w2e

1 =
[
w1 w2 . . . w2e

]
.

We first prove that for every wi, there exists a vector di =[
di,1 di,2 . . . di,e

]
∈ Fe

2 such that

wi(X) = v(X) + di,1X
l1 + di,2X

l2 + . . .+ di,eX
le (2)

= v(X) + di(X), (3)

where di(X) := di,1X
l1 + di,2X

l2 + . . . + di,eX
le , for i =

1, 2, . . . , 2e and v(X) is the transmitted codeword. Suppose
wi is obtained by substituting ci =

[
ci,1 ci,2 . . . ci,e

]
∈

Fe
2 to the erased entries of y. For the transmitted codeword

v, c =
[
vl1 vl2 . . . vle

]
∈ Fe

2 will be the correct substi-
tution. By choosing a vector di ∈ Fe

2 such that di = ci + c,
we get (3). Since all the substituted entries take all possible
values in Fe

2, the corresponding set of vectors d1,d2 . . . ,d2e

will also take all possible values in Fe
2.

Let A(f)c be the complement of event A(f). We find an
upper bound on P[A(f)c] which will provide a lower bound
on P[A(f)]. The probability of event A(f)c is given by,

P[A(f)c] = P
[
wi(X) mod f(X) = 0 for some wi ∈ w2e

1

]
(a)
= P

[
v(X) + di(X) mod f(X) = 0 for some di ∈ Fe

2

]
= P

[
v(X) mod f(X) = di(X) mod f(X)

for some di ∈ Fe
2

]
, (4)

where equality in (a) is obtained from (3). From Proposi-
tion 3.1 of [9], v(X) mod f(X) takes any value in Pdeg(f)

with probability 1/2deg(f) and using this in (4) we get,

P[A(f)c] =
1

2deg(f)

∑
b∈Pdeg(f)

P
[
di(X) mod f(X) = b(X)

for some di ∈ Fe
2

]
. (5)

Let D be the support set of di(X) mod f(X) and |D|
denotes the cardinality of set D. Depending on the number
of erasures e, we now have the following two cases.

(1) Case when e < deg(f):
In this case, di(X) mod f(X) can take at most 2e dis-
tinct values since di can take at most 2e distinct values
in Fe

2, i.e., |D| ≤ 2e. In (5), P[di(X) mod f(X) =
a(X) for some di ∈ Fe

2] is equal to one if a(X) ∈ D

and it is zero otherwise. This implies that,

P[A(f)c] =
1

2deg(f)
|D| ≤ 2e

2deg(f)
. (6)

(2) Case when e ≥ deg(f) :
In this case, di(X) mod f(X) can take at most 2deg(f)

possible values and hence |D| ≤ 2deg(f). Using this in (5)
we have,

P[A(f)c] =
1

2deg(f)
|D| ≤ 2deg(f)

2deg(f)
= 1. (7)

The required lower bound is obtained from (6) and (7) by
conditioning over E = e since P(A(f)) = 1− P(A(f)c).

B. Lower Bound for non-factor f(X) with dmin(C(n, f)) < 3

In this section, we consider the case when dmin(C(n, f)) <
3. We first introduce some notation that will be required in this
section. Let F be the set of irreducible factors of Xn+1. For



a given f(X) ∈ F that is not a factor of g(X), we define two
sets F1 and F2 as follows,

F1 := {f ′(X) ∈ F such that dmin(C(n, ff
′)) ≥ 3 and

f ′(X) does not divide g(X)} (8)
F2 := {f ′(X) ∈ F such that dmin(C(n, ff

′)) ≥ 3 and
f ′(X) divides g(X)}, (9)

where C(n, ff ′) is the cyclic code generated by f(X)f ′(X).
Let w1(X),w2(X), . . . ,ws(X) be the set of non-discarded
polynomials in step (i)-(b) of Algorithm 1. Let B(f) be the
event that f(X) is declared as a non-factor in step (ii) of
Algorithm 1. The probability of event B(f) is given by,

P[B(f)] = P
[
wi(X) mod f(X) 6= 0 for i = 1, . . . , s

]
(10)

Remark 1. Without loss of generality suppose w1(X) in (10)
corresponds to the transmitted codeword of C(n, g). When
f(X) divides w1(X), we have P[B(f)] = 0. Thus event B(f)
can occur only when f(X) does not divide w1(X). �

In the following lemma, we find an upper bound on B(f)c

(complement of B(f)) when f(X) does not divide w1(X).

