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Stochastic Simulation of Clinical Pathways from Raw Health Databases

Martin Prodel2, Vincent Augusto1, Xiaolan Xie1,3, Baptiste Jouaneton2 and Ludovic Lamarsalle2

Abstract— This paper presents a method to automatically
create stochastic simulation models of clinical pathways from
raw databases. We introduce an automatic procedure to convert
a process model, discovered with process mining, into an
actionable simulation model. The concept of state charts is used
and enriched to incorporate the distinctive features of health-
care processes into the model. The clinical pathway model is
used to simulate new patients’ sequence of events. The resulting
model is validated by comparing key performances indicators
with historical data. Finally, we use the model to perform an
automatically setup sensitivity analysis. The whole process is
automated and can be used with any input data.

I. INTRODUCTION

Clinical Pathways (CP) are a collection of activities that

serve a common goal, such as consultation, rehabilitation

or chemotherapy sessions. A CP describes the whole care

journey of a patient across various health-care structures.

Data related to CP are collected in hospitals for various

purpose: in France, the national hospitalization database is

primarily used for the pricing of care activities in hospitals,

but it also contains a large amount of valuable data about

the patient, his/her pathology and treatment.

The study of such data is important to reveal patterns of

CP and a better understanding of the processes and of its

potential improvements through new treatments, medicines,

or medical devices. Health authorities intend to propose

standardization of care processes for various operational pur-

poses: organization of care activities, assignment of human

resources, reducing practice variability, minimizing delays

in treatments or decreasing costs while maintaining quality.

Today, there is a will to go further than experts’ opinions to

answer these challenges. As such, evidence-based medicine

has become paramount to medical decision making and

clinical judgment.

The work presented in this paper is the last part of a large

study consisting in applying a combination of data analysis

and process mining [1] to build automatically a model of a

CP for a certain cohort of patients. The reader is referred to

[2] and [3] for further details about the automatic generation

of CP models and conversion into simulation models. The

goal of the present study consists in providing a “simulation

toolbox” that can be used by health-care practitioners to learn

about available health databases.
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Most simulation models are handmade: the perception of

the actual process is influenced by the modeler’s experience,

creating modeling biases. To avoid such biases, the idea of

integrating process mining results to automatically generate

a complete simulation model was initiated by [4] and was

taken over by [5] and [6]. In [4], the focus is on the

simulation model validation (whether generated or hand-

made) to ensure sufficient quality of simulation results. The

authors also highlight the challenges of automatic discovery

of simulation models from event logs, including creating not

too complex models, adding other perspectives to the flow

perspective and adjusting the model for real-time simulation.

An example is shown using Petri Net as the representation

of their process models. Concerning Sensitivity Analysis

(SA), it is the study of how input variations induce output

modifications. SA is either local or global [7]. Local SA

study the variations of a single parameter while other pa-

rameters remain fixed [8], and global SA study the output

changes when all the parameters vary simultaneously [8].

However, such approaches are never automated, is also time-

consuming and subject to bias. In this paper, we propose an

automated approach to perform a sensitivity analysis on a

model discovered from raw health databases. It allows to

determine data variables which have the highest impact on

considered key performance indicators (KPI).

The scientific contribution of this paper is twofold: (i) an

automated stochastic simulation of clinical pathways directly

connected to a raw health database; (ii) a method to analyze

and discuss KPI for the health-care area through automated

SA. A new validation procedure is proposed to assess the

results on a real case study. CP analysis is performed using

an automatic sensitivity analysis, taking into account the

characteristics of the health data recorded in database. An

extension to a formal sub-class of state-charts is also

provided to take into account all special features of CPs.

The paper is organized as follows. The global methodol-

ogy is described in Section II. The state chart formalism used

to simulate discovered CP is detailed in Section III. The CP

stochastic simulation toolbox is provided in Section IV. A

case study is proposed in Section V. Finally, conclusions and

perspectives are given in Section VI.

