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Abstract: The paper proposes a methodology for optimal coordination of motions in robotic systems with multiple 

redundant actuators. In contrast to our previous results dealing with a single redundant axis, the extended 

technique is proposed allowing the robot, positioner and linear track to be actuated simultaneously in order 

to reduce the total processing time. The developed technique transforms the original continuous problem 

into a discrete one where the desired time-optimal motions are presented as a shortest path on the task graph 

satisfying the problem-specific acceleration and velocity constraints imposed on the joint coordinates. The 

desired time optimal motions are generated using enhanced dynamic programming algorithm that considers 

both of these constraints. Two case studies are presented to demonstrate efficiency of the approach and 

evaluate benefits of simultaneous actuation of all robotic system axes.  

1 INTRODUCTION 

Currently, composite materials have been 

increasingly used in aerospace and automotive 

industries because of their good strength-to-weight 

ratio and durability (Pham et al., 2016, Garoushi, 

2018). For fabricating complex composite parts, 

automated fiber placement technique is widely used 

(Gay, 2014, Frketic et al., 2017). The relevant 

technological process can be implemented by using 

either specifically designed CNC machines or 

robotic systems. Such machines have no limitations 

on the component size, but they are expensive and 

usually require large work-floor areas (Gallet-

Hamlyn, 2011). In contrast, the robotic systems are 

relatively cheap and flexible, allowing changing the 

product type easily. However, they are usually 

kinematically redundant because of excessive 

number of actuated axes that are provided by a 6-dof 

robot, a 1-dof positioner and a 1-dof linear track. For 

this reason, in robotic fiber placement the optimal 

coordination of the manipulator motions with the 

positioner/track movements is an important issue.  

In literature, there are a number of works that deal 

with the redundancy resolution in robotic systems. 

Relevant techniques are usually based on the pseudo 

inverse of the kinematic Jacobian (Flacco and De 

Luca, 2015). However, they can be hardly applied to 

the considered problem because they do not allow 

generating optimal trajectories satisfying real-life 

industrial requirements (Kazerounian and 

Nedungadi, 1988). Alternatively, there are also 

several techniques based on conversion of the 

original continuous problem to a discrete one. The 

simplest one is able to generate time-optimal 

trajectories for point-to-point motions and was 

applied to the spot-welding (Gueta et al., 2008, 

Gueta et al., 2017). A slightly different method was 

proposed in (Pashkevich et al., 2004) for the laser 

cutting and arc-welding applications where the 

motion amplitude for the actuated axes was 

minimized but the tool speed was assumed to be 

constant. 

For the considered process, where the tool speed 

variations are allowed in certain degree, a discrete 

optimization based methodology was proposed in 

our previous work (Gao et al., 2017). It allows the 

user to convert the original problem to the 

combinatorial one taking into account particularities 

of the fiber placement technology and to generate 

time-optimal coordinated motions for the robot and 

positioner. However, the technique was applied to a 

planar benchmark example only, with a single 

redundant variable. In this work, an extension of the 

previous results is proposed allowing dealing with 



the optimal motion coordination for robotic systems 

with higher degree of redundancy, which arises 

when the robotic manipulator, the positioner and 

linear track actuated simultaneously.  

2 ROBOTIC FIBER PLACEMENT 

PROBLEM 

A typical robotic fiber placement workcell is 

presented in Figure 1. Here, the workpiece to be 

covered by the composite fiber reinforcement is 

manipulated by the positioner, which is able to 

change its orientation in order to improve 

accessibility of certain zones by the technological 

tool. This tool is attached to the robot flange and 

ensures placement of the fiber reinforcement in 

desired locations. The robot is installed on a 

translational linear track allowing adjusting its base 

location while processing relative large products. 

 

Figure 1: Robotic fiber placement workcell. 

In robot-based composite manufacturing, 

preparation of the manufacturing process includes a 

number of stages presented in Figure 2, where the 

motion coordination of all robotic system 

components is one of the most difficult procedures. 

