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A Jurdjevic-Quinn Type Theorem for Stochastic
Nonlinear Control Systems

M. Bensoubaya, A. Ferfera and A. Iggidr

Abstract—We consider stochastic nonaffine nonlinear con-
trol systems xt = x0 +

∫ t

0
f(xs, u)ds +

∫ t

0
g(xs, u)dωs, (written

in the sense of Itô), ω being a standard Wiener process,
for which we give a sufficient condition for global stabiliza-
tion by a bounded smooth state feedback which is explicitly
given. This condition generalizes the well known Jurdjevic-
Quinn result for deterministic affine control systems.

Keywords— Stochastic nonlinear control systems, stochas-
tic stability, state feedback law, Lyapunov functions.

I. Introduction

This paper deals with the question of stabilizability for
stochastic nonlinear control differential equations written
in the sense of Itô:

xt = x0 +

∫ t

0

f0(xs, u)ds+

p∑
j=1

∫ t

0

fj(xs, u)dω
j
s, (1)

where x0 ∈ IRn, u = (u1, . . . , um)T is a Rm–valued control
law, {ωt, t ≥ 0} is a standard IRp–valued Wiener process
defined on an usual probability space (Ω,F , P ), and fj :
IRn × IRm → IRn, 0 ≤ j ≤ p, are smooth (C∞) Lipschitz
functions satisfying fj(0, 0) = 0 and there exists a positive
constant K such that, for any x ∈ IRn and any u ∈ IRp,∑p

j=0 ∥fj(x, u)∥ ≤ K(1 + ∥x∥+ ∥u∥).
Stochastic control systems (1) are of interest for various

reasons. As well known, a multitude of physical, engineer-
ing, biological, social, and managerial phenomena are ei-
ther well approximated or reasonably modelled by control
differential equations dxt/dt = ft(xt, u), for which many of
the most basic questions concern stabilization around the
equilibrium.

Again one often has situations where the coefficients,
say ft(xt, u), are not deterministic but of the random form
ft(xt, u) = b(xt, u) + σ(xt, u) · “noise”, where b and σ are
some given functions and where one does not know the
exact behaviour of the noise term, but only its probabil-
ity distribution. Of course in such a situation stochastic
control differential equations (1) are more natural models
than deterministic ones dx/dt = f0(x, u). For instance dur-
ing these past decades there has been increasing effort to
describe various facets of dynamic economic interactions
with the help of stochastic differential processes. Tradi-
tional mathematical economics modelling focusses on tran-
sient and equilibrium interrelationships among production
and consumption factors. stochastic differential processes
provide a mechanism to incorporate the influences associ-
ated with randomness, uncertainties, and risk factors oper-
ating with respect to various economic units (stock prices,
labour force, technology variables, etc.). Among other ap-
plications where stochastic differential equations occur to
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describe phenomena one can cite theoretical ecology and
population genetics, and electrical dynamical systems. For
the literature dealing with applications see e.g. [1], [3], [5],
[6], [9], [11], [14], [15], [18].

For deterministic nonlinear control systems many tech-
niques to study the stabilizability problem and to design
stabilizing feedback laws are known. Historically, one of
the first significant results is due to Jurdjevic and Quinn
[7] who used the LaSalle’s invariance principle to give a
sufficient condition for the global stabilization of an affine
nonlinear control system:

ẋ
△
=
dx

dt
= X0(x) +

m∑
i=1

uiY
i
0 (x). (2)

with a linear (i.e. X(x) = Ax) and dissipative drift. Since
then, various Jurdjevic-Quinn type sufficient conditions
have been developed by several authors [8], [13], [16], [17].
In [16], it is proved that if there exists a positive definite
and proper smooth function V : IRn → IR such that: (i)
the Lie derivative X0V (x) = ⟨X0(x),∇V (x)⟩ of V with re-
spect to vector field X0 satisfies X0V (x) ≤ 0, ∀x ∈ IRn ;
(ii) the set {x ∈ IRn|Xk+1

0 V (x) = Xk
0Y

i
0V (x) = 0, k ∈

IN, 1 ≤ i ≤ m} is reduced to {0} ; then the derivative
of V along the trajectories of system (2) being given by
V̇ (x) = X0V (x) +

∑m
i=1 uiY

i
0V (x), the smooth state feed-

back control law ui(x) = −Y i
0V (x), 1 ≤ i ≤ m, yields

V̇ (x) ≤ 0, that is to say a Lyapunov stable closed-loop sys-
tem, and by application of LaSalle’s invariance principle it
stabilizes globally system (2).