II. METHODOLOGY

In a previous work [2], we proposed a new approach to

discover Clinical Pathways (CP) from the French national

hospitalization database using process mining. The objective

was to create the most representative process model of an

event log under a constraint on the size of the model. In the

literature, CP analysis from raw data was mainly done with
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data mining or process mining techniques, both receiving an

increasing attention in medical informatics. The next step

of this research, consists in proposing a model that can

be executed using simulation and automatically analyzed

regarding relevant KPI.

This paper provides a comprehensive methodology to

analyze and simulate such CPs as described in Figure 1. It

uses an existing process model discovered from an event log

(step 1) [2], a set of features found using health-care data

analytics tools (step 2) [9] and a set statistical distributions

(step 3). For that, we propose (i) a new procedure to

automatically build a simulation model of patient CP from

an event log of hospital stays, and (ii) a new subclass of

state charts called “Clinical Pathway State Charts” (CPSC)

to capture all the required material to efficiently simulate

and evaluate the performances of any CP. This subclass is

an extension of the one proposed in [3] to include health-care

decision point analysis. A simulation procedure is proposed

to perform automatic analysis (step 4). Such methodology

may be applied to any database and any cohort of patients.

Simulation of CPs brings new knowledge and allows scenario

evaluation through design of experiments.
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Fig. 1. Global scheme of our automatic modeling methodology

III. A SUBCLASS OF STATE CHARTS: CLINICAL

PATHWAY STATE CHART

To simulate the clinical pathway of new patients, we

use the general concept of state charts. It includes the

definition of states, transitions, activation probabilities and

state duration. We enrich this state chart definition with two

new concepts: wait-states and care-states. Eventually, we

introduce a new subclass of state chart that encapsulates all

the specific features of a CP and simulates it.

Definition 1 (State chart): A state chart (SC) is a 4-tuple

M = (S, V, ζ, τ) where S = {s1, s2, . . . , sn} is a finite

set of states, V ⊆ (S × S) is a finite set of transitions,

ζ : V → [0, 1] is the probability of activating a transition,

and τ : S → N is the time spent in a state.

We use state charts to model patient CPs. A patient is

modeled using the concept of entity, defined by a set of

features and an active state.

Definition 2 (Entity): An entity is a 3-tuple u = (M,f, s),
where M = (S, V, ζ, τ) is a SC, f = {f1(u), ..., fx(u)}) is a

set of assigned values for attributes from F (the set of trace’s

attributes) and s is its current state, s ∈ S.

Two types of states are defined to distinguish states related

to hospital stays from states related to waiting periods

between two stays.

Definition 3 (Care-state): A Care-state is a 2-tuple

sc = (l, B) where l is a unique label and B =
{(f1, v1), . . . , (fn, vn)} is the list of entities’ features

{f1, ..., fn} to be updated in this state with new values

{v1, ..., vn}, (n ∈ N
∗). B includes at least a state-related

cost that is used as a simulation performance indicator.

Definition 4 (Wait-state): A wait-state is a singleton sw =
(l) where l is a unique label.

A care-state is related to a change in a patient’s health

condition and requires a medical response process during

which the entity’s attributes may change according to B.

Finally, we propose a new subclass of state chart to describe

clinical pathways, denoted Clinical Pathway State Chart.

Definition 5 (Clinical Pathway State Chart): A Clinical

Pathway State Chart is a 6-tuple CPSC = (S, V, ζ, τ, p, q):

1) S = Sw ∪ Sc where Sw is a finite set of wait-states

and Sc is a finite set of care-states

2) V ⊆ (Sc × Sw) ∪ (Sw × Sc) is the set of transitions

(vertexes) of the CPSC

3) ζ gives the probability of activating each transition

given a state s and a set of features F = {f1, ..., fx}:

ζ : S × F → V |V | × [0, 1]|V |

s× {f1, ..., fx} �→ (vi, pi)

4) τ : S → N is the time spent in a state.

5) p : S → [0, 1] is the probability that the simulation

starts at a given care-state,
∑

s∈S

p(s) = 1

6) q : S → [0, 1] is the probability that the simulation

stops after reaching a given state

A conversion procedure is proposed to automatically cre-

ate an actionable CPSC. See [9] for a detailed methodolog-

ical explanation of this step.