Within this process, the desired fiber placement path 

is generated using a dedicated CAM system and it is 

presented in a discrete form. Further, the obtained 

set of task points is transformed into the task graph 

that describes all possible combinations of the robot, 

positioner and linear track coordinates. Then, the 

motion generator produces the optimal trajectories 

that correspond to the “shortest” path on the task 

graph. Finally, the obtained motions are converted 

into the program for the robot control system.  

 

Figure 2: Manufacturing process preparation for robotic 

fiber placement processes. 

3 SYSTEM KINEMATIC MODEL  

To describe the fiber placement task, let us present it 

as a sequence of the frames 
( ){ , 1,2,... }i

task
F i n , in such 

a way that the X-axis is directed along the path 

direction and Z-axis is normal to the workpiece 

surface pointing outside of it. Using these notations, 

the task locations can be described by a set of 4×4 

homogenous transformation matrices and the 

considered task is formalized as follows: 

  
(1) ( ) ( ) ; 1,2,...w w i w n

task task task
i nT T T  (1) 

where all vectors of positions and orientations are 

expressed with respect to the workpiece frame (see 

superscript “w”). To execute the given fiber 

placement task, the technological tool must visit the 

frames defined by (1) as fast as possible. 

In any task location, the spatial configurations of the 

robot, positioner and linear track can be described by 

the joint coordinates 
R

q , 
P
q  and 

L
q . So, the task 

locations can be expressed using the direct kinematic 

functions of these components, which are further 

denoted as ( )
R R
g q , ( )

P P
g q  and ( )

L L
g q . This allows 

us to write the kinematic equations describing the 

given fiber placement task in the following form 

  

   

( ) ( )

( ) ( )

( ) ( )

( ) 1,2,...;

World i i Tool

Lbase L L R R task

World i w i

Pbase P P task

g q g

g q i n

T q T

T T
 (2) 

where all notations are defined in Figure 1. It is clear 

that the above equations cannot be solved for 
R

q , 
P
q  



and 
L
q  in unique way because the robotic system is 

kinematically redundant. On the other side, it gives 

some freedom for optimizing the coordinated 

motions of the robotic manipulator with the 

positioner and linear track movements. 

4 GENERATION OF OPTIMAL 

COORDINATED MOTIONS 

To present the problem in a formal way, let us define 

the function ( )
R
tq , ( )

P
q t  and ( )

L
q t  describing 

profiles of the robot, positioner and linear track joint 

coordinates as a function of time [0, ]t T . 

Additionally, let us introduce a sequence of time 

instants 
1 2

{ , , ... }
n

t t t  corresponding to the cases when 

the technological tool visits the task locations (1). 

So, the considered motion coordination problem can 

be presented as 
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where the main objective is to minimize the total 

motion time using full capacities of the redundant 

robotic system, which are limited by the maximum 

velocity/acceleration values for the actuated joints. 

Besides, the collision constraints ( )colls   as well as 

the distance to singularities ( )cond   are also taken 

into account.  

Because of specific constraints, the above presented 

continuous optimization problem cannot be solved 

in a straightforward way. For this reason, the 

considered problem is converted into a discrete form 

by sampling the redundant variables corresponding 

to the positioner and the linear track. Then, using 

ideas proposed in our previous work (Gao et al., 

2017) and applying sequentially the direct 

kinematics of the positioner and linear track as well 

as the inverse kinematics of the robot, one can get a 

configuration state for the robotic system in joint 

space (see Figure 3). This allows generating an 

extended task graph where all task locations are 

ordered in time. This graph contains all possible 

configuration states of the considered robotic system 

for executing the given fiber placement path, and the 

desired time-optimal solution of the relevant 

optimization problem is presented as the shortest 

path connecting the initial and the final layers. An 

outline of the task graph generation algorithm is 

presented in Appendix A. 

 

Figure 3: Transformation of the original continuous 

problem into discrete form. 

