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Abstract

Ultrasound transcranial Holter offers the possibility of long-duration recordings with the micro-emboli detection process
being performed offline. This offline detection allows developing much more robust micro-embolic detection procedures
and applications. From a signal processing perspective, most commercial automatic detection systems, based on the
short time Fourier transform, employ constant detection thresholds either on the whole band or on sub-bands. However,
earlier studies highlighted many doubts about the accuracy and robustness of these systems for the detection of weak
micro-embolic signatures. In this work, we present an original detection technique based on energy fluctuations as a
strong tool for the detection of the weakest micro-embolic signal. Results, from a set of real signals, show a detection
rate of 92% and a false alarm rate of 10%. These good performances lead us to consider the proposed technique as a

good candidate to detect weak micro-embolic signals.
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1. Introduction

Cerebrovascular Accident (CVA) occurs when the blood
flow to a part of the brain is suddenly stopped either by
a rupture of a blood vessel leading to a hemorrhage, or
a blockage leading to an embolism. The relation of em-
bolus to CVAs occurrence has been widely demonstrated
[1]. CVAs, being the second cause of mortality worldwide,
represent a major concern and death threat over a huge
population. Therefore, CVAs are considered as a public
health issue for which many research activities are per-
formed in perspective of finding treatments or methods of
early diagnosis thus avoiding its occurrence.

An effective widely used CVA diagnosis solution is the
Transcranial Doppler (TCD) system [2]. This system is
commonly used for the detection of micro-emboli circulat-
ing in the cerebral vascular system. Micro-embolic events
are detected from the Doppler signal as high intensity tran-
sient signals (HITS), superimposed on the Doppler signal
backscattered by the blood. However, TCD clinical use
has been limited by several hindering points. For instance,
the time needed for probe positioning can be considerably
long. To reduce this time, Mackinnon et al. [3] proposed
to use a servo-controlled probe. Moreover, the very short
effective examination duration can be insufficient to allow
the detection of several micro-embolisms. Consequently to
overpass this drawback, Mackinnon et al. [3] have shown
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that the longer the examination duration, the better con-
fidence in the detector.

New generations of TCD systems are being developed
in a way to overcome these drawbacks. Proposed solutions
involve new enhancements, such as the servo-controlled po-
sitioning of the ultrasound probe [3] and the possibility of
long-term recordings with the micro-emboli detection pro-
cess being performed offline through a computer [3]. A
French firm, Atys Medical, implemented a Holter system
based on the innovative idea of R. Aaslid [4],[3]. Challeng-
ing issues fall under two main categories: artifact rejection
and detection of weak micro-embolic signals. This paper
focuses on weak micro-emboli detection only.

Many research works were carried out attempting to
develop methods to detect weak micro-emboli robustly.
Most of these works have tackled the issue by adapting the
threshold to the decision information on which the detec-
tion is performed. When the decision information is time-
varying, a time-varying threshold is expected and when
the decision information is constant, a constant threshold
is expected. Otherwise weak micro-events would never be
detected.

Concerning methods with time-varying threshold, de-
tecting weak micro-events may consist in using a predic-
tion modeling where the probability to find a micro-embolic
event is supposed to be very weak. When the random
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fluctuation of the prediction error is supposed to be het-
eroscedastic [5] (a specific case of non-stationarity where
the variance is time-varying) a GARCH Model [6, 7] can
be used. In addition, when the random fluctuation of the
prediction error is supposed to be cyclostationary [8] (sta-
tistically stationary per cycle), a synchronous AR model
can be used [9]. In such a paradigm, the decision infor-
mation can be the auto-correlation of the prediction error
and the problem resides in the choice of the threshold.

