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NONLINEAR STABILIZATION
BY ADDING INTEGRATORS1

Abderrahman Iggidr and Gauthier Sallet

In this paper, we study the global stabilization, by means of smooth state feedback, of
systems (S) obtained by adding an integrator to a general nonlinear system (

P
). We show

how to compute the stabilizing feedback for (S) when a stricte Lyapunov function for (
P

)
is difficult to find.

1. INTRODUCTION

In this paper we deal with the global stabilization of nonlinear control systems of
the form: {

ẋ = f(x, y)
ẏ = u

(1)

where x ∈ IRn, y ∈ IRp, u ∈ IRp and f is a smooth vector field such that f(0, 0) = 0.
It is well known [3, 6, 7] that if the subsystem:

ẋ = f(x, v) (2)

where v is the input, is globally asymptotically stabilizable (G.A.S) by means of
feedback law v = k(x), where k is of class Cr, r ≥ 1 then system(1) is G.A.S.
Moreover, if it is possible to construct a Lyapunov function V such that

〈∇V, f(x, k(x)〉 < 0 ∀x ∈ IRn, x 6= 0 (3)

(V is said a strict Lyapunov function for system (2) and exists by the Lyapunov
inverse theorem) then a stabilizing feedback u(x, y), which depends on k and V , is
explicitly given. However it is not easy to find a function V satisfying (3) even if
one knows that the origin is a globally asymptotically stable equilibrium point for
the closed loop system

ẋ = f(x, k(x)). (4)

The goal of this paper is to weaken these hypotheses. Theorem 1 shows that, to
find a feedback stabilizer for system (1), we do not need to have a strict Lyapunov

1Presented at the IFAC Workshop on System Structure and Control held in Prague on September
3–5, 1992.



500 A. IGGIDR AND G. SALLET

function for (2). Theorem 2 shows how to asymptotically stabilize system(1) without
stabilizing system (2).

We recall that the relationship between the stabilizability of (2) and (1) is an
open problem when system (2) is stabilizable by means of continuous feedback (not
C1). This problem was addressed in [1] and [2] from the local stabilization point
of view. The authors proved that the local stabilizability of (2) is equivalent to the
local stabilizability of (1) if n = p = 1 and f is a real analytic function.

2. MAIN RESULTS

Before stating the first theorem we introduce the following notations and definitions:

Definition 1. We shall say that system (2) is of LA SALLE-Type (L-T) if there
exist:

1. a function k : IRn → IRp of class Cr(r ≥ 1) with k(0) = 0
2. a function V : IRn → IR of class C1, definite positive and proper such that:

i) X · V (x) ≤ 0 ∀x ∈ IRn where X(x) = f(x, k(x)) and X · V is the Lie-
derivative of V along the trajectories of the vector field X
(here: X · V (x) = 〈∇V, X(x)〉 where 〈·, ·〉 is the inner product in IRn)

ii) The largest invariant set contained in E = {x ∈ IRn|X · V (x) = 0} is the
origin of IRn.

Definition 2. A continuously differentiable scalar function V : IRn → IR is a weak
Lyapunov function for

ẋ = X(x)

if V is positive definite proper and

X · V (x) ≤ 0 ∀x ∈ IRn.

By a proper function we mean a function

V : IRn → IR

such that {x ∈ IRn|V (x) ≤ ξ} is compact for each ξ > 0.

Through this paper ‖ . ‖ will denote the usual Euclidian norm in IRp, Xt(·) is the
flow of the vector field X defined on IRn.

Remarks.
1. System (2) is of (L-T) ⇔ ẋ = f(x, k(x)) is globally asymptotically stable (see

[4]).
2. It is often easier to find V satisfying (i) and (ii) then a function V satisfying

(3) (Mechanical systems are well known examples of this situation).
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Theorem 1. If system (2) is of (L-T) then system (1) is also of (L-T) and the
stabilizing feedback is

u = −y + k(x) + dk(x).f(x, y)−G(x, y)T · ∇V (x). (5)

(T = transpose)
where

f(x, y) = f(x, k(x)) + G(x, y) · (y − k(x)). (6)

Remark. One can choose for G the matrix:

G(x, y) =
∫ 1

0

∂f

∂y
(x, ty + (1− t)k(x))dt. (7)

P r o o f . (2) is of L-T so there exist k and V satisfying i) and ii) of the above
definition. Let us denote X(x) = f(x, k(x)) and Ω the largest invariant set by X
contained in E = {x ∈ IRn|X · V (x) = 0}. By hypotheses Ω = {0}.
Let

Z(x, y) =
(

f(x, y)
u(x, y)

)

where
u(x, y) = −y + k(x) + dk(x) · f(x, y)−G(x, y)T · ∇V (x)

and define (see [7])

W (x, y) = V (x) +
1
2
‖y − k(x)‖2

W is of class C1, definite positive and proper

Ẇ (x, y) = Z ·W (x, y) = 〈Z(x, y),∇W (x, y)〉 = X · V (x)− ‖y − k(x)‖2 ≤ 0

Note that all trajectories of the closed-loop system are bounded because W is proper
and its derivative is nonpositive.
Let

Ẽ = {(x, y) ∈ IRn+p |Z ·W (x, y) = 0}
= {(x, y) ∈ IRn+p |y = k(x) and X · V (x) = 0}.