The structure of this 3D graph is presented in 

Figure 4 where the nodes  1 2( , , )

1 2
{ , };k k i

task
k kL  

correspond to the ith task location 
( )w i

task
T  and the 

indices 1 2
( , )k k  are related to the sampled 

coordinates of the positioner and linear track 

respectively.  
Using such presentation, the original continuous problem 

(1) is converted into a specific shortest-path problem on 

the graph, where all three successive nodes satisfy the 

acceleration constraints and the distances between two 

nodes 1 2( , , )k k i

task
L  and 

1 2( , , 1)k k i

task
L  are equal to the technological 

tool displacement time from the ith to the (i+1)th task point, 

which is restricted by the maximum velocities and 

accelerations of the robot, the positioner and the linear 

track. It should be also noted that some of the nodes are 

excluded from the graph because of violation of the 

collision or singularity constraints as well as the joint 

limits. These nodes are marked as “inadmissible” ones in 

Figure 4, and they are not connected to any neighbour. So, 

the objective function to be minimized (robot motion time)  



 

Figure 4: Task graph corresponding to the motion 

generation problem with two redundant variables. 

can be presented as the sum of the edge weights 
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that is computed as 
 

 










 
 
  
 

1 1
1 2 1 2

1 1
1 2 1 2

( , , ) ( , , 1)

( , , ) ( , , 1)

max1,2,...8
( , ) max

i i i i

i i i i

k k i k k i

j j
k k i k k i

task task

j
j

q q
dist

q
L L  

i.e. taking into account the maximum allowable 

velocities 
max{ 1,2,...8};
j
q j  of the actuators. 

Corresponding optimal solution is represented by the 

sequence  
1 1 2 2
1 2 1 2 1 2( , , 1) ( , , 2) ( , , )

{ } { } { }
n n

k k k k k k n

task task task
L L L  that 

contains the actuated coordinates of the robot, 

positioner and linear track. It worth mentioning that 

the above expression straightforwardly takes into 

account the velocity constraints, while the 

acceleration constraints are verified by means of the 

second order approximation applied to the 

corresponding functions ( )
R
tq , ( )

P
q t  and ( )

L
q t  on 

the time interval
1 1

[ , ]
i i

t t t
 

 . It allows us to present 

the acceleration constraints on the desired trajectory 

of the considered robotic system in the following 

form: 

 





 

    


    

( 1) ( )

1 max

1 1

2 i i

i j i j

j

i i i i

t q t q
q

t t t t
 (5) 

where 
 


  

1 1
1 2 1 2( , , ) ( , , 1)( )
i i i i
k k i k k ii

j j j
q q q  and the time 

intervals   it  are computed as the distance between 

the nodes 1 2( , , )
i i
k k i

task
L  and 

 


1 1
1 2( , , 1)
i i
k k i

task
L . 

To find the desired optimal path, conventional 

optimization techniques can be hardly applied 

because of extremely high computing time (Gao et 

al., 2017). Besides, these techniques are not able to 

take into account the acceleration constraints that are 

very essential here. For these reasons, a dedicated 

problem-oriented algorithm has been developed for 

this problem. 

This algorithm is based on the dynamic 

programming principle, aiming at sequentially 

finding the shortest paths for the problems of lower 

dimensions, i.e. from  
1 1
1 2( , 1)

1 2
{ , , }

k , k

task
k kL  to the 

current nodes  1 2( , )

1 2
{ , , }

i i
k , k i

task
k kL . If the length of the 

corresponding shortest path is denoted as 
1 2, ,k k i

d , 

then the shortest path for the next locations 

 1 2( , , 1)

1 2
{ , , }

k k i

task
k kL  can be obtained by combining the 

optimal solutions for the previous column 
 

  1 2( , )

1 2
{ , , }

k k , i

task
k kL  and the distances between the task 

locations with the indices i and i+1, 

  
 

 

 
  1 2 1 2

1 2 1 2,1 2

( , , 1) ( , )

, , 1 , ,
min ,
k k

k k i k k , i

k k i k k i task task
d d dist L L  (6) 

This expression is applied recursively, starting from 

the second layer of the task graph ( 2i  ) and 

finishing by the last one ( i n ). So, the desired 

optimal path can be obtained after selection of the 

minimum length 
1 2, , 1k k i

d  corresponding to the last 

layer. An outline of this path planning algorithm is 

presented in Appendix B. In fact, this algorithm is 

generalization of our previous technique that was 

developed for motion coordination of the robotic 

manipulator and positioner (without linear track). As 

follows from relevant study, this algorithm is rather 

time efficient in this more complicated case; which 

deals with two redundant axes.  