Concerning methods with constant threshold, as the
micro-embolic event is of narrow band nature, detecting
weak micro-events may consist in using band pass filters
encompassing the spectral signature of the micro-embolic
event [10]. This solution was first proposed in [10] and
was applied directly on the Doppler signal. By using such
a band pass filter on the Doppler signal amplitude, the
low frequency component, related to the cardiac rhythm,
is removed singly and therefore the remaining signal, com-
posed of random fluctuations, becomes the decision infor-
mation. Thus, in the decision information, the intensity
of the micro-embolic event is now more magnified with re-
spect to the background Doppler signal. Therefore, the
detection capability of the detector is improved. However,
in a blind detection paradigm, there is a price to pay: the
frequency of the micro-embolic signal must be known be-
fore the filtering step. As it is impossible to know this
frequency, other methods were introduced. These meth-
ods proposed to use a bank of juxtaposed filters in which
the spectral band is divided into several narrow sub-bands
and where the detection can be operated independently in
each sub-band. Depending on the spectral division, several
filter types can be found: bank of narrow band filters with
the same width [11], discrete wavelet decomposition [12],
and wavelet packet decomposition [13]. By using these
different kinds of filters, the difficulty lies in the choice of
the constant threshold in each sub-band and on the fusion
of the detection since a micro-event can appear in several
consecutive sub-bands.

To sum up, even though there exists plenty of robust
methods for detecting micro-embolus, few of them are re-
ally capable of detecting very weak micro-embolic signals.
As mentioned previously, the main problem lies in the
choice of the threshold that must be adapted to the de-
cision information.

In this paper, we tend to detect the lowest intensity
micro-embolic signals in a robust manner using adaptive
thresholding. This would allow detecting micro-emboli of
very small sizes. This adaptive thresholding is applied
from energy signal fluctuations. The new method will be
compared to both energy-based constant threshold derived
from the whole band spectrum (standard detector) and
from sub-band spectrum.

Notice that this study is an extension of a previous
work we proposed [14], and includes higher number of
tested signals. However, in the present study, we have
omitted the rise rate calculation phase we used in [14] due
to its high complexity. We have also added a training

phase to optimize the detection thresholds.

2. Materials and Methods

2.1. The Proposed Offline Detection Unit

It is widely stated when the Rayleigh scattering is valid,
that the energy of the backscattered Doppler signal is
proportional to the size of the scatterer to the power of
6 [13, 15, 16] and the energy returned by an embolus is
greater than that returned by billions of red blood cells.
Hence, energy would function as a solid decision informa-
tion from which the presence of micro-emboli could be de-
tected. This justifies why our offline! detectors are chosen

to be majorly based on energy criteria.
Commercial TCD systems (from Atys Medical, DWL®),

Medilab GmbH, Natus®), Scimed™, Skidmore Medical Ltd.,...)

employ spectral estimators based on the Short Time Fourier
Transform (STFT). The STFT spectral estimator with a
sliding window can be formally written as:

2

S(t, f) = '/IL’(T) cwt(t— 1) exp T Ar| (1)

where z(t) is the analysed Doppler signal, w(t) is the slid-
ing window and * stands for complex conjugation. Note
that after a preliminary stage of experimental optimiza-
tion of the STFT parameters based on the study done
in [17], the STFT in this study is performed using a 15
ms-Hamming window with an overlap of 65%. Moreover,
calculations of the STFT and the instantaneous energy are
carried out repetitively on 5 second segments extracted
from the Doppler signal. This value is fixed to 5 seconds
because it corresponds to the time duration on the spectro-
gram plotted on commercial devices. It allows a good vi-
sualization of different events that may occur. From STFT
defined in equation 1, the instantaneous energy at a fixed
time t can be obtained by:

B(t) = / S(t, £)df. 2)

At that stage, we assume that the instantaneous energy
E(t) = aft) + v(t), represented in blue in Fig.1a, can be
expressed through a low frequency component «(t), repre-
sented in red in Fig.la, and a high frequency component
~(t) represented in Fig.1b. The low frequency component
that is the cyclic cardiac component «(¢) is removed from
the instantaneous energy. This is done first by evaluat-
ing the trend «(t) through a smoothing step and then by
subtracting it from E(t). The remaining fluctuation?® ~(¢)
can be decomposed into a positive fluctuation 7,,s(t) and
a negative fluctuation 7, (t):

V(t) = Ypos (t) + Yneg (), (3)

INote that because the system is offline, the computational cost
is not a prior issue.

