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We consider stochastic nonaffine nonlinear control systems xt = x 0 + ∫ t 0 f (xs, u)ds + ∫ t 0 g(xs, u)dωs, (written in the sense of Itô), ω being a standard Wiener process, for which we give a sufficient condition for global stabilization by a bounded smooth state feedback which is explicitly given. This condition generalizes the well known Jurdjevic-Quinn result for deterministic affine control systems.

I. Introduction

This paper deals with the question of stabilizability for stochastic nonlinear control differential equations written in the sense of Itô:

x t = x 0 + ∫ t 0 f 0 (x s , u)ds + p ∑ j=1 ∫ t 0 f j (x s , u)dω j s , (1) 
where x 0 ∈ IR n , u = (u 1 , . . . , u m ) T is a R m -valued control law, {ω t , t ≥ 0} is a standard IR p -valued Wiener process defined on an usual probability space (Ω, F, P ), and f j : IR n × IR m → IR n , 0 ≤ j ≤ p, are smooth (C ∞ ) Lipschitz functions satisfying f j (0, 0) = 0 and there exists a positive constant K such that, for any x ∈ IR n and any u ∈ IR p , ∑ p j=0 ∥f j (x, u)∥ ≤ K(1 + ∥x∥ + ∥u∥). Stochastic control systems (1) are of interest for various reasons. As well known, a multitude of physical, engineering, biological, social, and managerial phenomena are either well approximated or reasonably modelled by control differential equations dx t /dt = f t (x t , u), for which many of the most basic questions concern stabilization around the equilibrium.

Again one often has situations where the coefficients, say f t (x t , u), are not deterministic but of the random form f t (x t , u) = b(x t , u) + σ(x t , u) • "noise", where b and σ are some given functions and where one does not know the exact behaviour of the noise term, but only its probability distribution. Of course in such a situation stochastic control differential equations [START_REF] Arnold | Stochastic Differential Equations: Theory and Applications[END_REF] are more natural models than deterministic ones dx/dt = f 0 (x, u). For instance during these past decades there has been increasing effort to describe various facets of dynamic economic interactions with the help of stochastic differential processes. Traditional mathematical economics modelling focusses on transient and equilibrium interrelationships among production and consumption factors. stochastic differential processes provide a mechanism to incorporate the influences associated with randomness, uncertainties, and risk factors operating with respect to various economic units (stock prices, labour force, technology variables, etc.). Among other applications where stochastic differential equations occur to describe phenomena one can cite theoretical ecology and population genetics, and electrical dynamical systems. For the literature dealing with applications see e.g. [START_REF] Arnold | Stochastic Differential Equations: Theory and Applications[END_REF], [START_REF] Ewens | Mathematical Population Genetics[END_REF], [START_REF] Friedman | Stochastic Differential Equations and Applications. I and II[END_REF], [START_REF] Jazwinski | Stochastic Processes and Filtering Theory[END_REF], [START_REF] Karlin | A Second Course in Stochastic Processes[END_REF], [START_REF] Kushner | Introduction to Stochastic Control[END_REF], [START_REF] Lipster | Statistics of Random Processes. I an II[END_REF], [START_REF]Stochastic Differential Equations. An Introduction with Applications[END_REF], [START_REF] Wong | Stochastic Processes in Information and Dynamical Systems[END_REF].

For deterministic nonlinear control systems many techniques to study the stabilizability problem and to design stabilizing feedback laws are known. Historically, one of the first significant results is due to Jurdjevic and Quinn [START_REF] Jurdjevic | Controllability and stability[END_REF] who used the LaSalle's invariance principle to give a sufficient condition for the global stabilization of an affine nonlinear control system:

ẋ △ = dx dt = X 0 (x) + m ∑ i=1 u i Y i 0 (x). (2) 
with a linear (i.e. X(x) = Ax) and dissipative drift. Since then, various Jurdjevic-Quinn type sufficient conditions have been developed by several authors [START_REF] Kalouptsidis | Stability improvement of nonlinear systems by feedback[END_REF], [START_REF] Lee | Remarks on smooth feedback stabilization of nonlinear systems[END_REF], [START_REF] Outbib | Stabilizability of the angular velocity of a rigid body revisited[END_REF], [START_REF] Tsinias | Sufficient Lyapunov-like conditions for stabilization[END_REF].