5 COMPARISON OF MOTION 

COORDINATION STRATEGIES  

To demonstrate advantages of the proposed 

technique, let us apply it to an industrial problem 

that deals with fabrication of a high-pressure 

composite vessel. Relevant robotic fiber placement 

workcell (see Figure 5) is composed of 6-axis serial 

robot KUKA KR210 R3100, 1-axis translational 



linear track KUKA KL2000 and 1-axis rotational 

positioner AFPT 550. 

For comparison purposes, two cases will be 

considered where the robot base is assumed either 

fixed or movable by means of the linear track. These 

two cases correspond to different degrees of 

redundancy provided by the positioner only or by 

the positioner together with the linear track. For the 

first case, the technique described in our previous 

work (Gao et al., 2017) will be applied while the 

second case is based on the technique proposed in 

this paper. 

 

Figure 5: Robot-based fiber placement workcell and 

arrangement of coordinate frames. 

5.1 Optimal Motion Coordination for 
Fixed Robot Base  

A composite vessel considered in this case study is 

relatively small compared to the robot workspace. It 

is composed of a cylindrical part and two elliptical 

domes at both ends of the cylinder. The cylinder is 

168 mm in diameter and 1200 mm in length. The 

laying task includes a single circuit placement of 

helical lamina. This allows executing the 

manufacturing task with fixed robot base, which 

simplifies the motion coordination but obviously 

leads to some increase of the total motion time. 

Nevertheless, here also arises another optimization 

problem that deals with optimal robot placement 

relative to the workpiece mounted on the positioner.  

To find the optimal location of the robot base, the 

space of linear track coordinate (defining the robot 

placement) was sampled and the proposed motion 

planning technique was applied several times, 

assuming that the robot and the positioner 

coordination is required only. This yields the 2D 

task graph corresponding to a single redundant 

variable (positioner rotation angle), which was used 

to generate the time-optimal motions for each robot 

base location. Relevant results are presented in 

Table 1.  

 

Table 1: Total motion time for different robot locations. 

Robot location [mm] Motion time [sec] 

2000 4.99 

2100 4.80 

2200 4.88 

2300 4.13 

2400 4.16 

2500 4.19 

2600 4.75 

2700 8.51 

As follows from the obtained results, the optimal 

robot location corresponds to the linear track 

coordinate 2300 mm, which ensures the smallest 

motion time of 4.13 sec to execute the desired 

technological task using capacities of the robot and 

the positioner only. It worth mentioning that this 

value is about 50% less compared to the non-optimal 

robot positioning when the desired path is located 

very close to the border of the robot workspace. In 

the following section, the obtained motion time will 

be compared with the similar value obtained for the 

case of movable robot base (when the actuation 

capacities of the linear track are also used). 

5.2 Optimal Motion Coordination for 
Movable Robot Base 

Another alternative for manufacturing the 

considered composite vessel is to actuate both 

positioner and linear track simultaneously, which 

corresponds to movable robot base. To coordinate 

motions of all mechanical components in this case, 

the joint coordinate spaces of both the positioner and 

the linear track were sampled with the step of 5° and 

15 mm respectively. Then, the proposed extension of 

the time-optimal motion generation technique that 

deals with two redundant variables was applied.  

 

Figure 6: Total motion time for the cases of non-actuated 

and actuated linear track. 



Relevant computational results are presented in 

Figure 6. As follows from them, using movable 

robot base allows reducing the total motion time 

down to 3.87 sec, which is about 6% less compared 

to the case of the fixed robot base. The obtained 

trajectories are shown in Figures 7 and 8, which 

show the displacement and velocity profiles for all 

eight actuators of the 6-axis robot, 1-axis positioner 

and 1-axis linear track. It should be mentioned that 

after discrete optimization, a dedicated smoothing 

technique may be also used to locally improve the 

velocity and acceleration profiles and ameliorate the 

actuator working conditions. 

 

Figure 7: Displacement profiles of the coordinated time-

optimal motions of the robot, positioner and linear track. 