Example 1: We consider the process model given in Fig-

ure 2, formally defined as a causal net by N = {A,B,C,D}
and E = {e1, e2, e3, e4, e5}. First, the conversion produces

the state chart CP = (S, V, ζ, τ) presented in Figure 2 with:

• S = {scA, s
c
B , s

c
C , s

c
D, sw1 , s

w
2 , s

w
3 , s

w
4 , s

w
5 } where state

sci is a care-state related to node i and state swj is a

wait-state related to edge ej . Care-states refer to hospital

stays and wait-states to waiting between two stays.

• V = {(scA, s
w
1 ), (s

w
1 , s

c
B), (s

c
B , s

w
2 ), (s

w
2 , s

c
C), (s

c
B , s

w
3 ),

(sw3 , s
c
D), (scC , s

w
4 ), (s

w
4 , s

c
D), (scD, sw5 ), (s

w
5 , s

c
D)}

• ζ and τ are initialized as null (defined at the 2nd step).

IV. CP STOCHASTIC SIMULATION TOOLBOX

In this Section, we provide the different elements provided

in the CP Stochastic Simulation Toolbox, including an auto-

matic setup of the simulation, validation and SA.
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Fig. 2. 1
st step of the conversion procedure - initial model
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Fig. 3. 1
st step of the conversion procedure - the output CPSC: care-states

(blue), wait-states (orange) and transitions (black)

A. Simulation setup

1) Simulation procedure: The simulation procedure for

a single entity is described as follows. First, a new entity

is created. Its initial values of features and its initial state

are drawn from the right random distributions. Then, the

procedure computes the time spent in the current state and

the next state based on the classifier. This is repeated until

a stopping criterion is reached. Three stopping criteria are

used: when a state has no outgoing transition, when the

probability that a sequence stops within a given care-state

is high and when an entity’s sequence reaches the threshold

of the maximal number of care-states. This threshold is set

empirically as the size of the longest sequence seen in the

data. When an entity enters a new care-state, its features

(health condition, age, cost, medical history, etc.) are updated

accordingly. In addition, whatever the state, the entity time-

span is incremented with the time spent in this state.

2) Key Performance Indicators: Key performance indica-

tors are used for simulation model validation and to test new

situations through SA. Most KPIs are specifically chosen for

a case study. For instance, in a lung cancer care process, the

time between diagnosis and death is of major interest. Still,

based on the definition of a CPSC = (S, V, ζ, τ, p, q), we

define a set R of generic KPIs:

• KPI-1 : The total (cumulative) time spent in care-states

• KPI-2 : The total time spent in wait-states

• KPI-3 : The number of visited care-states

• KPI-4 : The number of visits in each state

A 95% confidence interval is ensured when collecting such

KPIs in the toolbox. To do so, the simulation procedure is

replicated for many entities.

B. Validation

The model validation is done by comparing output values

of KPIs with the same measure from historical data. More

formally, let CPSC be a clinical pathway state chart, let

L be a log of historical patient sequences and let R =
{KPI1, . . . ,KPIn} be the set of key performance indica-

tors chosen to validate CPSC, with n ≥ 1. Then, for each

KPI we compute the absolute difference between the model

value and the data value:

δi = |KPICPSC
i −KPILi | ∀i ∈ {1, n}

where KPICPSC
i is the average value of the Monte-Carlo

replications for the KPI#i, and KPILi is the value from the

data. The simulation also produces an error value ǫi which

gives the simulation confidence interval [KPICPSC
i +/- ǫi].

Based on the difference δi between the model and the

data, we propose to assess the model validity with a binary

validation process: if the KPI value from the data belongs

to the simulation confidence interval, we conclude that the

model is valid regarding this KPI. Formally, for each KPI

we define a validation function vi:

vi : R
2 → {0, 1}

(δi, ǫi) �→

{

1 if δi ≤ ǫi
0 else

∀i ∈ {1, n} (1)

The vi function is computed for each KPI of R, thus

validating or not the model for each KPI independently.