In [START_REF] Outbib | Stabilizability of the angular velocity of a rigid body revisited[END_REF], it is proved that if there exists a positive definite and proper smooth function

V : IR n → IR such that: (i) the Lie derivative X 0 V (x) = ⟨X 0 (x), ∇V (x)⟩ of V with re- spect to vector field X 0 satisfies X 0 V (x) ≤ 0, ∀x ∈ IR n ; (ii) the set {x ∈ IR n |X k+1 0 V (x) = X k 0 Y i 0 V (x) = 0, k ∈ IN, 1 ≤ i ≤ m} is reduced to {0} ; then the derivative of V along the trajectories of system (2) being given by V (x) = X 0 V (x) + ∑ m i=1 u i Y i 0 V (x), the smooth state feed- back control law u i (x) = -Y i 0 V (x), 1 ≤ i ≤ m, yields V (x) ≤ 0, that
is to say a Lyapunov stable closed-loop system, and by application of LaSalle's invariance principle it stabilizes globally system [START_REF] Chabour | A Jurdjevic-Quinn theorem for stochastic nonlinear systems[END_REF].

In [START_REF] Florchinger | A stochastic version of Jurdjevic-Quinn theorem[END_REF], Florchinger extends Jurdjevic-Quinn theorem to the particular class of stochastic affine control systems:

x t = x 0 + ∫ t 0 ( X 0 (x s ) + m ∑ i=1 u i Y i 0 (x s )
) ds

+ p ∑ j=1 ∫ t 0 X j (x s )dw j s , (3) 
where only the drift term is corrupted by a noise. For these systems, the associated infinitesimal generator L satisfies

LV (x) = L 0 V (x) + ∑ m i=1 u i Y i 0 V (x), ∀x ∈ IR n
, where L 0 is the second order differential operator defined by

L 0 V (x) = X 0 V (x)+(1/2) ∑ p j=1 ⟨X j (x), (∂ 2 V /∂x 2 )(x)X j (x)
⟩ and V is a given smooth positive definite and proper function. So, it follows that if:

(i') L 0 V (x) ≤ 0 for all x ∈ IR n ; (ii') the set {x ∈ IR n |L k+1 0 V (x) = L k 0 Y i 0 V (x) = 0, k ∈ IN, 1 ≤ i ≤ m} is reduced to {0} ; then the smooth state feedback con- trol law u i (x) = -Y i 0 V (x)
yields LV (x) ≤ 0, which allows, as in [START_REF] Outbib | Stabilizability of the angular velocity of a rigid body revisited[END_REF] for the deterministic case, to state in [START_REF] Florchinger | A stochastic version of Jurdjevic-Quinn theorem[END_REF], by application of the stochastic versions of Lyapunov theorem (see [START_REF] Khasminskii | Stochastic Stability of Differential Equations[END_REF]) and LaSalle's invariance principle (see [START_REF] Kushner | Stochastic stability, In Stability of Stochastic Dynamical Systems[END_REF]), that the stochastic affine system (3) is globally asymptotically stabilizable in probability by the feedback law u i (x) = -Y i 0 V (x). In order to illustrate the peculiar difficulty of the stochastic case in comparison with the deterministic one, which disappears for system (3), consider now affine control sys-tems of the form:

x t = x 0 + ∫ t 0 ( X 0 (x s ) + m ∑ i=1 u i Y i 0 (x s )
) ds

+ p0 ∑ j=1 ∫ t 0 X j (x s )dω j 0s + m ∑ i=1 pi ∑ j=1 ∫ t 0 u i Y i j (x s )dω j i s , (4) 
where ω i , 0 ≤ i ≤ m, is a standard IR pi -valued Wiener process such that ω i and ω i ′ are independent for i ̸ = i ′ . Contrary to system (3), for system (4) where every thing is corrupted by a noise, the associated infinitesimal generator L, applied to a Lyapunov function V , leads to:

LV (x) = L 0 V (x) + m ∑ i=1 u i Y i 0 V (x) + 1 2 m ∑ i=1 u 2 i pi ∑ j=1 ⟨Y i j (x), ∂ 2 V ∂x 2 (x)Y i j (x)⟩.
So, it appears that the Jurdjevic-Quinn feedback u i (x) = -Y i 0 V (x), under conditions (i') and (ii'), is no more a stabilizing feedback for (4).

More generally for stochastic nonlinear systems of the form (1), for which the random parametric excitation depends on the control, LV (x) is a nonlinear expression on u which depends explicitly on the corrupted terms f j (x, u), 1 ≤ j ≤ p. So, if one assumes that there exists a feedback u(x) such that ⟨ f 0 (x, u(x)), ∇V (x) ⟩ ≤ 0, the most difficult problem is now to prove the existence of a feedback law ũ(x) yielding LV (x) ≤ 0 and satisfying ũ(x) = u(x) for f j = 0, 1 ≤ j ≤ p.

In [START_REF] Chabour | A Jurdjevic-Quinn theorem for stochastic nonlinear systems[END_REF], it is proved that Jurdjevic-Quinn type conditions (i') and (ii') remain sufficient for the stochastic affine control system (4) to be globally asymptotically feedback stabilizable in probability.