6 CONCLUSIONS 

This paper presents an extended technique dealing with 

the optimal motion coordination in redundant robotic fiber 

placement systems. In contrast to previous results dealing 

with a single redundant axis only, this technique allows 

the robot, positioner and linear track to be actuated 

simultaneously in order to reduce the total motion time. 

First, the original continuous optimization problem is 

converted into a combinatorial one where the desired time-

optimal motions are presented as a specific shortest path 

 

 

Figure 8: Velocity profiles of coordinated time-optimal 

motions of the robot, positioner and linear track. 

on the task graph. Then, the desired time-optimal 

motions are generated using enhanced dynamic 

programming algorithm that takes into account the 

actuator capabilities (coordinate limits, velocities 

and accelerations) as well as the kinematic and 

geometric constraints allowing avoiding collisions 

and singular configurations of the manipulator. The 

proposed technique is illustrated by two case studies 

confirming simultaneous actuation of all robotic 

system axes. In future, the proposed technique will 

be generalized for the robotic systems with higher 

degrees of redundancy. 
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APPENDIX A 

TASK GRAPH GENERATION 

As mentioned in Section 4, here the pseudo-codes of 

the 3D task graph generation are presented. Its input 

includes is a sequence of 4×4 location matrices

{ ( ) | 1,2,... }Task i i n , the discretization densities m1 

and m2, and the upper/lower limits of the redundant 

variables denoted as max

Pq , min

Pq  and max

Lq , min

Lq  

respectively. The algorithm transforms the task 

locations ( )Task i  into the joint space.  

This procedure contains two steps. Firstly, the 
 

redundant variables are uniformly discretized in the 

ranges of ],[ maxmin

PP qq  and ],[ maxmin

LL qq , and 

m1×m2×n matrix 1 2 1 2
{ ( , , ), ( , , )}

P L
q k k i q k k i   is 

obtained, where 1 1 2 2
1,2,... ; 1,2,...k m k m   and 

1,2,...i n . Then, at the second step, (.)Pg , (.)Lg

and (.)1

Rg  are sequentially applied, and the robot 

configuration states for 

1 2 1 2 1 2
{ ( , , ), ( , , ) | , , }

P L
q k k i q k k i k k i    are 

computed. After checking with the joint limits, 

collision and the distance to singularities, the task 

graph is finally generated with nodes:  

1 2 1 2 1 2 1 2
( , , ) { ( , , ), ( , , ), ( , , )}

P L R
k k i q k k i q k k i k k iL q  

where 1 1 2 2
1,2,... ; 1,2,...k m k m   and 1,2,...i n . 

 
 

Input:  

{Task(i)|i=1…n} – matrices of task locations. 
{qPmax(i), qPmin(i)|i=1…n}  

 –    upper/lower limits of positioner coordinate.  
{qLmax(i), qLmin(i)|i=1…n} 

 –    upper/lower limits of linear track coordinate.  

m1 – discretization density for positioner.   

m2 – discretization density for linear track.  

u – robot configuration index. 

 

Output: 
{L(k1,k2,i)|k1=1…m1;k2=1…m2;i=1…n} 

– 3D matrices of task locations: 
 

Notations: 

qL, qP, qR – Linear track, positioner and robot joint 

coordinates; 
PTtask – Transformation from positioner base to task 

locations;   
RTtask – Transformation from robot base to task 

locations; 

 

Invoked functions:  

gP(.)  – Positioner direct kinematic function; 

gL(.)  – Linear track direct kinematic function; 

gR-1(.) – Robot inverse kinematic function; 

coll(.)– Collision test function; 

cond(.)– Condition number calculation; 

Tran(.)– Transformation from robot base to 

positioner base. 



 

APPENDIX B 

SHORTEST PATH SEARCH  

Here, the pseudo-codes of the shortest path search 

are presented. The input is the 3D matrix of the 

locations 1 2
{ ( , , )}k k iL , which contains information 

on the configuration states satisfying the equality 

constraint, the collision constraint and the singularity 

constraint. The algorithm operates with two tables 

( , )D k i  and ( , )P k i  that include the minimum 

distances for the sub-problem of lower size (for the 

path 1 i ) and the pointers to the previous 

locations respectively.  

