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A pseudo hermitian operator and non-trivial

Riemann zeros

Yu Li

Abstract

Abstract: In this paper we construct a pseudo hermitian operator
and reveal a connection between its eigenvalues and the non-trivial
Riemann zeros.
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1 Introduction

One of the most attracting problems in Mathematics is Riemann hy-
pothesis and it states that all the non-trivial zeros of Riemann zeta function

ζ(s) =
∑

n≥1

1

ns
=

1

Γ(s)

∫ ∞

0

ts−1

et − 1
dt

have the real part 1
2 .

One proposed way of proving Riemann hypothesis, known as Hilbert-
Pólya conjecture, is to find an unbounded self-adjoint operator such that
the imaginary part of Riemann zeros corresponds to the eigenvalues of this
operator. It has been suggested [4] that the possible approach to solve
Hilbert-Póplya conjecture lies in a quantization of the classical Hamiltonian
H = XP , where P is the canonical momentum operator associated with
position operator X. Inspired of the previous works, an operator H̃ similar
to quantum analogy was proposed [3]. However, the momentum operator P
in this case has no self-adjoint extension [2].

In this paper we define an operator H̃ on the Hilbert space H = L2[12 , 1],
then we show that momentum operator in this setting has the unique self-
adjoint extension. Finally, we demonstrate that the operator is pseudo her-
mitian and prove a relationship between its eigenvalues and the non-trivial
Riemann zeros.
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2 Hurwitz zeta functions

The Hurwitz zeta function is originally defined for complex arguments s
with R(s) > 1 and x > 0 by

ζ(s, x) =
∑

n≥0

1

(n + x)s

Hurwitz zeta function has an analytic continuation on C with the only sin-
gularity s = 1 and it can be represented [1, 7]

ζ(s, x) = −
Γ(1− s)

2πi

∫

C

ξs−xexξ

eξ − 1
dξ, s 6= 1 (1)

where C is the contour around the negative real axis and it starts at −∞,
encircles the origin once in the positive direction without enclosing any of
the points ξ = ±2ni,±4ni, ... and returns to −∞ [7]. The famous Riemann
zeta function is the special case of Hurwitz zeta function with x = 1

ζ(s, 1) = ζ(s)

and also with x = 1
2

ζ(s,
1

2
) = (2s − 1)ζ(s) (2)

The partial derivative of Hurwitz zeta function with respect to x

∂ζ(s, x)

∂x
= −sζ(s+ 1, x), s 6= 0, 1;x > 0 (3)

3 Non-trivial Riemann zeros

Let X be the position operator on L2[12 , 1] and P0 the momentum oper-

ator P0 = −i d
dx

densely defined on L2[12 , 1] with domain

D(P0) =

{

f ∈ C∞[
1

2
, 1] : f(

1

2
) = f(1)

}

(4)

and obviously P0 is essentially self-adjoint [5] and it has a unique self-adjoint
extension P0 = P . The functions ϕn(x) = e2πin(2x−1) form an orthogonal
basis for L2[12 , 1] and the closure of D(P0) is all functions of L

2[12 , 1]

D(P ) = D(P0) = L2[
1

2
, 1]

From the Stone’s theorem on one-parameter unitary groups,
{

eitP
}

t
is a

strongly continuous one-parameter group of unitary operators on L2[12 , 1].
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So both operators e±iP −I are bijective and bounded, and then the bounded
inverses (e±iP − I)−1 exist, from the bounded inverse theorem in functional
analysis.

We construct an operator H̃ on L2[12 , 1]

H̃ =
(

eiP − I
)−1

(XP + PX)
(

eiP − I
)

It holds obviously for 1
2 ≤ x ≤ 1 and 0 < R(s) < 1

(XP + PX)x−s = i(2s − 1)x−s (5)

Here the operator HBK = XP + PX is called Berry-Keating operator [4].
The operator H̃ is pseudo hermitian [6], i.e. there exists an invertible

operator η such that the adjoint operator H̃† can be represented

H̃† = ηH̃η−1

Proposition 3.1. H̃ is pseudo hermitian and all eigenvalues are real.

Proof. Let η = (eiP − I)†(eiP − I), then

H̃† = ηH̃η−1

The operator η is positive definite, then all eigenvalues of H̃ are real.

Let s denote a point in critical strip 0 < R(s) < 1 and we define a
function ζs on interval [12 , 1] for Hurwitz zeta function

ζs(x) := ζ(s, x),
1

2
≤ x ≤ 1

If a complex number z is a non-trivial Riemann zero,

ζz(1) = 0

then the function ζz vanishes at x = 1
2 from (2)

ζz(
1

2
) = 0

Proposition 3.2. For each non-trivial Riemann zero z, ζz is an eigenfunc-
tion of H̃ with eigenvalue i(2z − 1).

Proof. We consider for non-trivial Riemann zeros z the term

1

iP

(

iP

eiP − I

)

x−z,
1

2
≤ x ≤ 1
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where 1
iP

is defined as an integral operator on L2[12 , 1] with boundary x = 1
2

1

iP
f(x) :=

∫ x

1

2

f(ξ)dξ, f ∈ L2[
1

2
, 1]

and iP
eiP−I

f is defined as a Bernoulli generating function

iP

eiP − I
f(x) :=

∑

n≥0

Bn

n!
(iP )nf(x), f ∈ L2[

1

2
, 1]

Notice

(iP )nx−z =
Γ(−z + 1)

Γ(−z + 1− n)
x−z−n

We use Hankel loop contour integral formula [7, 8]

1

Γ(−z + 1− n)
=

1

2πi

∫

C

ξ−(1−z−n)eξdξ

where the integration is done along the Hankel-Bromwich contour and it
begins at −∞, circles the origin once in the positive direction, and returns
to −∞

(iP )nx−z = Γ(1− z)

(

1

2πi

∫

C

ξ−(1−z−n)eξdξ

)

x−z−n

=
Γ(1− z)

2πi

∫

C

(

ξ

x

)z+n−1

eξd
ξ

x

and then

iP

eiP − I
x−z =

∑

n≥0

Bn

n!
(iP )nx−z

=
Γ(1− z)

2πi

∑

n≥0

∫

C

Bn

n!

(

ξ

x

)z+n−1

eξd
ξ

x

Let u = ξ
x
and C′ = C

x
is still a loop around the negative real axis. Uniform

convergence on closed interval justifies the interchange of integral and sum.
Then Hurwitz zeta function can be reproduced (1)

iP

eiP − I
x−z =

Γ(1− z)

2πi

∫

C′

uz

eu − 1
euxdu = −zζ(z + 1, x)

Then from (3)

1

iP

(

iP

eiP − I

)

x−z =

∫ x

1

2

−zζ(z + 1, ξ)dξ

= ζ(z, x)− ζ(z,
1

2
) = ζz(x)
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The function ζz vanishes at x = 1
2 for non-trivial Riemann zero z, then

(

1

eiP − I

)

x−z =
1

iP

(

iP

eiP − I

)

x−z = ζz(x)

Combining (5), we reach

H̃ζz = i(2z − 1)ζz

Theorem 3.3. The Riemann zeta function has its non-trivial zeros only at
the complex numbers with real part 1

2 .

Corollary. The Hurwitz zeta function

ζ(s,
1

2
)

has its non-trivial zeros only at the complex numbers with real part 1
2 .
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