In this work, we give an extended version of these conditions under which the stochastic nonaffine control system (1) is globally asymptotically stabilizable in probability with a bounded smooth stabilizing feedback law u = u(x) with u(0) = 0 and with an arbitrary choice of the bound. We make a constructive proof of this fact which provides an explicit design of bounded smooth stabilizing feedback laws.

it is worth while to point out that the above mentioned difficulty, that is peculiar to the stochastic case in comparison with the deterministic one, does not appear with the hypothesis that the coefficients associated with the noise in system (1) do not depend on the control, that is to say ∂f j /∂u = 0, 1 ≤ j ≤ p. In this case the stochastic stabilization procedure is close to the deterministic one.

II. Notations and preliminaries

The first aim of this section is to recall some classical definitions and results on stability in probability of the zero solution of a stochastic differential equation (see e.g. [START_REF] Khasminskii | Stochastic Stability of Differential Equations[END_REF]).

Let (Ω, F, P) be an usual probability space and {ω t , t ≥ 0} be a standard IR p -valued Wiener process defined on this space. Denote by (F t ) t≥0 the complete right-continuous filtration generated by ω.

Let x t be the IR n -valued process solution of the stochastic differential equation written in the sense of Itô,

x t = x 0 + ∫ t 0 X 0 (x s )ds + p ∑ k=1 ∫ t 0 X k (x s )dω k s , (5) 
where X k (0) = 0, 0 ≤ k ≤ p. We assume that X k are Lipschitz vector fields on IR n such that there exists a positive constant K such that, for any

x in IR n , ∑ p k=0 ∥X k (x)∥ ≤ K(1 + ∥x∥).
For any x 0 in IR n , denote by x t (x 0 ), t ≥ 0, the solution at time t of the stochastic differential equation ( 5) starting from the state x 0 . Then, the different notions of stochastic stability that are used in this paper are the following.

Definition 1: The solution x t ≡ 0 of the stochastic differential equation ( 5) is said to be stable in probability if for any ϵ > 0, lim x0→0 P (sup t>0 |x t (x 0 )| > ϵ) = 0. If, in addition, there exists a neighbourhood D of the origin such that P (lim t→+∞ |x t (x 0 )| = 0) = 1, ∀x 0 ∈ D, the solution x t ≡ 0 of the stochastic differential equation ( 5) is said to be asymptotically stable in probability. It is globally asymptotically stable in probability (GASP) if D = IR n .

For 1 ≤ i, j ≤ n, let L be the infinitesimal generator associated with the stochastic differential equation ( 5) defined for any function Ψ in C 2 (IR n ) by:

LΨ(x) = ⟨ X 0 (x), ∇Ψ(x) ⟩ + 1 2 p ∑ k=1 ⟨ X k (x), ∂ 2 Ψ ∂x 2 (x)X k (x) ⟩,
where ⟨•, •⟩ is the inner product in IR n . Then, following criteria in terms of Lyapunov function for the stochastic stability hold (see [START_REF] Arnold | Stochastic Differential Equations: Theory and Applications[END_REF], [START_REF] Khasminskii | Stochastic Stability of Differential Equations[END_REF]).

Theorem 1: If there exist a neighbourhood D of the point x = 0 in IR n , and a Lyapunov function V defined in D (i.e. a positive definite and proper function V mapping D into IR) such that LV (x) ≤ 0 (resp. LV (x) < 0), ∀x ∈ D, x ̸ = 0, then, the solution x t ≡ 0 of the stochastic differential equation ( 5) is stable (resp. asymptotically stable) in probability.

It is GASP if LV (x) < 0, ∀x ∈ IR n , x ̸ = 0.
By a proper function we mean a function

V : D → IR such that {x ∈ IR n | V (x) ≤ ξ} is compact for each ξ > 0.
Recall also that if the solution x t ≡ 0 of the stochastic differential equation ( 5) is stable in probability and there exists a Lyapunov function V defined in D such that LV (x) ≤ 0, ∀x ∈ D, x ̸ = 0, then, the stochastic version of LaSalle's invariance principle (see [START_REF] Kushner | Stochastic stability, In Stability of Stochastic Dynamical Systems[END_REF]) allows to state that the stochastic process x t converges in probability to the largest invariant set whose support is contained in the locus {x t | LV (x t ) = 0, ∀t ≥ 0}. Now, in order to state our results on the stabilization of stochastic control system (1), let us introduce the following notations and definitions.

Definition 2: The stochastic differential control system (1) will be said globally asymptotically feedback stabilizable in probability at the origin if there exists a feedback control law u : IR n → IR m with u(0) = 0 such that the zero solution x t ≡ 0 of the closed-loop system

x t = x 0 + ∫ t 0 f 0 (x s , u(x s ))ds + ∑ p j=1 ∫ t 0 f j (x s , u(x s
))dω j s is globally asymptotically stable in probability.