In [4], Florchinger extends Jurdjevic-Quinn theorem to
the particular class of stochastic affine control systems:

xt = x0 +

∫ t

0

(
X0(xs) +

m∑
i=1

uiY
i
0 (xs)

)
ds

+

p∑
j=1

∫ t

0

Xj(xs)dw
j
s, (3)

where only the drift term is corrupted by a noise. For these
systems, the associated infinitesimal generator L satisfies
LV (x) = L0V (x)+

∑m
i=1 uiY

i
0V (x), ∀x ∈ IRn, where L0 is

the second order differential operator defined by L0V (x) =
X0V (x)+(1/2)

∑p
j=1 ⟨Xj(x), (∂

2V/∂x2)(x)Xj(x)⟩ and V is
a given smooth positive definite and proper function. So, it
follows that if: (i’) L0V (x) ≤ 0 for all x ∈ IRn ; (ii’) the set
{x ∈ IRn|Lk+1

0 V (x) = Lk
0Y

i
0V (x) = 0, k ∈ IN, 1 ≤ i ≤ m}

is reduced to {0} ; then the smooth state feedback con-
trol law ui(x) = −Y i

0V (x) yields LV (x) ≤ 0, which al-
lows, as in [16] for the deterministic case, to state in [4],
by application of the stochastic versions of Lyapunov theo-
rem (see [10]) and LaSalle’s invariance principle (see [12]),
that the stochastic affine system (3) is globally asymp-
totically stabilizable in probability by the feedback law
ui(x) = −Y i

0V (x).
In order to illustrate the peculiar difficulty of the stochas-

tic case in comparison with the deterministic one, which
disappears for system (3), consider now affine control sys-
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tems of the form:

xt = x0 +

∫ t

0

(
X0(xs) +

m∑
i=1

uiY
i
0 (xs)

)
ds

+

p0∑
j=1

∫ t

0

Xj(xs)dω
j
0s

+
m∑
i=1

pi∑
j=1

∫ t

0

uiY
i
j (xs)dω

j
i s, (4)

where ωi, 0 ≤ i ≤ m, is a standard IRpi -valued Wiener
process such that ωi and ωi′ are independent for i ̸= i′.
Contrary to system (3), for system (4) where every thing is
corrupted by a noise, the associated infinitesimal generator
L, applied to a Lyapunov function V , leads to:

LV (x) = L0V (x) +
m∑
i=1

uiY
i
0V (x)

+
1

2

m∑
i=1

u2i

pi∑
j=1

⟨Y i
j (x),

∂2V

∂x2
(x)Y i

j (x)⟩.

So, it appears that the Jurdjevic-Quinn feedback ui(x) =
−Y i

0V (x), under conditions (i’) and (ii’), is no more a sta-
bilizing feedback for (4).

More generally for stochastic nonlinear systems of the
form (1), for which the random parametric excitation de-
pends on the control, LV (x) is a nonlinear expression on u
which depends explicitly on the corrupted terms fj(x, u),
1 ≤ j ≤ p. So, if one assumes that there exists a feedback
u(x) such that ⟨ f0(x, u(x)),∇V (x) ⟩ ≤ 0, the most diffi-
cult problem is now to prove the existence of a feedback
law ũ(x) yielding LV (x) ≤ 0 and satisfying ũ(x) = u(x)
for fj = 0, 1 ≤ j ≤ p.

In [2], it is proved that Jurdjevic-Quinn type conditions
(i’) and (ii’) remain sufficient for the stochastic affine con-
trol system (4) to be globally asymptotically feedback sta-
bilizable in probability.

In this work, we give an extended version of these condi-
tions under which the stochastic nonaffine control system
(1) is globally asymptotically stabilizable in probability
with a bounded smooth stabilizing feedback law u = u(x)
with u(0) = 0 and with an arbitrary choice of the bound.
We make a constructive proof of this fact which provides
an explicit design of bounded smooth stabilizing feedback
laws.

it is worth while to point out that the above mentioned
difficulty, that is peculiar to the stochastic case in compar-
ison with the deterministic one, does not appear with the
hypothesis that the coefficients associated with the noise
in system (1) do not depend on the control, that is to say
∂fj/∂u = 0, 1 ≤ j ≤ p. In this case the stochastic stabi-
lization procedure is close to the deterministic one.