Then, we aggregate these results to determine if the model

is globally valid. One aggregation method is to choose a

threshold on the minimum percentage of KPIs on which the

model shall be independently valid. All the KPIs not being

equally important for the validation, we introduce weighting

factors βi ∈ [0, 1] for that purpose. Let Tmin ∈ [0, 1] be

such a threshold, then a simulation model CPSC is valid if

inequality 2 stands:

n
∑

i=1

βi.vi(δi, ǫi) ≥ Tmin with

n
∑

i=1

βi = 1 (2)

To summarize, a new validation approach is proposed.

A binary measure against the original data is proposed on

predefined KPI using a user-defined validation threshold.

C. Automatic sensitivity analysis

A SA is the study of how input parameter variations

impact the model outputs. It is a technique used to determine

how an independent variable impact a dependent variable.

In this paper, we propose an automatic generation of a

SA for simulation models. First, we select eligible input

variables that may impact the model outcomes. For each

selected variable, a variation range is then determined and a

systematic SA is performed for each value of the range.

1) Automatic selection of variables to evaluate: Variables

related to clinical pathways are either care-state attributes

or instance attributes. They were used to enrich the process

model into a simulation model (instance attributes to learn

decision point choices [9], state attributes to generate random

distribution and evaluate indicators). Examples of care-state

attributes are the length of stay, the medical diagnosis and

the cost. Examples of instance attributes are age, gender and

size. Each variable is one of the 3 following types: textual,

categorical or numeric. Here, we do not consider textual

variables (e.g. medical reports). Once we have identified

these eligible variables, mainly based on the available field

in the data set, we need to determine their variation range.
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2) Variation range of the variables: A variable variation

range depends on its type. The variation range of categor-

ical variables and of discrete numeric variables can be

determined automatically. These variables are described by

a probabilistic distribution where each probability belongs

to the interval [0 − 1] and their sum is equal to 1. An

incremental step ∆ is set based on the available computation

power (e.g. ∆ = 0.01). Then, for each possible value i of

the variable, the associated probability pi is set to 1 (other

pj = 0), and successively decreased such as pi = pi − ∆
(and pj = pj +

∆

n
).

This procedure allows to test various configurations for the

variable, without being fully exhaustive. The advantage is to

at least test high values of each pi. For a single categorical

variable with K possible values, the required number of

simulation runs for the SA is K × 1

∆
.

The variation range of a numeric continuous variable

is based on the distribution of historical data. Data are fit

with the closest theoretical random distribution. The SA is

performed by shifting this distribution: the same function

(e.g. Weibull) and parameters are kept, but a translation

factor T is added. For a given variable x, based on the

standard deviation σ, the range for the translation factor T

is [−σ,+σ], with an incremental step ∆. In addition, we

use truncated random distributions for all variables with a

(semi-)bounded domain of definition (e.g. age is positive).

Finally, for any type of variable, the SA provides the

outcomes of the simulation model derived for any of the

tested input configuration. An example of SA is presented in

the next Section (case study).

3) Summary: Our “automatic sensitivity analysis” de-

termines the most impacting variables on each output

measure by achieving the following: (i) Automatic selection

of variables to evaluate: modeling variables (e.g. size of the

model, confidence level), and case study variables, including

care-state attributes and instance attributes; (ii) Automatic

generation of a variation range for these variables. De-

pending on their type, we developed a procedure to generate

relevant intervals; (iii) Computation of single input-output

relationship for one output KPI.

SA give decision makers new insights about the uncer-

tainties and their potential impact. It can discover hidden

input-output relationships that were not straightforward to

determine without a comprehensive model. Such information

can be used to organize an action plan with the most relevant

leverages regarding the target.

V. CASE STUDY

A. Cardiovascular diseases and implantable defibrillators

Heart diseases are one of the major health problems today.