Lemma 1. Let B(f), f(X), F1, and, F2 be as defined above.
Suppose f(X) does not divide w1(X) in (10). Then under the
condition the number of erasures in received vector y is equal
to e, an upper bound on P

[
B(f)c

∣∣E = e
]

is given by

P
[
B(f)c

∣∣E = e
]
≤
∑

f ′∈F1

2e

2deg(f ′)
+
∑

f ′∈F2

β(f ′),

where β(f ′) is given by

β(f ′) :=

e∑
i=dmin(C(n,f ′)

Ai(f
′)

(
n− i
e− i

)/(
n

e

)
,

where the sequence of integers {A0(f
′), A1(f

′), . . . , An(f
′)}

is the weight distribution of C(n, f ′).

Proof: In Algorithm 1, each wi(X) in (10) belongs
to some cyclic code of length n with minimum distance
greater than or equal to three. Since dmin(C(n, f)) < 3,
wi(X) mod f(X) = 0 implies that wi(X) ∈ C(n, ff ′), such
that dmin(C(n, ff

′)) ≥ 3. Note that it is sufficient to consider
the case when f ′(X) ∈ F since when f ′(X) /∈ F, f ′(X) can
be written as f ′(X) = f1(X)f2(X) such that f1(X) ∈ F and
w′i(X) ∈ C(n, ff1). Using this, P[B(f)c

∣∣E = e] given by,

P[B(f)c
∣∣E = e] = P

[
wi(X) mod f(X)f ′(X) = 0 for ,

some i, 2 ≤ i ≤ s and some f ′(X) ∈ F1 ∪ F2

]
(a)

≤
∑

f ′∈F1∪F2

P
[
wi(X) ∈ C(n, ff ′) for some i, 2 ≤ i ≤ s

]
:=

∑
f ′∈F1

P[D(ff ′)
∣∣E = e] +

∑
f ′∈F2

P[D(ff ′)
∣∣E = e], (11)

where the upper bound in (a) follows from the union bound.
The event D(ff ′

∣∣E = e) in (11) correspond to wi(X) ∈
C(n, ff ′) for some i, 2 ≤ i ≤ s. The equality in (11) follows

since the sets F1 and F2 are disjoint (see (8), (9)). We find an
upper bound on P[B(f)c

∣∣E = e] by finding an upper bound
on each P[D(ff ′)

∣∣E = e] in (11).
(i) Case when f ′ ∈ F1:

In this case, the event wi(X) ∈ C(n, ff ′) im-
plies wi(X) ∈ C(n, f ′). From (6) and (7) we have
P[D(ff ′)

∣∣E = e] ≤ 2e/2deg(f
′) (see proof of Thm. 2).

(ii) Case when f ′ ∈ F2:
From (3) we have, wi(X) = v(X)+di(X), where v(X)
is the transmitted codeword, for i = 2, 3, . . . , s. Using
this P[D(ff ′)

∣∣E = e] is given by,

P[D(ff ′)
∣∣E = e] = P

[
[v(X) + di(X)] ∈ C(n, ff ′)

for some i, 2 ≤ i ≤ s
]

(a)