II. Notations and preliminaries

The first aim of this section is to recall some classical
definitions and results on stability in probability of the zero
solution of a stochastic differential equation (see e.g. [10]).

Let (Ω,F ,P) be an usual probability space and {ωt, t ≥
0} be a standard IRp-valued Wiener process defined on this
space. Denote by (Ft)t≥0 the complete right-continuous
filtration generated by ω.

Let xt be the IRn-valued process solution of the stochas-
tic differential equation written in the sense of Itô,

xt = x0 +

∫ t

0

X0(xs)ds+

p∑
k=1

∫ t

0

Xk(xs)dω
k
s , (5)

where Xk(0) = 0, 0 ≤ k ≤ p. We assume that Xk are Lip-
schitz vector fields on IRn such that there exists a positive
constant K such that, for any x in IRn,

∑p
k=0 ∥Xk(x)∥ ≤

K(1 + ∥x∥). For any x0 in IRn, denote by xt(x0), t ≥ 0,
the solution at time t of the stochastic differential equation
(5) starting from the state x0. Then, the different notions
of stochastic stability that are used in this paper are the
following.

Definition 1: The solution xt ≡ 0 of the stochastic dif-
ferential equation (5) is said to be stable in probability if
for any ϵ > 0, limx0→0 P (supt>0 |xt(x0)| > ϵ) = 0. If, in
addition, there exists a neighbourhood D of the origin such
that P (limt→+∞ |xt(x0)| = 0) = 1, ∀x0 ∈ D, the solution
xt ≡ 0 of the stochastic differential equation (5) is said
to be asymptotically stable in probability. It is globally
asymptotically stable in probability (GASP) if D = IRn.

For 1 ≤ i, j ≤ n, let L be the infinitesimal generator asso-
ciated with the stochastic differential equation (5) defined
for any function Ψ in C2(IRn) by:

LΨ(x) = ⟨X0(x),∇Ψ(x) ⟩

+
1

2

p∑
k=1

⟨Xk(x),
∂2Ψ

∂x2
(x)Xk(x) ⟩,

where ⟨·, ·⟩ is the inner product in IRn.
Then, following criteria in terms of Lyapunov function

for the stochastic stability hold (see [1],[10]).
Theorem 1: If there exist a neighbourhood D of the

point x = 0 in IRn, and a Lyapunov function V defined inD
(i.e. a positive definite and proper function V mapping D
into IR) such that LV (x) ≤ 0 (resp. LV (x) < 0), ∀x ∈ D,
x ̸= 0, then, the solution xt ≡ 0 of the stochastic differen-
tial equation (5) is stable (resp. asymptotically stable) in
probability. It is GASP if LV (x) < 0, ∀x ∈ IRn, x ̸= 0.

By a proper function we mean a function V : D → IR
such that {x ∈ IRn |V (x) ≤ ξ} is compact for each ξ > 0.

Recall also that if the solution xt ≡ 0 of the stochas-
tic differential equation (5) is stable in probability and
there exists a Lyapunov function V defined in D such that
LV (x) ≤ 0, ∀x ∈ D, x ̸= 0, then, the stochastic version
of LaSalle’s invariance principle (see [12]) allows to state
that the stochastic process xt converges in probability to
the largest invariant set whose support is contained in the
locus {xt | LV (xt) = 0, ∀t ≥ 0}.

Now, in order to state our results on the stabilization of
stochastic control system (1), let us introduce the following
notations and definitions.
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Definition 2: The stochastic differential control system
(1) will be said globally asymptotically feedback stabi-
lizable in probability at the origin if there exists a feed-
back control law u : IRn → IRm with u(0) = 0 such
that the zero solution xt ≡ 0 of the closed-loop system
xt = x0 +

∫ t

0
f0(xs, u(xs))ds+

∑p
j=1

∫ t

0
fj(xs, u(xs))dω

j
s is

globally asymptotically stable in probability.
For 0 ≤ j ≤ p and 1 ≤ i ≤ m, we associate with system

(1) the vector fields Xj and Y i
j defined by:

Xj(x) = fj(x, 0), Y i
j (x) =

∂fj
∂ui

(x, 0), (6)

and the second order differential operators L0 and Li de-
fined for any function Ψ in C2(IRn) by:

L0Ψ(x) = ⟨X0(x),∇Ψ(x)⟩

+
1

2

p∑
j=1

⟨Xj(x),
∂2Ψ

∂x2
(x)Xj(x)⟩, (7)