It was ranked as the first leading cause of death in the world

in 2012 by the WHO. More specifically, cardiac arrhythmia

is the most important cause of sudden cardiac death, affecting

about 40,000 people per year in France and 300,300 in

the USA. Implantable Cardioverter Defibrillators (ICDs) are

medical devices that are indicated in two cases of severe

Fig. 4. Heart failure process model

cardiac arrhythmia: after a patient has experienced sudden

death due to a ventricular tachycardia, or in prevention of it.

Data were obtained from a single source: the French

hospitalization database. It contains records of all hospital-

ization stays in France from 2006 to 2014 included, both

in public and private sectors. It is an exhaustive database

that represents 27 million hospitalization stays for 11 million

patients annually. We selected the 1,602 patients implanted in

France in 2008 and all their stays during a follow-up period

of 2-years backward (2006) and 5-years afterward (2013). It

represents a total of 16,931 hospital stays.

B. Model creation

The clinical pathway model of Figure 4 is a process model

in the form of a causal net. We uses the conversion procedure

presented in [2] to obtain a Clinical Pathway State Chart

CPSC = (S, V, ζ, τ, p, q). S and V are directly derived from

the nodes and arcs of the causal net, ζ is made of the decision

trees generated using machine learning approaches and τ was

obtained with distribution fitting. The two last elements of

the CPSC are p and q. They were obtained from the historical

data and they are presented in Table I.

C. Model validation

The model was validated using the 4 Key Performance

Indicators presented in Section IV.

The results for all the KPIs are presented in Table II,

based on the simulation of 100,000 patients. Regarding KPI-

1 and KPI-2 (time related measures), the validation was
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TABLE I

STARTING AND STOPPING PROBABILITIES OF THE CP STATE CHART

Wait States Starting Stopping

probability probability

I48 (before ICD) 6.5% 0

I472 3.9% 0

I200 4.7% 0

I251 (before ICD) 11.1% 0

I422 11.0% 0

I501a 49.2% 0

Implantation 13.6% 0

Death 0 1

End of record 0 1

challenging because of the large variability of these measures

in the original data.

The simulation model seems to underestimate the time

spent by patients in care states (KPI-1) and in wait states

(KPI-2) when using the mean and the standard deviation.

However, the simulation results show a significant decrease

in the variability (standard deviation) compared to historical

data. The high variability of the data is explained by the

presence of some outliers (e.g. a patient spent 4 years at

hospital). However, it is difficult to remove outliers from the

data since these patients may bring other interesting data

to the case study. This is a difficulty when dealing with

health data because some individuals may carry important

information for the study. Variability reduction is an asset

for the simulation model.

TABLE II

VALIDATION RESULTS FOR 5 MEASURES (100,000 PATIENTS)

KPI Historical data Simulation model Simulation model

Mean (+/- STD) Mean (+/- STD) 95% CI

KPI #1 65.80 days (+/-
88.10)

45.07 (+/- 29.18) +/- 0.15

KPI #2 4 years 1 month 3 years 8 months +/- 1.55 days
(+/- 2 years 1
month)

(+/- 9 months)

KPI #3 13.2 care states
(+/-18.8)

11.7 (+/- 4.8) +/- 0.025

KPI #4 Figure 5 68.5% -

Regarding KPI-3, we obtained a close value of the number

of care states in a trace sequence (11.7 versus 13.2). KPI-4

is presented in detail in Figure 5. For each care state, the

histogram shows the historical data (orange), the simulation

result (blue) and the 95% confidence interval (red line).

Based on a binary validation approach, the simulation model

gets a validation score of 68.5% for KPI-4, which is above

regular thresholds (50% or 66% for binary validation).

D. Sensitivity analysis

An automatic SA of input parameters was then performed

for the simulation model described above, as described in

Section IV. The input parameters are the patient features

available in the case study data. It includes the 5 comor-

bidities, 2 non-medical patient characteristics and 1 variable

related to defibrillators: (1) Hypertension, (2) Diabetes, (3)

Fig. 5. Validation of the CPSC on KPI#4. States legend: 0 (implantation), 1
(end of record), 2 (I501a), 3 (I501b), 4 (death), 5 (I200), 6 (Z450), 7 (I420),
8 (Z098), 9 (I422), 10 (I251), 11 (I48-before), 13 (I472), 14 (I48-after), 25
(Z514), 57 (R570)

Obesity, (4) Kidney failure, (5) Cancer, (6) Age at implan-

tation, (7) Gender and (8) Replacement rate.