≤ P
[
[v(X) + di(X)] ∈ C(n, f ′) for some 2 ≤ i ≤ s

]
,

= P
[
di(X) ∈ C(n, f ′) for some i, 2 ≤ i ≤ s

]
, (12)

where the upper bound in (a) is obtained since every
codeword in C(n, ff ′) also belongs to C(n, f ′) and
the equality in the last step follows since v(X) ∈
C(n, f ′). As explained in the proof of Theorem 2,
for the correct substitution di(X) = 0 and for any
incorrect substitution di(X) 6= 0. Let {l1, l2, . . . , le}
be the set of erasure locations in y. From (3), each
di(X) = di,1X

l1+di,2X
l2+. . .+di,eX

le is obtained by
substituting 0 and 1 in each di,j , for j = 1, 2, . . . , e. If
there exists a codeword v(X) in C(n, f ′) whose support
set is contained in the locations {l1, l2, . . . , le} then the
coefficients of di(X) can be chosen to be equal to v(X)
and in (12) we have P

[
D(ff ′)

∣∣E = e
]
= 1. Note that,

the weight of this v(X) should be less than or equal to
e. Using this the probability in (12) is given by

P
[
D(ff ′)

∣∣E = e
]
≤

e∑
i=dmin(C(n,f ′))

Ai

(
n− i
e− i

)/(
n

e

)
.

The upper bound of the theorem is obtained from (11).
Using Lemma 1 and Remark 1, we now obtain a lower

bound on P[B(f)] in the following theorem.

Theorem 3. Suppose f(X) is an irreducible factor of Xn+1
such that f(X) not a factor of g(X) and dmin(C(n, f)) < 3.
Let B(f) be the event that f(X) is declared as a non-factor in
step (ii) of Algorithm 1, when the number of received vectors
M is equal to one. When E = e, let α(e) be the upper bound
obtained in Lemma 1. Let e′ be the largest number of erasures
such that α(e) < 1. Then a lower bound on P[B(f)] is

P[B(f)] ≥
(
1− 1

2deg(f)

) e′∑
e=0

[
1− α(e)

](n
e

)
pe(1− p)n−e.

Proof: From Remark 1, event B(f) can happen only
when f(X) does not divide correct substitution w1(X) and
its probability is equal to 1− (1/2deg(f)) (Proposition 3.1 of
[9]). The lower bound of the theorem follows Lemma 1 by
conditioning over event E = e from e = 0, 1, . . . , e′.
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Fig. 2. Performance of Algorithm 1 for BCH(63, 39) code when M = 5,
10, 30, and 50 vectors of the true code are received.

V. SIMULATION RESULTS

For simulations, we generate a sequence of codewords vM
1

and every bit in this sequence is erased independently with
probability p to get yM

1 . Algorithm 1 is applied to this yM
1 .

Since Algorithm 1 consists of substituting all possible values
at the erased locations, the cost of implementation increases
with increase in the number of erasures in the received vectors.
Hence we discard the received vector if the number of erasures
are more than emax. For the simulations we have chosen
emax = 7. Fig. 1 shows the plot of probability of detection
(PD) versus erasure probability p for various cyclic codes.
Fig. 2 shows the plot of PD versus p for BCH(63, 39) for
various M . Simulations are performed using SageMath [13].

We next compare the lower bound on correctly identifying
the non-factors of the generator polynomial obtained using
Theorems 2 or 3 versus its true value in Fig. 3. As explained
in Section IV, finding the true value is computationally in-
tractable and hence we find approximate true value via Monte
Carlo simulations of Algorithm 1 with M = 1 and emax = 7.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of blind reconstruction
of cyclic codes of known lengths, when the noise is introduced
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Fig. 3. For BCH(63, 39), lower bound on correctly identifying the non-
factors and their corresponding true values are plotted for f1(X) = X6 +
X4 + X3 + X + 1 and f2(X) = X + 1. For f1(X), lower bound (L.B.)
obtained via Theorem 2 and f2(X) L.B. is obtained using Theorem 3.

by BEC. We proposed a blind reconstruction algorithm and
provided a lower bound on correctly identifying the factors of
the generator polynomial. To the best of our knowledge, this is
the first time a blind reconstruction problem has been analyzed
for the binary erasure channel. As part of future work, we
plan to study this problem for the case when the length of
cyclic code is not known. Studying this blind reconstruction
problem over BEC for other families of channel codes such
as convolutional, Turbo, linear block codes is also of interest.
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