LiΨ(x) = ⟨Y i
0 (x),∇Ψ(x)⟩

+

p∑
j=1

⟨Xj(x),
∂2Ψ

∂x2
(x)Y i

j (x)⟩. (8)

Definition 3: Stochastic nonlinear control system (1) is
said to be a Jurdjevic-Quinn type stochastic system if there
exists a positive definite and proper smooth function V :
IRn → IR such that: (h1) LV (x) ≤ 0, ∀x ∈ IRn ; (h2)
the set {x ∈ IRn|Lk+1

0 V (x) = Lk
0LiV (x) = 0, k ∈ IN, i =

1, . . . ,m} is reduced to {0}.
Notice that for fj = 0 (resp. ∂fj/∂u = 0), 1 ≤ j ≤ p,

conditions (h1) and (h2) reduce to (i) and (ii) (resp. (i’)
and (ii’)).

Notice also that for the stochastic affine control sys-
tem (4) that have been considered in [2], (h1) and (h2)
reduce to (i’) and (ii’). Indeed, set p =

∑m
i=0 pi ;

ω̃ = (ω1
0 , . . . , ω

p0

0 , . . . , ω
1
m, . . . , ω

pm
m ) ; for 1 ≤ i ≤ m and

1 ≤ j ≤ p, X̃j = Xj if 1 ≤ j ≤ p0 and X̃j = 0 other-
wise ; Ỹ i

j = Y i
j if

∑i−1
k=0 pk + 1 ≤ j ≤

∑i
k=0 pk and Ỹ i

j = 0
otherwise. Then system (4) may be written on the form:

xt = x0 +

∫ t

0

(
X0(xs) +

m∑
i=1

uiY
i
0 (xs)

)
ds

+

p∑
j=1

∫ t

0

(
X̃j(xs) +

m∑
i=1

uiỸ
i
j (xs)

)
dω̃j

s

and one gets, for 1 ≤ i ≤ m, LiV (x) =
⟨
Y i
0 (x),∇V (x)

⟩
,

because of X̃j(x)Ỹ
i
j

T
(x) = 0, 1 ≤ j ≤ p.

Finally, for a Lyapunov function V , associate with sys-
tem (1) the smooth function ψV : IRn× IRm → IRm defined
by:

ψ
V
(x, u) = −gT0 (x, u)∇V (x)

−
p∑

j=1

gTj (x, u)
∂2V

∂x2
(x)Xj(x)

− 1

2

p∑
j=1

gTj (x, u)
∂2V

∂x2
(x)gj(x, u)u, (9)

where

gj(x, u) =

∫ 1

0

∂fj
∂u

(x, tu)dt, 0 ≤ j ≤ p. (10)

III. Fixed point stabilizability sufficient
condition

The following proposition can now be stated as a pre-
liminary result of stabilizability of Jurdjevic-Quinn type
stochastic systems.

Proposition 1: Assume that system (1) is of Jurdjevic-
Quinn type and let V be a Lyapunov function satisfy-
ing conditions (h1) and (h2). Assume also that, for any
x ∈ IRn, the function ψV (x, ·) has a fixed point u(x) =
ψ

V
(x, u(x)) which is smooth and such that u(0) = 0. Then

u(x) is a globally stabilizing feedback for the stochastic
system (1).

Proof: the functions fj , 0 ≤ j ≤ p, being smooth, one
has from (6) and (10), fj(x, u) = Xj(x) + gj(x, u)u. Then
denoting by L the infinitesimal generator associated with
the closed-loop system

xt = x0 +

∫ t

0

f0(xs, u(xs))ds

+

p∑
j=1

∫ t

0

fj(xs, u(xs))dω
j
s, (11)

one has for all x ∈ IRn:

LV (x) =
⟨
X0(x) + g0

(
x, u(x)

)
u(x),∇V (x)

⟩
+

1

2

p∑
j=1

⟨
Xj(x) + gj

(
x, u(x)

)
u(x),

∂2V

∂x2
(x)

[
Xj(x) + gj

(
x, u(x)

)
u(x)

] ⟩
,

and by a simple computation one gets from (7), (8) and
(9), LV (x) = L0V (x) − ⟨u(x), ψV (x, u(x))⟩. Hence, from
u(x) = ψV (x, u(x)) and assumption (h1) one has LV (x) =

L0V (x)− ∥u(x)∥2 ≤ 0, ∀x ∈ IRn, and according with the-
orem 1, the zero solution xt ≡ 0 of the closed-loop system
(11) is stable in probability.

