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A class of cutoff functions for non-trivial Riemann zeros

Yu Li

Abstract

Abstract: In this paper we construct a pseudo hermitian operator H̃ and in-
troduce a class of cutoff functions ζs, then we show that the cutoff functions are
eigenfunction of H̃ for all non-trivial Riemann zeros.
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1 Introduction

One of the most attracting problems in Mathematics is Riemann hypothesis and it
states that all the non-trivial zeros of Riemann zeta function

ζ(s) =
∑
n≥1

1

ns
=

1

Γ(s)

∫ ∞
0

ts−1

et − 1
dt

have the real part 1
2 .

One proposed way of proving Riemann hypothesis, known as Hilbert-Pólya conjec-
ture, is to find an unbounded self-adjoint operator such that the imaginary part of
Riemann zeros corresponds to the eigenvalues of this operator. It has been suggested
[5] that the possible approach to solve Hilbert-Póplya conjecture lies in a quantization
of the classical Hamiltonian H = XP , where P is the canonical momentum operator
associated with position operator X. Inspired of the previous works, an operator H̃
similar to quantum analogy was proposed [4] and asymptotic analysis was performed
[3]. However, the momentum operator P in this case has no self-adjoint extension [2].

In the whole paper we study a cutoff function ζs instead of raw Hurwitz zeta func-
tion, which is the main difference from that in [3, 4] and construct a pseudo hermitian
operator H̃ on the Hilbert space H = L2[12 , 1]. Then we show that the cutoff function is

eigenfunction of H̃ for non-trivial Riemann zeros.

2 A cutoff function of Hurwitz zeta function

The Hurwitz zeta function is originally defined for complex arguments s with R(s) >
1 and x > 0 by

ζ(s, x) =
∑
n≥0

1

(n+ x)s
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Hurwitz zeta function has an analytic continuation on C with the only singularity s = 1
and it can be represented [1, 10]

ζ(s, x) = −Γ(1− s)
2πi

∫
C

ξs−1exξ

eξ − 1
dξ, s 6= 1 (1)

where C is the contour around the negative real axis and it starts at −∞, encircles the ori-
gin once in the positive direction without enclosing any of the points ξ = ±2ni,±4ni, ...
and returns to −∞ [10]. The famous Riemann zeta function is the special case of Hurwitz
zeta function with x = 1

ζ(s, 1) = ζ(s)

and also with x = 1
2

ζ(s,
1

2
) = (2s − 1)ζ(s) (2)

The partial derivative of Hurwitz zeta function with respect to x

∂ζ(s, x)

∂x
= −sζ(s+ 1, x), s 6= 0, 1;x > 0 (3)

Let s denote a point in critical strip 0 < R(s) < 1 and we define a cutoff function ζs of
Hurwitz function on interval [12 , 1]

ζs(x) := ζ(s, x),
1

2
≤ x ≤ 1 (4)

The functions ζs is continuous and even smooth on the closed interval [12 , 1] and have
finite norm and belong to the Hilbert space, ζs ∈ L2[12 , 1]. If a complex number z is a
non-trivial Riemann zero,

ζz(1) = 0

then the function ζz vanishes at x = 1
2 from (2)

ζz(
1

2
) = 0

3 Non-trivial Riemann zeros

Let X be the position operator on L2[12 , 1] and P0 the momentum operator P0 = −i ddx
densely defined on L2[12 , 1] with domain

D(P0) =

{
f ∈ C∞[

1

2
, 1] : f(

1

2
) = f(1)

}
(5)

Integrating by part, the boundary terms cancels, it shows that the momentum operator
P0 is symmetric. The functions

{
e2πin(2x−1) : 1

2 ≤ x ≤ 1
}
n

form an orthogonal basis for

L2[12 , 1], consisting of eigenfunction for P0 with eigenvalues 4πn. Thus, the momentum
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operator P0 is essentially self-adjoint [6] and it has a unique self-adjoint extension P0 = P .
The closure of the graph of P0 is the graph of P

Γ(P ) = Γ(P0) = L2[
1

2
, 1]× L2[

1

2
, 1]

From the Stone’s theorem on one-parameter unitary groups,
{
eitP

}
t

is a strongly con-

tinuous one-parameter group of unitary operators on L2[12 , 1]. Thus, both operators
e±iP − I are bijective and bounded, and then the bounded inverses (e±iP − I)−1 exist,
from the bounded inverse theorem in functional analysis.