Figure 6 shows the result of the sensitivity analysis on

KPI-1, the total time spent by patients in care-states. The

impact of the 8 input variables is displayed on the same

graph (8 curves), even if each variable varies independently

(anything else equal). The y-axis represents the possible

values of KPI-1 and the x-axis represents variations on the

input variables. In order to plot and to easily compare the 8

curves, we normalized the possible values of each variable.

The baseline point is when the modification coefficient of all

variables is 1 (Green Arrow).

Among the 8 inputs, only 2 influence the time spent by

patients in care-states: the age at implantation (red line) and

the presence of kidney (grey line) failure. First, the impact

of kidney failure is linear. The fewer patients have kidney

failure (caution, a high coefficient of this variable means

fewer patients), the shorter the total time spent in care-states

(i.e. at hospital) will be. It can be explained by the necessity

of having regular dialyses sessions (half a day) when having

kidney failure. Regarding the age at implantation, the curve’s

shape appears more atypical. From the left, there is a fast

increase in KPI-1 when the implantation age increases, then

it stagnates, and it finally slowly decreases. This shape

illustrates the fact that an increase in age is totally correlated

with the need for more cares (the initial increase). After a

certain threshold (mean age at implantation is 75), need for

care on a 4-year term decreases because patients die faster.

Figure 7 shows the result of the sensitivity analysis on

KPI-4, the number of times that state cardiomyopathy before

implantation was visited by a patient. The outcome values are

standardized for 1,602 patients. For this KPI, it is interesting

to notice that no input variable significantly impacts the

output values. It means that such cardiac issues are not de-

pendent on factors that we incorporated in the model. A more

in-depth backward analysis of patient history might turn out

more relevant (more than 2 years before implantation).
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Similarly to the previous graph, Figure 8 shows the result

of the sensitivity analysis on KPI-4, the number of times

that state cardiomyopathy after implantation was visited

by a patient. This time, two input variables show a direct

impact on the output values: the age at implantation and

the replacement rate. An increase in the age of patients

when being implanted induces a substantial decrease in the

number of times they have a cardiomyopathy (red line). This

is probably explained by an edge effect of the long-term

follow up of patients (4-5 years). Older patients with severe

heart conditions have “less time” to develop other issues as

the 2-year death rate is extremely high for patients over 75.

Regarding the replacement rate, an increase (i.e. more

patients have a defibrillator replacement after few years)

induces a linear decrease in the risk of having a cardiomyopa-

thy (green line). It shows the importance of a close follow-up

of patients and of anticipating the device malfunctioning.

VI. CONCLUSIONS

In this paper, we proposed the final phase of a formal

procedure for the automatic conversion of a process model

discovered from a health database into a simulation model.

Our objective was to be able to generate new patients

that are close enough to the historical data. We used the

concept of state charts to integrate several perspectives of

clinical pathways into a single simulation model. After the
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Fig. 8. SA: impact of 8 input variables on KPI-4 (b)

simulation model creation, we introduced several generic key

performance indicators that can be used for model validation.

We run the model to simulate the pathway of new patients

so that we compare the output KPIs with the historical

values from the event log. A validated model is finally

used to perform sensitivity analysis and what-if scenarios

evaluation. Sensitivity analysis provides insights about the

determinant factors (input variables) that most impact the

model’s behavior (output measures). The resulting toolbox is

a “ready-to-use” software for health practitioners. For future

works, we plan to integrate resources in the model which

means a deep modification of the simulation procedure since

patients will be linked together. A further analysis of the new

complexity of such update will be required. Also, we plan

on creating a loop in order to automatically clean health

data by removing outliers from the original data. Finally,

an extension to multi-way sensitivity analysis may be an

interesting contribution for practitioners.
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