Besides, according to the stochastic version of LaSalle’s
invariance principle (see [12]), the stochastic process xt
converges in probability to the largest invariant set whose
support is contained in the locus LV (xt) = 0 for all t ≥ 0.
Therefore, in order to prove that the zero solution of the
closed-loop system is GASP it must be shown that for any
complete solution xt of (11) along which LV (xt) = 0 for
all t ≥ 0, one has necessarily xt = 0 ∀t ≥ 0.

Notice that, from (6) and (10), one has gj(x, 0) =
(Y 1

j (x) . . . Y m
j (x) ) , and from (9) and (8) it follows

that:

ψV (x, 0) = −
(⟨
Y 1
0 (x),∇V (x)

⟩
, . . . ,

⟨
Y m
0 (x),∇V (x)

⟩)T
−

p∑
j=1

(⟨
Y 1
j (x),

∂2V

∂x2
(x)Xj(x)

⟩
, . . .
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. . . ,
⟨
Y m
j (x),

∂2V

∂x2
(x)Xj(x)

⟩)T

= (L1V (x), . . . , LmV (x))
T
.

Now LV (x) = 0 if and only if L0V (x) = 0 and u(x) = 0,
and since u(x) = ψV (x, u(x)), it turns out that LV (x) =
0 ⇒ L0V (x) = · · · = LmV (x) = 0. So, for any complete
solution xt of the stochastic differential equation (11) for
which LV (xt) = 0 for all t ≥ 0, successive differentiations
by means of Itô’s formula yield Lk+1

0 V (xt) = Lk
0LiV (xt) =

0, for t ≥ 0, k ∈ IN, and i = 1, . . . ,m. Hence, by as-
sumption (h2), it follows that xt = 0 for all t ≥ 0, which
completes the proof.

Remark 1: As an application of proposition 1, one
can deduce the result of [2] on the stabilization of
stochastic affine control system (4) provided that it is
of Jurdjevic-Quinn type thanks to a Lyapunov func-
tion V satisfying conditions (i’) and (ii’). Notice that
for system (4) the function ψV defined in (9) satis-
fies ψ

V i(x, u) = −Y i
0V (x) − a

V ,i(x)ui where a
V ,i(x) =

(1/2)
∑pi

j=1⟨Y i
j (x), (∂

2V/∂x2)(x)Y i
j (x)⟩, 1 ≤ i ≤ m, and

generally it has no smooth fixed point. Nevertheless, by
using the static precompensator

ui =
(
1 + a2

V ,i(x)− a
V ,i(x)

)−1/2
ũi, 1 ≤ i ≤ m, (12)

one transforms system (4) into

xt = x0 +

∫ t

0

(
X0(xs) +

m∑
i=1

ũiỸ
i
0 (xs)

)
ds

+

p0∑
j=1

∫ t

0

Xj(xs)dω
j
0s

+
m∑
i=1

pi∑
j=1

∫ t

0

ũiỸ
i
j (xs)dω

j
i s, (13)

where Ỹ i
j = (1+a2

V ,i−aV ,i)
−1/2 Y i

j , 1 ≤ i ≤ m, 0 ≤ j ≤ pi.
Clearly (13) is of Jurdjevic-Quinn type in accordance with
(4), and thanks to the same Lyapunov function V . Now,
to system (13) one associates by (9) the function ψ̃V given
by:

ψ̃
V i(x, ũ) = −Ỹ i

0V (x)− ui
2

pi∑
j=1

⟨
Ỹ i
j (x),

∂2V

∂x2
(x)Ỹ i

j (x)
⟩

= −

Y i
0V (x) +

aV ,i(x)ũi√
1 + a2

V ,i(x)− a
V ,i(x)√

1 + a2
V ,i(x)− a

V ,i(x)

which has a smooth fixed point ũ(x) defined by ũi(x) =
−(1 + a2

V ,i(x)− aV ,i(x))
1/2(1 + a2

V ,i(x))
−1 Y i

0V (x). There-
fore, following proposition 1, ũ(x) stabilizes (13), and by
(12) it yields the stabilizing feedback law ui(x) = −(1 +
a2

V ,i(x))
−1 Y i

0V (x), for system (4).