For 0 ≤ j ≤ p and 1 ≤ i ≤ m, we associate with system (1) the vector fields X j and Y i j defined by:

X j (x) = f j (x, 0), Y i j (x) = ∂f j ∂u i (x, 0), (6) 
and the second order differential operators L 0 and L i defined for any function Ψ in C 2 (IR n ) by:

L 0 Ψ(x) = ⟨X 0 (x), ∇Ψ(x)⟩ + 1 2 p ∑ j=1 ⟨X j (x), ∂ 2 Ψ ∂x 2 (x)X j (x)⟩, (7) 
L i Ψ(x) = ⟨Y i 0 (x), ∇Ψ(x)⟩ + p ∑ j=1 ⟨X j (x), ∂ 2 Ψ ∂x 2 (x)Y i j (x)⟩. ( 8 
)
Definition 3: Stochastic nonlinear control system (1) is said to be a Jurdjevic-Quinn type stochastic system if there exists a positive definite and proper smooth function V :

IR n → IR such that: (h1) LV (x) ≤ 0, ∀x ∈ IR n ; (h2) the set {x ∈ IR n |L k+1 0 V (x) = L k 0 L i V (x) = 0, k ∈ IN, i = 1, . . . , m} is reduced to {0}.
Notice that for f j = 0 (resp. ∂f j /∂u = 0), 1 ≤ j ≤ p, conditions (h1) and (h2) reduce to (i) and (ii) (resp. (i') and (ii')).

Notice also that for the stochastic affine control system (4) that have been considered in [START_REF] Chabour | A Jurdjevic-Quinn theorem for stochastic nonlinear systems[END_REF], (h1) and (h2) reduce to (i') and (ii'). Indeed, set p = ∑ m i=0 p i ; ω = (ω 1 0 , . . . , ω p0 0 , . . . , ω 1 m , . . . , ω pm m ) ; for 1 ≤ i ≤ m and 1 ≤ j ≤ p, Xj = X j if 1 ≤ j ≤ p 0 and Xj = 0 otherwise ;

Ỹ i j = Y i j if ∑ i-1 k=0 p k + 1 ≤ j ≤ ∑ i k=0
p k and Ỹ i j = 0 otherwise. Then system (4) may be written on the form:

x t = x 0 + ∫ t 0 ( X 0 (x s ) + m ∑ i=1 u i Y i 0 (x s ) ) ds + p ∑ j=1 ∫ t 0 ( Xj (x s ) + m ∑ i=1 u i Ỹ i j (x s ) ) dω j s and one gets, for 1 ≤ i ≤ m, L i V (x) = ⟨ Y i 0 (x), ∇V (x) ⟩ , because of Xj (x) Ỹ i j T (x) = 0, 1 ≤ j ≤ p.
Finally, for a Lyapunov function V , associate with system (1) the smooth function ψ V : IR n × IR m → IR m defined by:

ψ V (x, u) = -g T 0 (x, u)∇V (x) - p ∑ j=1 g T j (x, u) ∂ 2 V ∂x 2 (x)X j (x) - 1 2 p ∑ j=1 g T j (x, u) ∂ 2 V ∂x 2 (x)g j (x, u)u, ( 9 
)
where

g j (x, u) = ∫ 1 0 ∂f j ∂u (x, tu)dt, 0 ≤ j ≤ p. ( 10 
)
III. Fixed point stabilizability sufficient condition The following proposition can now be stated as a preliminary result of stabilizability of Jurdjevic-Quinn type stochastic systems.

Proposition 1: Assume that system (1) is of Jurdjevic-Quinn type and let V be a Lyapunov function satisfying conditions (h1) and (h2). Assume also that, for any x ∈ IR n , the function ψ V (x, •) has a fixed point u(x) = ψ V (x, u(x)) which is smooth and such that u(0) = 0. Then u(x) is a globally stabilizing feedback for the stochastic system [START_REF] Arnold | Stochastic Differential Equations: Theory and Applications[END_REF].

Proof: the functions f j , 0 ≤ j ≤ p, being smooth, one has from ( 6) and ( 10), f j (x, u) = X j (x) + g j (x, u)u. Then denoting by L the infinitesimal generator associated with the closed-loop system

x t = x 0 + ∫ t 0 f 0 (x s , u(x s ))ds + p ∑ j=1 ∫ t 0 f j (x s , u(x s ))dω j s , (11) 
one has for all x ∈ IR n :

LV (x) = ⟨ X 0 (x) + g 0 ( x, u(x) ) u(x), ∇V (x) ⟩ + 1 2 p ∑ j=1 ⟨ X j (x) + g j ( x, u(x) ) u(x), ∂ 2 V ∂x 2 (x) [ X j (x) + g j ( x, u(x) ) u(x) ] ⟩ ,
and by a simple computation one gets from ( 7), ( 8) and (9), LV (x) = L 0 V (x) -⟨u(x), ψ V (x, u(x))⟩. Hence, from u(x) = ψ V (x, u(x)) and assumption (h1) one has LV (x) = L 0 V (x) -∥u(x)∥ 2 ≤ 0, ∀x ∈ IR n , and according with theorem 1, the zero solution x t ≡ 0 of the closed-loop system [START_REF] Kushner | Introduction to Stochastic Control[END_REF] is stable in probability.