According to LaSalle’s theorem (see [4] pp. 66–67) all solutions tend to Ω̃ the largest
invariant set by Z contained in Ẽ. To prove Theorem 1 it remains to that Ω̃ is the
origin of IRn+p.
On Ω̃ the vector field Z is given by:

Z(x, k(x)) =

(
X(x)

Y (x)

)

where Y (x) = dk(x) · f(x, k(x))−G(x, k(x))T · ∇V (x) and X(x) = f(x, k(x))
{

ẋ = f(x, k(x)) = X(x)
ẏ = dk(x) · f(x, k(x))−G(x, k(x))T · ∇V (x).
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Let (x(t), y(t)) be a solution of the above system starting at (x(0), y(0)), the initial
condition ∈ Ω̃. Since Ω̃ is Z-invariant we have (x(t), y(t)) ∈ Ω̃ for all t ≥ 0 but we
have

d
dt

(x(t)) = X(x(t))

hence x(t) = Xt(x) where Xt(·) is the flow of the vector field X defined on IRn.

Consider, now, the following set:

M = {x ∈ IRn|(x, k(x)) ∈ Ω̃}.

If x ∈ M then (x, k(x)) ∈ Ω̃ and (x(t), y(t)) ∈ Ω̃ since Ω̃ is invariant, this implies
(Xt(x), y(t)) ∈ Ω̃ but y(t) = k(Xt(x)).

So we have shown: x ∈ M ⇒ (Xt(x), k(Xt(x))) ∈ Ω̃ ⇒ Xt(x) ∈ M .

This proves that M is X-invariant and since M is contained in E we have M = {0}
and then Ω̃ = {(0, 0)} which completes the proof of Theorem 1. 2

Example 1. Consider the following system which evolves in IR4:




ẋ1 = x2x3 + b1y

ẋ2 = −x1x3 + b2y

ẋ3 = b3y

ẏ = u

(8)

where b3 6= 0 and (b1, b2) 6= (0, 0).
The subsystem 




ẋ1 = x2x3 + b1y

ẋ2 = −x1x3 + b2y

ẋ3 = b3y

(9)

is the “famous” system of the angular velocity of a symmetric rigid body. In [5, 7]
it is shown that (9) is smoothly globally asymptotically stabilizable. Furthermore,
it is shown in [5] that the system (9) is of L-T with the two polynomial functions

k = −b3 x3 −
(
x1

2 + x2
2 + x3

) (
2b3 + 4 (b1x1 + b2x2)

)
P (x3)

2
−b3(x1

2 + x2
2 + x3)2P ′(x3)
2

V =
x3

2 +
(
x1

2 + x2
2 + x3

)2
P (x3)

2
where

P (x) =
b3

4

4
(
b1

2 + b2
2
) + b3

2 x + 2
(
b1

2 + b2
2
)

x2
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so all the assumptions of Theorem 1 are satisfied and then our result can be the
stabilizing feedback for system (8) using the formula (5). Note that a strict Lyapunov
function for system (9) has never been found and may be difficult to construct so
the results of [3, 6, 7] cannot be applied to stabilize system (8).
Generally, to compute the stabilizing feedback for systems of the form:





ẋ = f(x) + g(x)y
ẏ = u
x ∈ IRn, y ∈ IRp, g(x) ∈ Mn,p(C∞(IRn, IR))

where the subsystem ẋ = f(x) + g(x)y is stabilizable via the Jurdjevic–Quinn’s
method, one can apply Theorem 1 but not the results based on strict Lyapunov
function.

For the following result we suppose that f is a smooth (i. e. C∞) vector field.

Theorem 2. If there exist a smooth feedback k (not necessarily a stabilizing one)
for system (2) and a smooth function V , which is definite positive and proper, such
that:

i) X · V (x) ≤ 0 ∀x ∈ IRn where X(x) = f(x, k(x))
ii) The set

S = {x ∈ IRn|Xs+1 · V (x) = Xs · Yi · V (x) = 0, s ∈ IN, i = 1, . . . , p}

where Yi =
∂f

∂yi
(x, k(x)), is reduced to the set {0}.

then system (1) is G.A.S and the stabilizing feedback:

u = −y + k(x) + dk(x) · f(x, y)−G(x, y)T · ∇V (x) (10)

where G is defined by the formula (7).

P r o o f . We take u = dk(x) · f(x, y) − G(x, y)T · ∇V (x) + v where v is a new
input so system(1) can be written:

(
ẋ

y

)
= Z(x, y) + B(x, y) · v = Z(x, y) +

p∑

i=1

viBi

where

Z(x, y) =

(
f(x, k(x)) + G(x, y) · (y − k(x))

dk(x) · f(x, y)−G(x, y)T · ∇V (x)

)

and Bi(x, y) = en+i.