2The random fluctuation is due to the random positions of billions
of red blood cells traveling into the blood flow.



where V() = 7(t) < 0 represented in green in Fig.1b
and vpos(t) = v(t) > 0 represented in blue in Fig.1b.

As expected, the envelope (or the amplitude) is not
constant as it fluctuates at the cardiac rhythm. The sig-
nal is heteroscedastic [5], i.e. its energy varies cyclically
with time, due to the local time-varying amount of red
blood cells in the sampling volume. On the other hand,
due to the time-varying blood speed, the observed process
is quasi-cyclostationary [8], since the energy fluctuation
(variance) is time dependent or even quasi-periodic. Such
properties already reported in previous works [9, 7, 18],
lead to using a time-varying threshold. Histograms of the
positive yp0s (in blue) and negative 7,., fluctuations (in
green) are reported in Fig. lc. Absolute difference signal
d(t) = |env(t) — Ypos(t)| where the envelope is env(t) =
— [Vneg(t) + 7 - H (Yneg(t))| with H(-) the Hilbert trans-
form, and a detection threshold (6.5 x o4, o4 being the
standard deviation of d(t)) is reported in Fig. 1d (red
dashed line).

In a statistic point of view, the stochastic nature of
the fluctuation can be formalized by a probability density
P(7). This probability density is assumed firstly to be the
summation of the probability densities from the positive
and negative parts of the energy fluctuations:

P(y) = ’P('Ypos + 'Yneg) = P(’Vpos) + ,P(’Yneg), (4)

and secondly to be even when no micro-HITS and no ar-
tifacts are present:

P(Vpos) = P(—=Vneg) (5)

where P(vpos) = P(7) - 8(y) with 6(y) the Heaviside func-
tion and where P(yneg) = P(7) — P(Vpos) = P(7) - (—7).

Note that, due to the presence of micro-HITS, the his-
togram depicted in Fig.1c is no more completely even.

In order to validate the even distribution hypothesis
of energy fluctuations, a Kolmogorov-Smirnov test was
performed from the fluctuation energy derived from the
recording database; the null hypothesis being P(—y) =
P(7y). The null hypothesis is verified with a p-value of
0.25 when no micro-emboli or artifacts are present. The
null hypothesis is rejected with a p-value of 0.007 when
micro-emboli or artifacts are present.

However, the knowledge of the probability law is not
the most relevant point?, here the key point is the even
property of the probability density. Hence, the positive
part of the energy represents the same fluctuations as the
negative part but corrupted with High Intensity Transient
Signals (HITS), that are outside the statistics. In other
words, the positive part of the energy is symmetric to the
negative one except when HITS occur. Thus, by using the
symmetrical property of the probability density of the fluc-
tuation, it is possible to calculate a time varying threshold

3Notice that it was shown in [13] that the cyclostationary distri-
bution of the Doppler energy is Gaussian.

based only from the negative amplitude of the fluctuation
and then apply it on the positive part to detect the strictly
positive HITS.

Consequently, the weak micro-embolus signals can be
detected by a binary test used in all detectors:

Hy
30 2 X0, ©)

If the instantaneous energy fluctuation v(t) is greater than
the detection threshold, then an embolus is detected (hy-
pothesis H;), otherwise no embolus is detected (hypothesis
Hy).

Knowing that the Doppler signal is quasi-cyclostationary,
the quasi-periodically time varying threshold A(¢) (see Fig.
1b) is proposed to be dependent on the envelope of the
negative energy fluctuations plus a constant to be set:

A(t) = env(t) + m - og4, (7)

m being a constant to be set (m = 6.5 in Fig.1d).