IV. Stabilizability of Jurdjevic-Quinn type
stochastic systems

Following Remark 1, the question now is what about the
stabilizability of general Jurdjevic-Quinn type stochastic
systems of the form (1). The next theorem will establish
that any such a system is globally asymptotically stabiliz-
able in probability by an arbitrarily bounded smooth feed-
back law.

Theorem 2: Assume that system (1) is of Jurdjevic-
Quinn type and let V be a Lyapunov function satisfying
conditions (h1) and (h2). Then, for any positive constant
η, system (1) is globally asymptotically stabilizable in prob-
ability by means of a feedback law u(x) satisfying u(0) = 0
and ∥u(x)∥ ≤ η, ∀x ∈ IRn.

Proof: Let us begin by the following remark on the
function ψ

V
associated with system (1) by (9), and that

will be useful for the proof. If there exists a smooth
function k(x) > 0 such that, for any x ∈ IRn, the func-
tion k(x)ψ

V
(x, ·) has a fixed point u(x) = k(x)ψ

V
(x, u(x))

which is smooth and such that u(0) = 0, then u(x) is a
globally stabilizing feedback for the stochastic system (1).
As a matter of fact, the preliminary feedback u =

√
k(x) ũ

changes the original system (1) into the system

xt = x0 +

∫ t

0

f̃0(xs, ũ)ds+

p∑
j=1

∫ t

0

f̃j(xs, ũ)dω
j
s, (14)

where f̃j(x, ũ) = fj(x,
√
k(x) ũ), 0 ≤ j ≤ p. One may

also verify that the vector fields and the second order
differential operators defined respectively by (6), (7) and
(8) are changed into X̃j = Xj , Ỹ i

j =
√
k Y i

j , L̃0 = L0,
and L̃i =

√
k Li. Therefore, (14) is a jurdjevic-Quinn

type stochastic system in accordance with (1). Besides,
if one denotes by ψ

V
and ψ̃

V
the functions associated re-

spectively with systems (1) and (14), a straightforward
calculation shows that ψ̃

V
(x, ũ) =

√
k(x)ψ

V
(x,

√
k(x) ũ).

So, if u(x) = k(x)ψ
V
(x, u(x)), u(0) = 0, is a smooth

fixed point of the function k(x)ψ
V
(x, ·), then one has:

ψ̃
V
(x, u(x)/

√
k(x)) =

√
k(x)ψ

V
(x, u(x)) = u(x)/

√
k(x).

Hence, one can deduce from proposition 1 that ũ(x) =
u(x)/

√
k(x) stabilizes system (14), and accordingly u(x)

stabilizes system (1).
Now, for η > 0, let K1(x) and K2(x) be any smooth non-

negative real valued functions satisfying, for any x ∈ IRn,
K1(x) + K2(x) ̸= 0, K1(x) ≥ sup∥u∥≤η ∥ψV

(x, u)∥ and
K2(x) ≥ sup∥u∥≤η ∥(∂ψV

/∂u)(x, u)∥. Let α : IRn × IRm →
IRm be the smooth function defined by α(x, u) = η(K1(x)+
2ηK2(x))

−1 ψ
V
(x, u). Then, for any x ∈ IRn and any

u ∈ IRm such that ∥u∥ ≤ η, one has ∥α(x, u)∥ ≤ η and
∥(∂α/∂u)(x, u)∥ ≤ 1/2. So, on the one hand, applying
the fixed point theorem one can deduce that there ex-
ists a unique continuous function θ : IRn → IRm, with
θ(0) = 0, satisfying for all x ∈ IRn, ∥θ(x)∥ ≤ η and
α(x, θ(x)) = θ(x). On the other hand, the implicit func-
tion theorem applies to the function γ(x, u) = α(x, u)−u in
each x0 ∈ IRn since γ(x0, θ(x0)) = 0 and the jacobian ma-
trix (∂γ/∂u)(x0, θ(x0)) = (∂α/∂u)(x0, θ(x0))−Im is invert-
ible. So, there exist a neighbourhood V × U of (x0, θ(x0))
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and v : V → U such that v(x0) = θ(x0) and γ(x, v(x)) = 0,
∀x ∈ V. Now v ∈ C∞(V,U) because of γ is C∞, but the
equation γ(x, u) = 0 has a unique solution θ(x) defined on
IRn, and so, θ∣∣V = v and then θ is C∞.