The procedure is composed of four basic steps. The 

step (1) reshapes the 3D graph to the one with 

m1×m2 lines and n columns for simplifying the 

programming. In step (2), the recursive formula (6) 

is implemented. For the admissible configuration 

nodes, the acceleration constraints are examined 

using the expression (5) for each candidate path 

connecting the nodes with the indices i, i−1 and i−2. 

It is worth mentioning that the function ( )accl   

requires three inputs corresponding to i, i−1 and i−2, 

but the location for i−2 is determined using the 

pointer ( , 1)P j i   to the previous location in the 

current path. Then, it finds the minimum path from 

the current node to the first column and records the 

reference into the pointer matrix. In steps (3) and 

(4), the optimal solution is finally obtained and 

corresponding path is extracted by means of the 

backtracking.  

 
 

 

1) Graph conversion: 

m:= m1*m2; 

C(k,i):=0; k=1,2,…m; i=1,2,…n; 

for i=1 to n 

  Tem(k1,k2):=0; 

  for k1=1 to m1 

    for k2=1 to m2 

   Tem(k1,k2) = L(k1,k2,i); 

    end 

  end 

  C(:,i):=reshape(Tem);     

end 
 

2) Path searching: 
set D(k,i):=0;P(k,1):=null;k=1,2,…m; 
 

for i=2 to n 

 for k=1 to m 
 

  for j=1 to m 

   if(C(k,i)≠null)&(C(k,i-1)≠null) 

if(i=2)|(acc(C(k,i),C(j,i-1))=0) 

     r(j):=D(j,i-1) 

           +dist(C(k,i),C(j,i-1)); 

else 

 r(j):=inf;  

end 

end  

  end 
 

  set D(k,i):=min({r(j)|j=1,2…m}); 

  P(k,i):=argmin({r(j)|j=1,2…m}); 

 end 

end 
 

3) Shortest path selection: 
set DMIN:=min({D(k,n)|k=1,2,…m}); 

k0(n):=argmin({r(j)|j=1,2…m}); 
 

4) Backtracking: 
for i=n to 2 

 k0(i-1):=P(k0(i),i); 

end 

Input:  
{L(k1,k2,i)|k1=1…m1;k2=1…m2;i=1…n} 

 –    3D matrix of task locations 
 

Output: 

DMIN – minimum path length; 

{k0(i)|i=1…n} – optimal path indices; 
 

Notations: 
{D(k,i)|k=1…m1·m2;i=1…n} 

– distance matrix; 
{P(k,i)|k=1…m1·m2;i=1…n} 

– pointer matrix; 
{C(k,i)|k=1…m1*m2;i=1…n} 

  –    2D matrix of task locations; 
 

Invoked functions:  

reshape(.)-transform m1×m2 matrix to one 

column array; 

dist(.) – distance between nodes; 

accl(.) - Acceleration test on nodes. 

Positioner and linear track discretization:  

for i=1 to n 

 dqP(i):=(qPmax(i)-qPmin(i))/(n-1); 

 dqL(i):=(qLmax(i)-qLmin(i))/(n-1); 

 for k1=1 to m1 

  for k2=1 to m2 

  qP(k1,k2,i):=qPmin(i)+(k1-1)·dqP(i); 

  qL(k1,k2,i):=qLmin(i)+(k2-1)·dqL(i); 

  end  

 end  

end 

 

Location matrix creation: 
for i=1 to n 

 for k1=1 to m1 

  for k2=1 to m2 

   PTtask:=gP(qP(k1,k2,i))·Task(i); 

   RTtask:=Tran(qL(k1,k2,i))·
PTtask; 

   qR(k1,k2,i):= gR
-1(RTtask,u); 

  end 

 end 

end  



The above presented algorithm has been tested using 

Matlab 2016b environment (running at Intel®i5 CPU 

@2.67GHz 2.67GHz). In the case of the fixed robot 

base, it took about one minute to generate the time-

optimal motions for each sampled robot location. In 

the case of the movable robot base, the computation 

required about one hour. It is clear that in other 

programming environment, the computing time 

would be essentially smaller. 