This envelope is then transferred and applied onto the
positive energy fluctuations (Fig. 1b) where the detection
process in equation 6 is performed. When the signal in
the positive energy fluctuation is higher than the time-
varying threshold, the detector is triggered and the peak
is recorded. To sum up the method, a pseudo-code is avail-
able in appendix.

2.2. Study Design

The different detectors we propose in this study are
tested from Holter TCD recordings. The Doppler signals
were recorded, in a non-interventional practise at the Cen-
tre Hospitalier Regional Universitaire (CHRU) of Lille (2
avenue Oscar Lambret 59000 Lille, France). The clinical
study was approved by the ethical committee of the CHRU
of Lille. The Holter Transcranial Doppler System-TCD-X
(TCD-X, Atys Medical, Soucieu-en-Jarrest, France) along
with the description of data collection can be found in our
recently published articles [14, 19].

All medical acts were performed in the usual way, with-
out any additional procedure for diagnosis, treatment or
monitoring. The recording analysis here was an a posteri-
ori study where the results have no interference with pa-
tient care. In this retrospective study, recordings from pa-
tients with asymptomatic high-grade carotid stenosis were
kept. We excluded the recordings from patients with ab-
sence of an acoustic window necessary for TCD and with-
out non-biological prosthetic heart valves.

After the clinical exam, the gold standard of detection
was constituted as in [20]. Embolic signals were identi-
fied on the basis of their characteristic sound and visually
inspected signatures on the spectrogram as stated in [20]
by three blinded expert observers of our laboratory. Upon
identification of micro-emboli, the experience level of the
experts had not been considered as a critical factor. This
had been stated in [21, 22] where micro-embolic signatures
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Figure 1: Application of our detection technique based on negative energy fluctuations. a) The instantaneous energy of the Doppler signal
in blue is represented along with the low frequency component «(t) in red. b) The smoothing curve is subtracted from the instantaneous
energy resulting in energy fluctuations (positive fluctuations > 0 in blue and negative fluctuations < 0 in green). A negative time-varying
envelope (red) is then constructed from the negative fluctuations. The constructed negative time varying envelope is opposed and applied
on the positive fluctuations. c¢) Histograms of the positive (in blue) and negative fluctuations (in green), respectively. d) Absolute difference
signal d(t) between the envelope and the positive fluctuation (in blue) : d(t) = |env(t) — Ypos(t)| and detection threshold (in dashed red
vertical line). Vertical red lines for different values of the standard deviation o4 of d(t) from o4 to 7 X o4 and a red dashed vertical line for
the proposed threshold of 6.5 x 4.

could be detected equally by both experts and non-experts. e Detection Rate (DR): calculated as the number of
Finally, the time positions of agreed-on micro-emboli were true positive detections divided by the number of
noted. gold standard detections. True positive detection
The use of the TCD Holter version results in an in- refers to the detection of an embolus recorded in the
crease in the number of signal artifacts. For this reason, a gold standard. The Non-detection rate (NDR) is cal-
manual artifact rejection system was applied as in [14, 19]. culated as NDR =1 — DR;
2.3 Database e False Alarm Rate (FAR): calculated as the number
Our data-set is composed of 32 signals of 63 + 5 min- of false positive detections divided by the total num-
utes in average and derived from 32 patients. The database ber of detections. False positive detection refers to
is divided into two categories. The first category includes the detection of an embolus not recorded %n the gold
10 signals (derived from 22 patients) dedicated to achieve standard or in other words an embolus which has not

the training phase. The second category includes 22 sig- crossed the sample volume;
n.als (derived from 22 patients) on which the experimenta- e Area Under the Curve (AUC): calculated as the area
tion methods are tested and results are analysed. The . .

R . . under the receiver operating curve.
data-set size is similar to previous studies [10, 12, 22|,
where the mean value is around 21 patients.

