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In this paper, we study the global stabilization, by means of smooth state feedback, of partially linear composite stochastic systems.

Introduction

Many recent papers (see [START_REF] Kokotovic | A positive real condition for global stabilization of nonlinear systems[END_REF][START_REF] Kokotovic | The peaking Phenomenon and the global Stabilization of nonlinear systems[END_REF][START_REF] Saberi | Global stabilization of partially linear composite systems[END_REF] and references therein) addressed the problem of The global stabilization, by means of state feedback, of deterministic nonlinear control systems of the form :

ẋ = f (x, y) x ∈ IR n ẏ = Ay + Bu y ∈ IR p (1) 
where u ∈ IR k is the control, A ∈ M p,p (IR), B ∈ M p,k (IR) and f is a smooth vector field such that :

(h1) The pair (A, B) is stabilizable.

(h2) The equilibrium x = 0 of ẋ = f (x, 0) is globally asymptotically stable (G.A.S).

In [START_REF] Saberi | Global stabilization of partially linear composite systems[END_REF], the authors assumed that the dependence of f (x, y) on y is of the form :

(h3) f (x, y) = f (x, 0) + G(x, y).Cy.

with C ∈ M k,p (IR). They gave conditions on the linear subsytem

ẏ = Ay + Bu ỹ = Cy , ỹ ∈ IR k
under which there exist a matrix K ∈ M k,p (IR) and a symmetric positive definite matrix P ∈ M p,p (IR) satisfying the following three conditions :

(H1) P (A + BK) + (A + BK) T P = -Q , with Q symmetric positive ( T = transpose). (H2) (Q 1/2 , A + BK) detectable. (H3) B T P = C.
Using the above assumptions, they proved that the system (1) is globally asymptotically stabilizable and they gave the stabilizing feedback

u(x, y) = Ky - 1 2 G(x, y) T ∇V (x)
where V is a smooth Lyapunov function satisfying

∇V, f (x, 0) < 0, ∀x ∈ IR n , x = 0 (2)
The goal of our work is to show that the result of [START_REF] Saberi | Global stabilization of partially linear composite systems[END_REF] can be extended when the nonlinear part of the system (1) is corrupted by a noise which satisfies the same hypothesis (h3) as f . We prove that the stochastic system dx t = f (x t , y t )dt + g(x t , y t )dw t dy t = (Ay t + Bu)dt

where both f and g are of the form (h3), is globally asymptotically stabilizable in probability, if (H1), (H2), (H3) and the condition (h'2) the solution x t ≡ 0 of dx t = f (x t , 0)dt + g(x t , 0)dw t is globally asymptotically stable in probability, hold.

Notice that the systems of the form

dx t = f (x t , y t )dt + g(x t )dw t dy t = (Ay t + Bu)dt (3) 
have been studied in [START_REF] Chabour | Exponential mean square stability of partially linear stochastic systems[END_REF]. Under conditions on the dependence on y of the vector field f , the authors proved that ( 3) is exponentially stabilizable in mean square if

(h"2) the solution x t ≡ 0 of dx t = f (x t , 0)dt + g(x t )dw t is exponentially stable in mean square.
Remark that (h"2) is stronger than (h'2).

Stochastic stability

The aim of this section is to recall the main definitions and results proved by Has'minskii (see [START_REF] Khasminskii | Stochastic stability of differential equations[END_REF], chapter V) for the zero state of a stochastic differential equation to be stable in probability. Let (Ω, F, P ) be an usual probability space and denote by w a standard IR m -valued Wiener process defined on this space. Denote by (F t ) t≥0 the complete right-continuous filtration generated by the standard Wiener process w. Let x t ∈ IR n be the stochastic process solution of the stochastic differential equation written in the sense of Itô,

x t = x 0 + t o b(x s ) ds + m k=1 t 0 σ k (x s ) o dw k s (4)
where b and σ k , 1 ≤ k ≤ m, are Lipschitz functions mapping IR n into IR n such that

1. b(0) = 0 , σ k (0) = 0 , 1 ≤ k ≤ m.
2. There exists a non-negative constant K such that

|b(x)| + m k=1 |σ k (x)| ≤ K(1 + |x|) for every x in IR n .
Furthermore, for any t ≥ 0 and x 0 ∈ IR n , denote by x t (x 0 ), t ≤ t, the solution at time t of the equation ( 4) starting from the state x 0 .

Then, the main notions of stochastic stability we are dealing with in this paper may be defined by Definition 1 The solution x t ≡ 0 of the stochastic differential equation ( 4) is said to be stable in probability if for any > 0 there exists δ > 0 such that

|x 0 | < δ ⇒ P sup t>0 |x t (x 0 )| > = 0.
If, in addition, there exists a neighbourhood D of the origin such that

P lim t→+∞ |x t (x 0 )| = 0 = 1, ∀x 0 ∈ D
the solution x t ≡ 0 of the stochastic differential equation ( 4) is said to be asymptotically stable in probability.