Besides, according to the stochastic version of LaSalle's invariance principle (see [START_REF] Kushner | Stochastic stability, In Stability of Stochastic Dynamical Systems[END_REF]), the stochastic process x t converges in probability to the largest invariant set whose support is contained in the locus LV (x t ) = 0 for all t ≥ 0. Therefore, in order to prove that the zero solution of the closed-loop system is GASP it must be shown that for any complete solution x t of (11) along which LV (x t ) = 0 for all t ≥ 0, one has necessarily x t = 0 ∀t ≥ 0.

Notice that, from ( 6) and ( 10), one has g j (x, 0) = ( Y 1 j (x) . . . Y m j (x) ) , and from ( 9) and ( 8) it follows that:

ψ V (x, 0) = - (⟨ Y 1 0 (x), ∇V (x) ⟩ , . . . , ⟨ Y m 0 (x), ∇V (x) ⟩) T - p ∑ j=1 ( ⟨ Y 1 j (x), ∂ 2 V ∂x 2 (x)X j (x) ⟩ , . . . . . . , ⟨ Y m j (x), ∂ 2 V ∂x 2 (x)X j (x) ⟩ ) T = (L 1 V (x), . . . , L m V (x)) T .
Now LV (x) = 0 if and only if L 0 V (x) = 0 and u(x) = 0, and since u

(x) = ψ V (x, u(x)), it turns out that LV (x) = 0 ⇒ L 0 V (x) = • • • = L m V (x) = 0.
So, for any complete solution x t of the stochastic differential equation [START_REF] Kushner | Introduction to Stochastic Control[END_REF] for which LV (x t ) = 0 for all t ≥ 0, successive differentiations by means of Itô's formula yield L k+1 0 V (x t ) = L k 0 L i V (x t ) = 0, for t ≥ 0, k ∈ IN, and i = 1, . . . , m. Hence, by assumption (h2), it follows that x t = 0 for all t ≥ 0, which completes the proof.

Remark 1: As an application of proposition 1, one can deduce the result of [START_REF] Chabour | A Jurdjevic-Quinn theorem for stochastic nonlinear systems[END_REF] on the stabilization of stochastic affine control system (4) provided that it is of Jurdjevic-Quinn type thanks to a Lyapunov function V satisfying conditions (i') and (ii'). Notice that for system (4) the function ψ V defined in ( 9) satisfies

ψ V i (x, u) = -Y i 0 V (x) -a V ,i (x)u i where a V ,i (x) = (1/2) ∑ pi j=1 ⟨Y i j (x), (∂ 2 V /∂x 2 )(x)Y i j (x)⟩, 1 ≤ i ≤ m,
and generally it has no smooth fixed point. Nevertheless, by using the static precompensator

u i = ( 1 + a 2 V ,i (x) -a V ,i (x) ) -1/2 ũi , 1 ≤ i ≤ m, ( 12 
)
one transforms system (4) into

x t = x 0 + ∫ t 0 ( X 0 (x s ) + m ∑ i=1 ũi Ỹ i 0 (x s )
) ds

+ p0 ∑ j=1 ∫ t 0 X j (x s )dω j 0s + m ∑ i=1 pi ∑ j=1 ∫ t 0 ũi Ỹ i j (x s )dω j i s , ( 13 
)
where 13) is of Jurdjevic-Quinn type in accordance with (4), and thanks to the same Lyapunov function V . Now, to system (13) one associates by [START_REF] Karlin | A Second Course in Stochastic Processes[END_REF] the function ψV given by:

Ỹ i j = (1 + a 2 V ,i -a V ,i ) -1/2 Y i j , 1 ≤ i ≤ m, 0 ≤ j ≤ p i . Clearly (
ψV i (x, ũ) = -Ỹ i 0 V (x) - u i 2 pi ∑ j=1 ⟨ Ỹ i j (x), ∂ 2 V ∂x 2 (x) Ỹ i j (x) ⟩ = - Y i 0 V (x) + a V ,i (x)ũ i √ 1 + a 2 V ,i (x) -a V ,i (x) √ 1 + a 2 V ,i (x) -a V ,i (x)
which has a smooth fixed point ũ(x) defined by ũi

(x) = -(1 + a 2 V ,i (x) -a V ,i (x)) 1/2 (1 + a 2 V ,i (x)) -1 Y i 0 V (x).
Therefore, following proposition 1, ũ(x) stabilizes ( 13), and by [START_REF] Kushner | Stochastic stability, In Stability of Stochastic Dynamical Systems[END_REF] it yields the stabilizing feedback law

u i (x) = -(1 + a 2 V ,i (x)) -1 Y i 0 V (x), for system (4).
IV. Stabilizability of Jurdjevic-Quinn type stochastic systems Following Remark 1, the question now is what about the stabilizability of general Jurdjevic-Quinn type stochastic systems of the form [START_REF] Arnold | Stochastic Differential Equations: Theory and Applications[END_REF]. The next theorem will establish that any such a system is globally asymptotically stabilizable in probability by an arbitrarily bounded smooth feedback law.