Introduce
W (x, y) = V (x) +

1
2
‖y − k(x)‖2.
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W is smooth, definite positive and proper

Z ·W (x, y) = X · V (x) ≤ 0.

According to [5], the above system is globally asymptotically stabilizable by the
feedback

v = −B ·W (x, y)

if the set

A =
{
(x, y) ∈ IRn+p|Zs+1 ·W (x, y) = Zs ·Bi ·W (x, y) = 0, s ∈ IN, i = 1, . . . , p

}

is reduced to the origin of IRn+p.
Since Z.W (x, y) = X · V (x) and B ·W = y − k(x) we can write:

A = {(x, y) ∈ IRn+p|y = k(x) and x ∈ C}

where:

C =
{
x ∈ IRn|X · V (x) = Zs+1 ·W (x, k(x)) = Zs ·Bi ·W (x, k(x)) = 0,
s ≥ 1, i = 1, . . . , p

}
.

We shall show that C = S. We have

B ·W = y − k(x)
Z ·Bi ·W = Z · (yi − ki(x)) = 〈Z,∇(yi − ki(x))〉 .

For (x, y) ∈ A the vector field Z is (since y = k(x)):

Z =

(
X(x)

dk(x) · f(x, k(x))−G(x, k(x))T · ∇V (x)

)

so
〈Z,∇(yi − ki(x))〉 = −〈X,∇ki(x)〉

+
〈
dk(x) · f(x, k(x))−G(x, k(x))T · ∇V (x), en+i

〉
.

But 〈
dk(x) · f(x, k(x))−G(x, k(x))T · ∇V (x), en+i

〉
=

n∑

j=1

∂ki

∂xj
(x)fj(x, k(x))−

n∑

j=1

∂fj

∂yi
(x, k(x))

∂V

∂xj
(x)

= 〈∇ki(x), X(x)〉 −
〈
∇V (x),

∂f

∂yi
(x, k(x))

〉
.

Thus
Z ·Bi ·W (x, y) = −Yi · V (x)

where
Yi =

∂f

∂yi
(x, k(x)).
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Now Z2 ·Bi ·W (x, y) = Z · (Z ·Bi ·W )(x, y) = −Z · (Yi · V (x))

and since Yi · V (x) is independent of y we have:

Z · (Yi · V (x)) = X · Yi · V (x)

so
Z2 ·Bi ·W (x, y) = −X · Yi · V (x)

and by induction we prove that for any integer s ≥ 1 and any (x, y) ∈ A:

Zs ·Bi ·W (x, y) = −Xs−1 · Yi · V (x), i = 1, . . . , p. (11)

A similar computation shows that we have also for any integer s and any (x, y) ∈ A:

Zs+1 ·W (x, y) = Xs+1 · V (x) (12)

The equalities (11) and (12) show that C = S so Theorem 2 is proved. 2

Example 2. Consider the following system:




ẋ = sin(xy) = f(x, y)

ẏ = u

(x, y) ∈ IR2, u ∈ IR.

(13)

To stabilize this system we can try to stabilize first the system

ẋ = sin(xy)

where y is considered as the control. This system is obviously asymptotically stabi-
lizable by a smooth function y = k(x) and after we can use Theorem 1 to stabilize
system (13) but the feedback resulting is complicated.
Alternatively we can stabilize system (13) by a simpler smooth feedback if we apply
Theorem 2 as follow:

Introduce
V (x) =

1
2
x2 and k(x) = 0

we have

X · V (x) = 0, Y =
∂f

∂y
(x, k(x)) = x, Y · V (x) = 0 ⇔ x = 0.

This shows that V and k satisfy the hypotheses of Theorem 2 so system (13) is
(G.A.S) by means of the feedback law:

u(x, y) =




−y − x

sin(xy)
y

if y 6= 0

−x2 otherwise
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Example 3. 



ẋ1 = y(x1 − x2)

ẋ2 = y(x2 + y)

ẏ = v

x = (x1, x2) ∈ IR2, y ∈ IR, v ∈ IR.

(14)

First, consider the reduced system



ẋ1 = u(x1 − x2)

ẋ2 = u(x2 + u) (15)

where u is regarded as the control. Here

f(x, u) =
(

u(x1 − x2)
u(x2 + u)

)
, and

∂f

∂u
(x, u) =

(
x1 − x2

x2 + 2u

)
.

If we choose u = k(x1, x2) = 0 and V (x1, x2) =
1
2
(x2

1 + x2
2) then all the hypotheses

of Theorem 2 are satisfied. In fact, with the notations used in the proof, we have

X.V (x1, x2) = 0, Y =
∂f

∂u
(x, k(x)) =

(
x1 − x2

x2

)

〈
∂f

∂u
(x, k(x)),∇V (x)

〉
= x2

1 − x1x2 + x2
2.

So Y · V (x) = 0 ⇔ x1 = x2 = 0.
A stabilizer for (14), computed using (10), is

u = −y − x1(x1 − x2)− x2(x2 + y).
(Received March 23, 1993.)
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