It is globally asymptotically stable in probability (G.A.S.P) if

P lim t→+∞ |x t (x 0 )| = 0 = 1, ∀x 0 ∈ IR n
Therefore, denoting by L the infinitesimal generator associated with the stochastic differential equation ( 4) defined for any function Ψ in C 2 (IR n ) by

LΨ(x) = n i=1 b i (x) ∂Ψ ∂x i (x) + 1 2 n i,j=1 a i,j (x) ∂ 2 Ψ ∂x i ∂x j (x) (5) 
where a i,j (x) = m k=1 σ i k (x)σ j k (x), 1 ≤ i, j ≤ n, one can prove the following stochastic Lyapunov Theorem (see [START_REF] Khasminskii | Stochastic stability of differential equations[END_REF], [START_REF] Arnold | Stochastic differential equations : Theory and applications[END_REF]).

Theorem 1 Let D be a neighbourhood of the point x = 0 which is contained in IR n together with its boundary, and assume that there exists a Lyapunov function V defined in D (i.e. a proper function V positive definite mapping D into IR) such that LV (x) ≤ 0 (respectively LV (x) < 0), ∀x ∈ D, x = 0 Then, the solution x t ≡ 0 of the stochastic differential equation ( 4) is stable (respectively asymptotically stable) in probability. It is G.A.S.P if

LV (x) < 0, ∀x ∈ IR n , x = 0
In this paper, we shall make use of the latter Theorem and a stochastical version of Lassalle's invariance principle (see [START_REF] Kushner | Stochastic stability[END_REF]), in order to prove that the class of nonlinear stochastic control systems introduced in the following section is globally asymptotically stabilizable in probability.

Main result

The systems considered here are of the form

       x t = x 0 + t 0 f (x s , y s ) ds + t 0 g(x s , y s ) dw s y t = y 0 + t 0 (Ay s + Bu) ds (6) 
where the dependance of g on y is analogous to the one of f given by (h3), that is g(x, y) = g(x, 0) + H(x, y) Cy

We assume that the solution x t ≡ 0 is G.A.S.P for

x t = x 0 + t 0 f (x s , 0) ds + t 0 g(x s , 0) dw s
and a positive definite and proper function satisfying

L.V (x) = f (x, 0), ∇V (x) + 1 2 Tr g(x, 0) g(x, 0) T ∂ 2 V ∂x 2 (x) < 0
is known. Then we can state :

Theorem 2 If there exist a matrix K ∈ M k,p (IR) and a symmetric positive definite matrix P ∈ M p,p (IR) such that (H1), (H2) and (H3) hold then the system ( 6) is globally asymptotically stabilzable in probability thanks to the following feedback 

u = Ky -(G(x, y)) T ∇V (x) - 1 2 H(x, y) T ∂ 2 V ∂x 2 (x) T H(x, y)Cy (8) Proof Let W (x, y) = V (x)+ 1 
L.W (z) = Z.W (z) + 1 2 Tr g(z) g(z) T ∂ 2 W ∂z 2 (z) = Z.W (z) + 1 2 Tr g(z) g(z) T ∂ 2 V ∂x 2 (x)
According to the decomposition of f given by (h3) and the one of g given by [START_REF] Kushner | Stochastic stability[END_REF], one get

Z.W (x, y) = f (x, 0) , ∇V (x) - 1 2 y T Q y + ∇V (x) , G(x, y)Cy + y , -P B G(x, y) T ∇V (x) + 1 2 H(x, y) T ∂ 2 V ∂x 2 (x) T H(x, y)Cy and 1 2 Tr g(z) g(z) T ∂ 2 V ∂x 2 (z) = 1 2 Tr g(x, 0) g(x, 0) T ∂ 2 V ∂x 2 (x) + H(z)Cy y T C T H(z) T ∂ 2 V ∂x 2 (x) So, from P B = C T one has L.W (z) = f (x, 0) , ∇V (x) - 1 2 y T Q y + 1 2 Tr g(x, 0) g(x, 0) T ∂ 2 V ∂x 2 (x) - 1 2 y , C T H(x, y) T ∂ 2 V ∂x 2 (x) T H(x, y)Cy + 1 2 Tr H(z)Cy y T C T H(z) T ∂ 2 V ∂x 2 (x)
and using the fact that

Tr H(z)Cy y T C T H(z) T ∂ 2 V ∂x 2 (x) = H(z)Cy , ∂ 2 V ∂x 2 (x) T H(z)Cy = y , C T H(z) T ∂ 2 V ∂x 2 (x) T H(z)Cy it follows L.W (z) = L.V (x) - 1 2 y T Q y ≤ 0
According to the stochastical version of Lassale's invariance principle (see [START_REF] Kushner | Stochastic stability[END_REF]), the processus z t converges in probability to Ω the largeste invariant set whose support is contained in the locus L.W (z t ) = 0. Let (x t , y t ) be a complete solution of the closed-loop system (6) along which L.W (x t , y t ) = 0, we must show that (x t , y t ) = (0, 0) for all t ≥ 0. Since L.W (x, y) = 0 ⇔ x = 0 and y T Qy = 0, x t must be zero for all t ≥ 0 and y t will be a solution of ẏt = (A + BK)y t and must satisfy y T t Qy t = 0 for all t ≥ 0. By the detectability assumption (H2) this implies y t = 0 for all t ≥ 0 and, hence, (x t , y t ) = (0, 0). This completes the proof.
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