By setting k(x) = η(K1(x) + 2ηK2(x))
−1, it turns out

from the remark in the beginning of the proof that u(x) =
θ(x) is a globally asymptotically stabilizing feedback for
system (1), and the proof is completed.

In order to illustrate the feasibility of theorem 2, let us
apply it to a stochastic affine control system of the form:

xt = x0 +

∫ t

0

(
X0(xs) +

m∑
i=1

uiY
i
0 (xs)

)
ds

+

p∑
j=1

∫ t

0

(
Xj(xs) +

m∑
i=1

uiY
i
j (xs)

)
dωj

s (15)

which is assumed to be of Jurdjevic-Quinn type
thanks to a Lyapunov function V . Since fj(x, u) =
Xj(x) +

∑m
i=1 uiY

i
j (x), one gets by a simple com-

putation from (9) and (10) ψV (x, u) = −hV (x) −
H

V
(x)u where h

V
(x) = (L1V (x), . . . , LmV (x))

T and
H

V
(x) is the m × m matrix whose (i, k)th entry is

(1/2)
∑p

j=1⟨Y i
j (x), (∂

2V/∂x2)(x)Y k
j (x)⟩. Hence, for a

fixed η > 0, by taking k(x) = η(K1(x) + 2ηK2(x))
−1

where K1(x) and K2(x) are smooth functions such
that K1(x) + K2(x) does not vanish on IRn, K1(x) ≥
sup∥u∥≤η ∥hV

(x) +H
V
(x)u∥ and K2(x) ≥ ∥H

V
(x)∥, one

gets k(x)ψV (x, u) = −k(x)hV (x) − k(x)HV (x). Now,
for all x ∈ IRn, the m × m matrix k(x)H

V
(x) sat-

isfies ∥k(x)H
V
(x)∥ ≤ 1/2, and so, the matrix Im +

k(x)H
V
(x) is invertible. Therefore, the fixed point u(x)

of the function k(x)ψ
V
(x, ·), which satisfies u(0) = 0

and ∥u(x)∥ ≤ η, can actually be explicitly computed:
u(x) = − (Im + k(x)HV (x))

−1
k(x)hV (x), and it is a glob-

ally asymptotically stabilizing feedback law for system (15).
In particular, for Jurdjevic-Quinn type stochastic

affine control systems of the form (4), one has
h

V
(x) =

(
Y 1
0 V (x), . . . , Y m

0 V (x)
)T and H

V
(x) =

diag (aV ,1(x), . . . , aV ,m(x)). Thus, the above procedure
yields bounded feedback laws of the form ui(x) =
−η(K1(x) + 2ηK2(x))

−1 Y i
0V (x), where a possible choice

of K1 and K2 is given by K1(x) = 1 +
∑m

i=1

(
Y i
0V (x)

)2
+

η
∑m

i=1

(
1 + a2

V ,i(x)
)

and K2(x) =
∑m

i=1

(
1 + a2

V ,i(x)
)
.

V. Explicit design of stabilizing feedback

Notice that, as established above, theorem 2 gives an ex-
istential stabilizability result in the sense that, even if for
particular cases as Jurdjevic-Quinn type stochastic affine
control systems of the form (15) the fixed point can be ex-
actly computed, it does not yield, in general, explicitly the
stabilizing feedback control law. By providing an explicit
design of such a feedback, the next theorem is more close
to practical preoccupations in automatic control.

the functions fj , 1 ≤ j ≤ p, being smooth, recall that,

from the Taylor expansion formula, one has:

fj(x, u) = fj(x, 0) +
∂fj
∂u

(x, 0)u+ f̃j(x, u, u), (16)

where f̃j : IRn × IRm × IRm → IRn, is defined by

f̃j(x, v, w) =

∫ 1

0

(1− t)
∂2fj
∂u2

(x, tv)(w,w)dt.

The notation (∂2fj/∂u
2)(x, tv) is used for the sec-

ond order derivative of fj with respect to u at
(x, tv), that is to say the bilinear application from
IRm × IRm to IRn defined by (∂2fj/∂u

2)(x, tv)(w, w̃) =
(wT (∂2f1j /∂u

2)(x, tv)w̃, . . . , wT (∂2fnj /∂u
2)(x, tv)w̃)T with

f1j , . . . , f
n
j the component functions of fj .