To evaluate the results of the different detectors, we 3. Results
compare these results to the gold standard of detection
established initially. The basic statistical tools calculated
for our evaluation and used to make up the Receiver Op-
erating Curve (ROC) were:

The results are divided into two phases. The first is the
training phase through which we determine the optimal
settings of our implementations. The second is the testing
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Figure 2: ROC curves for different values of thresholds in the Train-
ing Phase (TrP) and Testing Phase (TsP) for the Energy Fluctu-
ations Detector (EFD in blue/dashed cyan), 4-Sub-Band Detector
(4-SBS in brown /dashed red ) and standard Whole Band Detector
(WBD in dark green/ dashed green). When no embolic signal is de-
tected, curves tend to a straight line that passes through the point
(0,1) and (1,0). For ideal methods, curves tend to the point (0, 0).

phase through which we evaluate the performances of the
new detector with optimal settings.

Furthermore, the new method we have proposed, is
compared first to standard Whole Band Detectors (WBD)
and second to Sub-Band Detectors (SBD). First, for WBD,
the detection process in equation 6 is performed using a
constant threshold; i.e. it is fixed empirically by the user
for the entire examination. It is patient-, operator-, and
device-dependent. The threshold is set above the maximal
background energy of the Doppler signal when no embolus
is present [20]. For SBD, the same detection procedure is
applied to the spectral band divided into several narrow
sub-bands and the detection is operated independently in
each sub-band. The energy detector is composed of N
detectors associated with N Doppler frequency sub-bands.
Note that SBD is a particular case of WBD where N = 1.

3.1. Training Phase

The training phase allowed to be adjusted the best val-
ues through maximizing the detection rate and minimizing
the false alarm rate.

Fig. 2 shows that the best results are obtained by
the Energy Fluctuations Detector (EFD) represented by
the blue solid curve which is the closest to the ideal point
(0% FAR and 0% NDR) compared to both the brown solid
curve representing the 4-Sub-Band Detector? (4-SBD) and
the green solid curve representing the Whole Band Detec-
tor (WBD).

4Note that the number of sub-bands than gives the best trade-
off between complexity and False Alarm Rate and Detection Rate is
N =4.

The latter results were confirmed by the Area Under
the Curve® (AUC) calculations presented in Table 1. The
AUC for EFD (9%) was lower than both the AUC for the 4-
SBD (26%) and the AUC for the WBD (42%). The highest
performance of the EFD was obtained with a threshold
calculated for m=6.5 (refer to eq. 7). The Detection Rate
(DR), the Non-Detection Rate (NDR) and the False Alarm
Rate (FAR) are reported in Table 1. For EFD, DR was
90%, FAR was 16% and the NDR 10%. The results for the
other detectors are also reported in Table 1. For 4-SBD,
DR was 80%, FAR was 38% and the NDR was 20%. For
WBD, DR was 67%, FAR was 42% and the NDR. 33%.

3.2. Testing Phase

In order to assess the performances of our new detector,
we compared the best testing phase results obtained with
4-SBD and WBD. Fig. 2 shows that the best results were
obtained by EFD (blue curve) which was the closest to the
ideal point (0% FAR and 0% NDR) compared to 4-SBD
(in orange curve) and WBD (green curve). The latter
results are confirmed by the Area Under the Curve (AUC)
calculations presented in Table 1. The AUC for EFD (8%)
was lower than both the AUC obtained by 4-SBD (29%)
and WDB (40%). The highest performances of EFD were
obtained with a threshold calculated with m = 6.5 (refer
to eq. 7). DR, NDR and FAR are reported in Table 1.
For EFD, DR was 92%, FAR was 10% and NDR was 8%.
Results for the other detectors are also reported in Table
1. For 4-SBD, DR was 85%, FAR was 32% and the NDR
was 15%. For WBD, DR was 68%, FAR was 40% and the
NDR 32%.