Theorem 2: Assume that system (1) is of Jurdjevic-Quinn type and let V be a Lyapunov function satisfying conditions (h1) and (h2). Then, for any positive constant η, system (1) is globally asymptotically stabilizable in probability by means of a feedback law u(x) satisfying u(0) = 0 and ∥u(x)∥ ≤ η, ∀ x ∈ IR n .

Proof: Let us begin by the following remark on the function ψ V associated with system (1) by [START_REF] Karlin | A Second Course in Stochastic Processes[END_REF], and that will be useful for the proof. If there exists a smooth function k(x) > 0 such that, for any x ∈ IR n , the func-

tion k(x)ψ V (x, •) has a fixed point u(x) = k(x)ψ V (x, u(x))
which is smooth and such that u(0) = 0, then u(x) is a globally stabilizing feedback for the stochastic system (1). As a matter of fact, the preliminary feedback u = √ k(x) ũ changes the original system (1) into the system

x t = x 0 + ∫ t 0 f0 (x s , ũ)ds + p ∑ j=1 ∫ t 0 fj (x s , ũ)dω j s , (14) 
where fj (x, ũ) = f j (x, √ k(x) ũ), 0 ≤ j ≤ p. One may also verify that the vector fields and the second order differential operators defined respectively by ( 6), ( 7) and [START_REF] Kalouptsidis | Stability improvement of nonlinear systems by feedback[END_REF] 14) is a jurdjevic-Quinn type stochastic system in accordance with [START_REF] Arnold | Stochastic Differential Equations: Theory and Applications[END_REF]. Besides, if one denotes by ψ V and ψV the functions associated respectively with systems (1) and ( 14), a straightforward calculation shows that ψV (x, ũ) =

are changed into Xj = X j , Ỹ i j = √ k Y i j , L0 = L 0 , and Li = √ k L i . Therefore, (
√ k(x)ψ V (x, √ k(x) ũ). So, if u(x) = k(x)ψ V (x, u(x)), u(0) = 0, is a smooth fixed point of the function k(x)ψ V (x, •), then one has: ψV (x, u(x)/ √ k(x)) = √ k(x)ψ V (x, u(x)) = u(x)/ √ k(x).
Hence, one can deduce from proposition 1 that ũ(x) = u(x)/ √ k(x) stabilizes system [START_REF] Lipster | Statistics of Random Processes. I an II[END_REF], and accordingly u(x) stabilizes system [START_REF] Arnold | Stochastic Differential Equations: Theory and Applications[END_REF]. Now, for η > 0, let K 1 (x) and K 2 (x) be any smooth nonnegative real valued functions satisfying, for any

x ∈ IR n , K 1 (x) + K 2 (x) ̸ = 0, K 1 (x) ≥ sup ∥u∥≤η ∥ψ V (x, u)∥ and K 2 (x) ≥ sup ∥u∥≤η ∥(∂ψ V /∂u)(x, u)∥. Let α : IR n × IR m → IR m be the smooth function defined by α(x, u) = η(K 1 (x)+ 2ηK 2 (x)) -1 ψ V (x, u).
Then, for any x ∈ IR n and any u ∈ IR m such that ∥u∥ ≤ η, one has ∥α(x, u)∥ ≤ η and ∥(∂α/∂u)(x, u)∥ ≤ 1/2. So, on the one hand, applying the fixed point theorem one can deduce that there exists a unique continuous function θ : IR n → IR m , with θ(0) = 0, satisfying for all x ∈ IR n , ∥θ(x)∥ ≤ η and α(x, θ(x)) = θ(x). On the other hand, the implicit function theorem applies to the function γ(x, u) = α(x, u)-u in each x 0 ∈ IR n since γ(x 0 , θ(x 0 )) = 0 and the jacobian matrix (∂γ/∂u)(x 0 , θ(x 0 )) = (∂α/∂u)(x 0 , θ(x 0 ))-I m is invertible. So, there exist a neighbourhood V × U of (x 0 , θ(x 0 ))

and v : V → U such that v(x 0 ) = θ(x 0 ) and γ(x, v(x)) = 0, ∀ x ∈ V. Now v ∈ C ∞ (V, U) because of γ is C ∞ ,
but the equation γ(x, u) = 0 has a unique solution θ(x) defined on IR n , and so, θ V = v and then θ is C ∞ . By setting k(x) = η(K 1 (x) + 2ηK 2 (x)) -1 , it turns out from the remark in the beginning of the proof that u(x) = θ(x) is a globally asymptotically stabilizing feedback for system [START_REF] Arnold | Stochastic Differential Equations: Theory and Applications[END_REF], and the proof is completed.