Besides, for a Lyapunov function V , let φ
V
: IRn× IRm×

IRm → IR be the smooth function defined by:

φV (x, v, w) = ⟨ f̃0(x, v, w),∇V (x) ⟩

+
1

2

p∑
j=1

Tr
(
Aj(x, v, w)

∂2V

∂x2
(x)

)
(17)

where the n× n matrix Aj(x, v, w) is defined by:

Aj(x, v, w) = Xj(x)f̃
T
j (x, v, w) + f̃j(x, v, w)X

T
j (x)

+
m∑
i=1

vi

[
Y i
j (x)f̃

T
j (x, v, w) + f̃j(x, v, w)Y

i
j

T
(x)

]
+

m∑
i1,i2=1

wi1wi2Y
i1
j (x)Y i2

j

T
(x) + f̃j(x, v, v)f̃

T
j (x, v, w).

Notice that the real valued function φV is homogeneous of
degree 2 with respect to w. Then one can state:

Theorem 3: Assume that system (1) is of Jurdjevic-
Quinn type and let V be a Lyapunov function satisfying
conditions (h1) and (h2). Then for any η > 0 and any
smooth functions K1(x) and K2(x) satisfying, ∀x ∈ IRn,
K1(x)+K2(x) ̸=0 and

K1(x) ≥ sup
∥v∥≤η,∥w∥=1

|φV (x, v, w)|, (18)

K2(x) ≥
∥∥(L1V (x), .., LmV (x)

)∥∥ , (19)

the stochastic control system (1) is globally stabilizable by
means of the feedback:

u(x) =
−η

ηK1(x) +K2(x)

(
L1V (x), .., LmV (x)

)T
, (20)

which satisfies ∥u(x)∥ ≤ η, ∀x ∈ IRn.
Proof: The inequality ∥u(x)∥ ≤ η is an immediate

consequence of (19), and (20). Moreover, from (6), and
(16) the closed-loop system (1-20) is given by the stochastic
differential equation:

xt = x0 +

∫ t

0

(
X0(xs) +

m∑
i=1

ui(xs)Y
i
0 (xs)

+ f̃0
(
xs, u(xs), u(xs)

))
ds
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+

p∑
j=1

∫ t

0

(
Xj(xs) +

m∑
i=1

ui(xs)Y
i
j (xs)

+ f̃j
(
xs, u(xs), u(xs)

))
dωj

s (21)

Then, denoting by L the infinitesimal generator associated
with the stochastic differential equation (21), one has:

LV (x) =
⟨
X0(xs) +

m∑
i=1

ui(xs)Y
i
0 (xs)

+ f̃
(
xs, u(xs), u(xs)

)
,∇V (x)

⟩
+

1

2

p∑
j=1

⟨[
Xj(xs) +

m∑
i=1

ui(xs)Y
i
j (xs)

+ f̃j
(
xs, u(xs), u(xs)

)]
,

∂2V

∂x2
(x)

[
Xj(xs) +

m∑
i=1

ui(xs)Y
i
j (xs)

+ f̃j
(
xs, u(xs), u(xs)

)]⟩
and by a simple computation one gets from (7), (8)
and (17), LV (x) = L0V (x) +

∑m
i=1 u

i(x)LiV (x) +
φ

V
(x, u(x), u(x)). It follows that, for x ∈ IRn such that

u(x) = 0 one has LV (x) = L0V (x), and otherwise, from
(20) and the homogeneity property of φ

V
(x, v, w) with re-

spect to w one gets:

LV (x) = L0V (x)−
∥u(x)∥2

[
1−K(x)φV

(
x, u(x), u(x)

∥u(x)∥

)]
K(x)

where K(x) = η(ηK1(x) + K2(x))
−1. Besides, one has

1 − K(x)φ
V
(x, u(x), u(x)/∥u(x)∥) ≥ 0 because of (18)

and ∥u(x)∥ ≤ η, and so one gets from assumption (h1),
LV (x) ≤ 0, ∀x ∈ IRn. Hence, according with theorem
1, the zero solution xt ≡ 0 of the stochastic differen-
tial equation (21) is stable in probability. Moreover, it
follows from (19), (19) and (20) that if u(x) ̸= 0 then
K2(x) ̸= 0 and so 1 −K(x)φV (x, u(x), u(x)/∥u(x)∥) ̸= 0,
and, from (20), it turns out that LV (x) = 0 if and only
if LiV (x) = 0, i = 1, . . . ,m. Therefore, the proof can be
continued, thanks to the stochastic version of LaSalle’s in-
variance principle, exactly as in the proof of Proposition1.
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