By comparing the ROC results obtained during the
Training Phase (TrP) and the Testing Phase (TsP) in Fig.
2, it is clear that the results in both phases are very sim-
ilar. This proves the homogeneity of our chosen dataset;
homogeneity being a solid indicator that the statistical
properties of one part of an overall dataset are the same
as any other part.

4. Discussion and Conclusion

To overpass the performances of existing methods in
terms of false alarm rate and detection rate, we proposed
an original method based on the instantaneous energy fluc-
tuations.

Aims were reached since our method overpasses exist-
ing methods by a factor of 5 on AUC (Area Under the
Curve) criterium in regards to the whole band detector
(WBD) and a factor of 4 in regards to the 4-subband detec-
tor (4-SBD). This new method relies on two assumptions
one of which is completely novel.

The first hypothesis concerns the non-stationary na-
ture of Doppler signal. Indeed, by taking into account the

5Note that ideal AUC is zero.



Table 1: Area Under the Curve (AUC), Non-Detection Rate (NDR), False Alarm Rate (FAR), Detection Rate (DR) for Whole Band Detector
(WBD), 4-Sub-Band Detector (4-SBD) and Energy Fluctuations Detector (EFD). Results for the training phase (TrP) and testing phase

(TsP).
Detector || AUC (%) | NDR (%) | FAR (%) | DR (%)
Type TP TsP | TrP TsP | TYrP  TsP | TrP  TsP
WBD 42 40 33 32 42 40 67 68
4-SBD 26 29 20 15 38 32 80 85
EFD 9 8 10 8 16 10 90 92
heteroscedasticity and the quasi-cyclostationarity of its in- [2] V. Vukovié-cvetkovié, Microembolus detection by transcranial

stantaneous energy, a time-varying threshold may possible
to detect the smallest micro-embolic signatures. Without
taking into account this hypothesis, the threshold would
have been constant and the detection would have been
limited to the detection of biggest micro-emboli.

The second hypothesis is completely novel, since the
calculation of the adaptive threshold is based on the even
property of the instantaneous energy fluctuation distribu-
tion. Note that the nature of the distribution is not lim-
ited to the Gaussian law and it can be extended to all even
distributions. The sensitivity of the method is limited to
weak micro-emboli with energies just superior to the back-
ground energy fluctuations. Consequently, to additionally
increase the detection rate of very weak miro-emboli, an
average procedure to reduce the background energy might
be envisaged.

The combination of these two assumptions leads to im-
plement a time-varying threshold in a simple way in re-
gards to existing methods.

However, before implementing such detector into a com-
mercial TCD system, an automatic artifact procedure should
be developed. The second point that could be interesting
to investigate is to go further in the methods mixing sub-
band and energy fluctuations as tempted by [23] with
few patients. Such methods implemented in a commercial
TCD, could be a more sensitive and more robust to de-
tect the smallest microemboli. A future multicentre study
will be necessary to check the improvement of the medical
diagnostic.
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Pseudo-code of the Algorithm

AlgOI’ithl’n 1 Pseudo-code of the micro-embolus detection using the
detector based on energy fluctuations

Input: Doppler instantaneous energy signal E(t) identi-
fied by eq. (2)
Output: Micro-embolic detection h(t)
1+ 1
for:=1do
E(t) + short time Fourier transform s(t, f) defined
in eq. (2);
Compute E(t);
end for
for:=1do
Obtain fluctuations y(t) < evaluate the trend and
subtract it to E(t);
Compute energy fluctuations ()
Obtain the envelope of the negative fluctuations
Vneg (t)
end for
for:=1do
Apply the envelope 7peq(t) on the positive fluctua-
tions 7ypes(t) < define the envelope as a threshold A(t)
Optimize the threshold A(t) < training phase ;
Compute optimal threshold A(¢);
end for
if vpos(t) > A(f) then
Embolus h(t) is detected and counted
end if




