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Abstract

We analyze in this work some analogies between thermal emission of nano objects and Hawking’s

radiation. We first focus on the famous expression of the black hole radiating temperature derived

by Hawking in 1974 and consider the case of thermal emission of a small aperture made into a

cavity (Ideal Blackbody). We show that an expression very similar to Hawking’s temperature

determines a temperature below which an aperture in a cavity cannot be considered as standard

blackbody radiating like T 4. Hawking’s radiation therefore appear as a radiation at a typical

wavelength which is of the size of the horizon radius. In a second part, we make the analogy

between the emission of particle-anti particle pairs near the black hole horizon and the scattering

and coupling of thermally populated evanescent waves by a nano objects. We show here again that

a temperature similar to the Hawking temperature determines the regimes where the scattering

occur or where it is negligible.
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I. INTRODUCTION. HAWKING TEMPERATURE.

In 1974, Stephen Hawking [1, 2] published his famous work about black hole radiating

temperature. This famous temperature expression is the sole one in physics in which appears

all 4 fundamentals constants (c, h, G and kb). The origin of this radiation lies in the fact

that the black hole makes vacuum fluctuations such as particle-antiparticle pairs radiate at

infinity since they are separated at the black hole horizon : a particle is radiated to infinity

whereas its antiparticle is pursuing its path into the black hole. The idea of the present

work is two fold. First, we will remark that a similar formula for a critical temperature

is obtained when one is studying thermal emission of an aperture. Second, an analogy is

made between the particle-antiparticle pair separation at the horizon and the scattering of

evanescent waves such as polariton by subwavelength structures. It is shown in this second

part, that here again, this coupling to the far-field of evanescent waves thermally populated

happens when the temperature is smaller than a critical temperature very similar to the

Hawking one.

Hawking temperature formula can be heuristically derived from simple principles like the

Heisenberg incertitude relation as well as simple relations between distance and velocity

or wavelength and frequency. The idea is that in vacuum, there are quantum fluctuations

that can be interpreted as permanent creation and annihilation of particle-antiparticle pairs.

These pairs remain virtual as long as the Heisenberg incertitude relations are violated i.e

the energy fluctuation ∆E due to the vacuum fluctuations and particle antiparticle pair

formation multiplied by the time of their existence ∆t is smaller than the Planck constant

(∆E∆t ≤ ~). In the presence of a black hole horizon, the particle-antiparticle pairs close to

the horizon can be separated. The typical time ∆t on which the pair are separated is the

order of the time required to cross the whole horizon black hole that is ∆t ∼ 2πRs/c where

Rs = 2GM/c2 is the Schwarzschild radius. Using the fact that the virtual pairs will be seen

when the Heisenberg incertitude relations are valid, a particle that will be seen at infinite

coming from the black hole will have their energy ∆E that will obey

∆E∆t ∼ ~/2

that is

∆E ∼ hc

8π2Rs
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FIG. 1: Cavity at thermal equilibrium at temperature T separated from the outside by an

aperture of radius r0.

Identifying the ∆E as kbT , one obtains the famous expression on the Hawking temperature

TH =
hc3

16π2GMkb
(1)

where the 4 fundamental constants appear. It is the temperature at which the black hole

radiates.

II. THERMAL EMISSION BY AN APERTURE

In 2016, Joulain et al.[3] studied thermal emission by a subwavelength aperture. Indeed,

a small aperture separating a cavity at thermal equilibrium from the outside is often seen as

the archetype of a blackbody (Fig. 1). The idea is that such a structure is a perfect absorber

since an incident radiation in the cavity will hardly be able to exit from. This remains true

as long as the the aperture is large compare to the wavelength involved. When it is not the

case, the aperture confines the radiation and diffracts it so that the transmission through

the aperture is greatly reduced. This phenomenon is actually nothing else than the usual

diffraction by a small aperture. In the case of a cavity which is at thermal equilibrium, the

energy density in the cavity u(ω) is given by the so called Planck formula which is maximum
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at a frequency given by the Wien’s law.

u(ω) =
~ω2

π2c3(exp[~ω/kbT ]− 1)

The angular frequency corresponding to the maximum of emission is given by

~ωmax = 2.8kbT

Therefore, one expects that as long as the aperture is much larger than the wavelength given

by the Wien’s law, it will behave and emit as a perfect blackbody. The condition reads in

the case of an aperture of radius r0

r0 � λmax = 2πc/ωmax (2)

or if the temperature of the cavity is much larger than a critical temperature

T � hc

2.8r0kb
= Tc (3)