In order to illustrate the feasibility of theorem 2, let us apply it to a stochastic affine control system of the form:

x t = x 0 + ∫ t 0 ( X 0 (x s ) + m ∑ i=1 u i Y i 0 (x s )
) ds [START_REF]Stochastic Differential Equations. An Introduction with Applications[END_REF] which is assumed to be of Jurdjevic-Quinn type thanks to a Lyapunov function V . Since

+ p ∑ j=1 ∫ t 0 ( X j (x s ) + m ∑ i=1 u i Y i j (x s ) ) dω j s
f j (x, u) = X j (x) + ∑ m i=1 u i Y i j (x)
, one gets by a simple computation from ( 9) and [START_REF] Khasminskii | Stochastic Stability of Differential Equations[END_REF] 

ψ V (x, u) = -h V (x) - H V (x)u where h V (x) = (L 1 V (x), . . . , L m V (x))
T and H V (x) is the m × m matrix whose (i, k)th entry is

(1/2) ∑ p j=1 ⟨Y i j (x), (∂ 2 V /∂x 2 )(x)Y k j (x)⟩.
Hence, for a fixed η > 0, by taking k(x) = η(K 1 (x) + 2ηK 2 (x)) -1 where K 1 (x) and K 2 (x) are smooth functions such that K 1 (x) + K 2 (x) does not vanish on

IR n , K 1 (x) ≥ sup ∥u∥≤η ∥h V (x) + H V (x)u∥ and K 2 (x) ≥ ∥H V (x)∥, one gets k(x)ψ V (x, u) = -k(x)h V (x) -k(x)H V (x)
. Now, for all x ∈ IR n , the m × m matrix k(x)H V (x) satisfies ∥k(x)H V (x)∥ ≤ 1/2, and so, the matrix I m + k(x)H V (x) is invertible. Therefore, the fixed point u(x) of the function k(x)ψ V (x, •), which satisfies u(0) = 0 and ∥u(x)∥ ≤ η, can actually be explicitly computed:

u(x) = -(I m + k(x)H V (x)) -1 k(x)h V (x)
, and it is a globally asymptotically stabilizing feedback law for system [START_REF]Stochastic Differential Equations. An Introduction with Applications[END_REF].

In particular, for Jurdjevic-Quinn type stochastic affine control systems of the form (4), one has

h V (x) = ( Y 1 0 V (x), . . . , Y m 0 V (x) ) T and H V (x) =
diag (a V ,1 (x), . . . , a V ,m (x)). Thus, the above procedure yields bounded feedback laws of the form

u i (x) = -η(K 1 (x) + 2ηK 2 (x)) -1 Y i 0 V (x)
, where a possible choice of K 1 and K 2 is given by K

1 (x) = 1 + ∑ m i=1 ( Y i 0 V (x) ) 2 + η ∑ m i=1 ( 1 + a 2 V ,i (x) ) and K 2 (x) = ∑ m i=1 ( 1 + a 2 V ,i (x)
) .

V. Explicit design of stabilizing feedback

Notice that, as established above, theorem 2 gives an existential stabilizability result in the sense that, even if for particular cases as Jurdjevic-Quinn type stochastic affine control systems of the form (15) the fixed point can be exactly computed, it does not yield, in general, explicitly the stabilizing feedback control law. By providing an explicit design of such a feedback, the next theorem is more close to practical preoccupations in automatic control.

the functions f j , 1 ≤ j ≤ p, being smooth, recall that, from the Taylor expansion formula, one has:

f j (x, u) = f j (x, 0) + ∂f j ∂u (x, 0)u + fj (x, u, u), (16) 
where fj :

IR n × IR m × IR m → IR n , is defined by fj (x, v, w) = ∫ 1 0 (1 -t) ∂ 2 f j ∂u 2 (x, tv)(w, w)dt.
The notation (∂ 2 f j /∂u 2 )(x, tv) is used for the second order derivative of f j with respect to u at (x, tv), that is to say the bilinear application from

IR m × IR m to IR n defined by (∂ 2 f j /∂u 2 )(x, tv)(w, w) = (w T (∂ 2 f 1 j /∂u 2 )(x, tv) w, . . . , w T (∂ 2 f n j /∂u 2 )(x, tv) w) T with f 1 j , . . . , f n j the component functions of f j . Besides, for a Lyapunov function V , let φ V : IR n × IR m × IR m →
IR be the smooth function defined by:

φ V (x, v, w) = ⟨ f0 (x, v, w), ∇V (x) ⟩ + 1 2 p ∑ j=1 Tr ( A j (x, v, w) ∂ 2 V ∂x 2 (x) ) (17) 
where the n × n matrix A j (x, v, w) is defined by:

A j (x, v, w) = X j (x) f T j (x, v, w) + fj (x, v, w)X T j (x) + m ∑ i=1 v i [ Y i j (x) f T j (x, v, w) + fj (x, v, w)Y i j T (x) ] + m ∑ i1,i2=1 w i1 w i2 Y i1 j (x)Y i2 j T (x) + fj (x, v, v) f T j (x, v, w).
Notice that the real valued function φ V is homogeneous of degree 2 with respect to w. Then one can state: Theorem 3: Assume that system (1) is of Jurdjevic-Quinn type and let V be a Lyapunov function satisfying conditions (h1) and (h2). Then for any η > 0 and any smooth functions K 1 (x) and K 2 (x) satisfying, ∀x ∈ IR n , K 1 (x)+K 2 (x) ̸ = 0 and

K 1 (x) ≥ sup ∥v∥≤η,∥w∥=1 |φ V (x, v, w)|, ( 18 
)
K 2 (x) ≥ ( L 1 V (x), .., L m V (x) ) , ( 19 
)
the stochastic control system (1) is globally stabilizable by means of the feedback:

u(x) = -η ηK 1 (x) + K 2 (x) ( L 1 V (x), .., L m V (x)
) T , (20) which satisfies ∥u(x)∥ ≤ η, ∀x ∈ IR n . Proof: The inequality ∥u(x)∥ ≤ η is an immediate consequence of (19), and (20). Moreover, from [START_REF] Jazwinski | Stochastic Processes and Filtering Theory[END_REF], and (16) the closed-loop system (1-20) is given by the stochastic differential equation: and by a simple computation one gets from ( 7), ( 8) and [START_REF] Tsinias | Sufficient Lyapunov-like conditions for stabilization[END_REF], LV (x) = L 0 V (x) + ∑ m i=1 u i (x)L i V (x) + φ V (x, u(x), u(x)). It follows that, for x ∈ IR n such that u(x) = 0 one has LV (x) = L 0 V (x), and otherwise, from (20) and the homogeneity property of φ V (x, v, w) with respect to w one gets:

x t = x 0 + ∫ t 0 ( X 0 (x s ) + m ∑ i=1 u i (
LV (x) = L 0 V (x)- ∥u(x)∥ 2 [ 1 -K(x) φ V ( x, u(x), u(x) ∥u(x)∥ )] K(x)
where K(x) = η(ηK 1 (x) + K 2 (x)) -1 . Besides, one has 1 -K(x) φ V (x, u(x), u(x)/∥u(x)∥) ≥ 0 because of [START_REF] Wong | Stochastic Processes in Information and Dynamical Systems[END_REF] and ∥u(x)∥ ≤ η, and so one gets from assumption (h1), LV (x) ≤ 0, ∀ x ∈ IR n . Hence, according with theorem 1, the zero solution x t ≡ 0 of the stochastic differential equation ( 21) is stable in probability. Moreover, it follows from (19), ( 19) and (20) that if u(x) ̸ = 0 then K 2 (x) ̸ = 0 and so 1 -K(x) φ V (x, u(x), u(x)/∥u(x)∥) ̸ = 0, and, from (20), it turns out that LV (x) = 0 if and only if L i V (x) = 0, i = 1, . . . , m. Therefore, the proof can be continued, thanks to the stochastic version of LaSalle's invariance principle, exactly as in the proof of Proposition1.
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  x s )Y i 0 (x s )Then, denoting by L the infinitesimal generator associated with the stochastic differential equation (21), one has:

		+	p ∑	∫ t	(	X j (x s ) +	m ∑	u i (x s )Y i j (x s )
			j=1	0 + fj	(	i=1 x s , u(x s ), u(x s )	) )	dω j s	(21)
	LV (x) =	⟨ X 0 (x s ) +	m ∑	u i (x s )Y i 0 (x s )
							i=1 + f (	x s , u(x s ), u(x s ) )	, ∇V (x)	⟩
		+	1 2	p ∑ j=1	⟨[ X j (x s ) + + fj ∑ m i=1 ( x s , u(x s ), u(x s ) u i (x s )Y i j (x s )	) ]	,
			∂ 2 V ∂x 2 (x) [ X j (x s ) + + fj ( ∑ m i=1 x	u i (x s )Y i j (x s )
								+ f0	( x s , u(x s ), u(x s )	) )	ds

s , u(x s ), u(x s ) ) ]⟩