We construct an operator H̃ on L2[12 , 1]

H̃ =
(
eiP − I

)−1
(XP + PX)

(
eiP − I

)
It holds obviously for 1

2 ≤ x ≤ 1 and 0 < R(s) < 1

(XP + PX)x−s = i(2s− 1)x−s (6)

Here the operator HBK = XP + PX is called Berry-Keating operator [5].
The operator H̃ is pseudo hermitian [7, 8, 9], i.e. there exists an invertible and

self-adjoint operator η such that the adjoint operator H̃† can be represented

H̃† = ηH̃η−1

Proposition 3.1. H̃ is pseudo hermitian and all eigenvalues are real.

Proof. Let η = (eiP − I)†(eiP − I) and it is obviously self-adjoint, then

H̃† = ηH̃η−1

The operator η is positive definite and self-adjoint by construction, the operator H̃ is
hermitian in the new inner product with respect to η

〈H̃φ, ϕ〉η = 〈H̃φ, ηϕ〉 = 〈φ, ηH̃η−1ηϕ〉 = 〈φ, H̃ϕ〉η, φ, ϕ ∈ L2[
1

2
, 1]

Then all eigenvalues of H̃ are real.

Proposition 3.2. For every non-trivial Riemann zero z, the cutoff function ζz is an
eigenfunction of H̃ with eigenvalue i(2z − 1).

Proof. We consider for non-trivial Riemann zeros z the term

1

iP

(
iP

eiP − I

)
x−z,

1

2
≤ x ≤ 1

where 1
iP is defined as an integral operator on L2[12 , 1] with boundary x = 1

2

1

iP
f(x) :=

∫ x

1
2

f(ξ)dξ, f ∈ L2[
1

2
, 1]
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and iP
eiP−I f is defined as a Bernoulli generating function

iP

eiP − I
f(x) :=

∑
n≥0

Bn
n!

(iP )nf(x), f ∈ L2[
1

2
, 1]

Notice

(iP )nx−z =
Γ(−z + 1)

Γ(−z + 1− n)
x−z−n

We use Hankel loop contour integral formula [10, 11]

1

Γ(−z + 1− n)
=

1

2πi

∫
C
ξ−(1−z−n)eξdξ

where the integration is done along the Hankel-Bromwich contour and it begins at −∞,
circles the origin once in the positive direction, and returns to −∞

(iP )nx−z = Γ(1− z)
(

1

2πi

∫
C
ξ−(1−z−n)eξdξ

)
x−z−n

=
Γ(1− z)

2πi

∫
C

(
ξ

x

)z+n−1
eξd

ξ

x

and then

iP

eiP − I
x−z =

∑
n≥0

Bn
n!

(iP )nx−z

=
Γ(1− z)

2πi

∑
n≥0

∫
C

Bn
n!

(
ξ

x

)z+n−1
eξd

ξ

x

Let u = ξ
x and C′ = C

x is still a loop around the negative real axis. Uniform convergence
on closed interval justifies the interchange of integral and sum. Then Hurwitz zeta
function can be reproduced (1)

iP

eiP − I
x−z =

Γ(1− z)
2πi

∫
C′

uz

eu − 1
euxdu = −zζ(z + 1, x)

Then from (3)

1

iP

(
iP

eiP − I

)
x−z =

∫ x

1
2

−zζ(z + 1, ξ)dξ

= ζ(z, x)− ζ(z,
1

2
) = ζz(x)

In general 1
iP

(
iP

eiP−I

)
6= 1

eiP−I , but the function ζz takes the value 0 at x = 1
2 for

non-trivial Riemann zero z, then(
1

eiP − I

)
x−z =

1

iP

(
iP

eiP − I

)
x−z = ζz(x)
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Combining (6), we reach
H̃ζz = i(2z − 1)ζz

Remark. For a complex number s such that ζs(
1
2) 6= 0, it holds

H̃ζs(x) = i(2s− 1)

[
ζs(x) + ζs(

1

2
)

]
In this case, the second term ζs(

1
2) remains, which implies ζs is not an eigenfunction of

H̃.

In summary, we identify a Hilbert space L2[12 , 1] spanned by all pairwise orthogonal

eigenfunctions
{
e2πin(2x−1) : 1

2 ≤ x ≤ 1
}
n

of H̃ that satisfies the boundary condition

f(
1

2
) = f(1)

Moreover, we establish the essential self-adjointness of H̃ on this space and demonstrate
that the cutoff functions equipped with non-trivial Riemann zeros are eigenfunctions of
H̃ with eigenvalues i(2z − 1).

Theorem 3.3. The Riemann zeta function has its non-trivial zeros only at the complex
numbers with real part 1

2 .

Corollary. The Hurwitz zeta function

ζ(s,
1

2
)

has its non-trivial zeros only at the complex numbers with real part 1
2 .
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