Note that the right hand side of the preceding equation is very similar to the Hawking

temperature except that some numerical factors are different and that the Schwarzschild

radius is replaced by the aperture radius r0. Joulain et al. have solved the problem using

fluctuationnal electrodynamics [4] when the aperture is larger that the wavelength (k0r0 > 6

with k0 = ω/c) or when k0r0 � 1 (Bethe-Boukamp theory [5, 6]). It is possible to choose at

what precision an aperture can be assimilated to a blackbody. For example, if one plots the

emissivity of such an aperture vs k0r0 (See Fig.2), one shows that this emissivity approaches

1 only for large k0r0. What we can emphasis here is that the aperture of a cavity at thermal

equilibrium will behave like a blackbody really if its temperature is such that the photons

emitted will have their wavelength smaller than the aperture. Similarly, it can be seen that

a black hole emits radiation at a temperature which is such that the wavelength associated

to this temperature is of the order of the Schwarzschild radius.

III. THERMAL EMISSION OF A SMALL STRUCTURE

In the last 20 years, many works have shown that thermal emission could be different

whether it was considered in the near or in the far-field i.e at distances small or large

compare to the thermal wavelength. For example, the density of electromagnetic energy
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FIG. 2: Emissivity of the cavity versus k0r0 calculated by means of fluctuation

electrodynamics in the Bethe-Bouwkamp regime (k0r0 � 1, dashed-green curve) and in the

Kirchhoff regime (k0r0 > 6, blue curve).

can be calculated above an interface by means of fluctuationnal electrodynamics. Note

that the density of energy is proportionnal to the density of electromagnetic waves times

the mean energy of an oscillator at temperature T . When one considers a polar material

supporting surface waves such as phonon polaritons, the density of energy increases strongly

at subwavelength distances due to the strong increase of the density of states close to the

interface. On the contrary, the density of energy at large distance is very close to the one in

the vacuum due to the fact that the density of states far from the interface is very close to

the one in the vacuum. However, even if the density of surface modes increases a lot close

to the interface, these modes remain confined close to the interface and do not radiate in

the far field. Evanescent waves do not contribute to the flux of a flat interface constituted

of a single material and do not radiate in the far field. However, it is well known that these

waves can be scattered by small objects, coupled to the far-field and can contribute to a

strong increase of the radiation emission. This is the principle of scattering of surface waves
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by a grating [7] or by a microscopic tip [8]. The coupling to the far-field can be understood

as followed. A surface wave has a parallel wave vector larger than k0 so that the wave

vector component perpendicular to the interface is pure imaginary in vacuum, evanescent

and cannot propagate. The presence of grating, a tip or a discontinuity couple with the

surface wave so that its parallel wave vector can be slightly modified in order that it goes

below k0 : the wave can now radiate into the far field. This phenomenon can also happen

if the field is confined at a subwavelength distance. The analogy with black hole radiation

remains here between the radiation of virtual particle-antiparticle pairs and between the

scattering of the thermally populated surface waves by subwavelength objects.

In the case of an aperture filled with a material, Joulain et al. [3] gave an expression

of the emitted flux which depends on a transmission function of the radiation through the

aperture. When the transmission function is 1, one is in the situation of the Kirchhoff

approximation so that the heat flux is given by

φ(ω) = φ0(ω)

∫ 2k0r0

0

W (u/k0)uF (u)du

×
{∫ 1

0

κJ0(κu)dκ√
1− κ2

(2− |rs|2 − |rp|2) +

∫ ∞
1

2κJ0(κu)dκ√
κ2 − 1

[
=(rs) + (2κ2 − 1)=(rp)

]
e−2
√
κ2−1k0z

}
(4)

where κ = K/k0, F (u) = (sinu− u cosu)/u3 and W (d) = 2
π

[
arccos d

2r0
− d

2r0

√
1−

(
d
2r0

)2]
.

W (u/k0) is a function that decreases almost linearly from 1 to 0 when u is increasing from

0 to 2k0r0 whereas F (u) decreases from 1 to 0 very fast as long as u is larger than 1. Under

these conditions, if k0r0 is much larger than 1, integration over u between 0 and 2k0r0 can be

replaced by an integration between 0 and∞. As F (u) decreases fast with u when u is larger

than 1, W can be approximated by 1 in the integral. Noting that
∫∞
0
uF (u)J0(κu)du vanishes

if κ > 1 and is equal to
√

1− κ2 if κ < 1 [9], one retrieves that there is no contribution of

the evanescent waves to the emitted flux for large apertures and one retrieves in this case

the classical expression of the emitted flux for a large surface

φ = φclas = φ0(ω)

∫ 1

0

κdκ(2− |rs|2 − |rp|2) = φ0(ω)

∫
dΩ cos θε(θ) (5)

where ε(θ) is the material emissivity, θ the angle with the normal to the surface and Ω

the solid angle over which radiation angular integration is performed. From the preceding,

discussion, one sees that the scattering of confined evanescent wave will occur when k0r0

approaches 1. For thermal radiation, this corresponds to the condition where r0 ∼ λmax i.e.
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typical temperature of the order

T ∼ hc

2.8r0kb
(6)

which is still very similar to the Hawking temperature where the Schwazschild radius has

been replaced by the aperture size.

As in the case of vacuum aperture, this critical temperature corresponds to the one

associated to the maximum radiation emission wavelength (thermal wavelength) at this

temperature which is of the same order of the the object size.

This temperature also naturally appears when one is dealing with thermal emission of a

perfect spherical absorber which size is much smaller than the thermal wavelength. Let us

thus consider a sphere filled with a material which permittivity is ε. The scattering cross

and absorption cross section can be calculated exactly with Mie Theory. Then, the total

emission by the sphere is just the product of the emittance multiplied by the absorption

cross section and integrated over all frequencies.

φ =

∫
~ω3

4π2c2(exp[~ω/kbT ]− 1)
σabsdω (7)

In the case where the sphere size is much smaller than the thermal wavelength, the

absorption cross-section is limited to the 1st term of the Mie Theory. The spherical object

is in the dipolar approximation. Following Grigoriev et al. [10], the spherical object can

exhibit a maximum cross section if its permittivity is suitably chosen. Note in that case

that the absorption cross section is equal to the scattering cross section

σmaxabs = σmaxsca =
5π

k20
(8)

Integrating over all the frequencies, the maximum flux emitted by a spherical object in the

dipolar approximation is

φmax =
5πk2bT

2

24~
= 1.18× 10−12 W K−2T 2 (9)

which is apart to a numerical number the product of the quantum of thermal conductance

with the temperature. Note that this flux does not depend on the sphere size (although the

optimized dielectric function maximizing absorption cross-section σabs depends on it). This

maximum flux can be compared to the classical emitted flux that would be given in the case

of a perfect spherical blackbody of radius r0 with brightness temperature Tb

φclas = 4πr20σT
4
b (10)
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where σ = π2k4b/60~3c2 is the Stefan-Boltzmann constant. The brightness temperature

therefore reads Tb =
√
Tc2T where

Tc2 =

√
25

32

1

π2

hc

r0kb
(11)

Note that this critical temperature is similar to the critical temperature Tc that has been

considered previously. Here again, when the temperature is such that the thermal wavelength

associated is much smaller than the particle radius, the brightness temperature is larger than

the actual temperature and is the geometric average of T and Tc2.

Finally, one can remember from the preceding considerations, that in analogy with black

hole evaporation via the coupling of particle-antiparticle pairs, scattering of thermally pop-

ulated evanescent waves occur at the surface of an object when their wavelength is of the

order or smaller than the object size that is when its temperature is smaller than Tc.

IV. CONCLUSION

We have shown in this work that a temperature very similar to the one introduced by

Stephen Hawking caracterizing the black hole evaporation can be introduced in the case of

thermal emission of a small object. When the thermal wavelength associated to thermal

emission is smaller than the size of the object, it is known that this thermal emission greatly

differs from the one given by usual radiometry i.e geometrical optics. This allows to introduce

a critical temperature very similar to the one introduced by Stephen Hawking for black hole

radiation. Moreover, when the preceding conditions are reached i.e when the temperature

is smaller than the critical temperature, an analogy can be done between the separation

of particle-antiparticle pairs due to vacuum fluctuations by a black hole horizon and the

scattering of evanescent surface waves due to thermal fluctuations by nano objects.
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