
HAL Id: hal-01860113
https://hal.science/hal-01860113v1

Submitted on 23 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Multirate Sampling in Symbolic Models for
Incrementally Stable Switched Systems

Adnane Saoud, Antoine Girard

To cite this version:
Adnane Saoud, Antoine Girard. Optimal Multirate Sampling in Symbolic Models for Incrementally
Stable Switched Systems. Automatica, 2018, 98, pp.58-65. �10.1016/j.automatica.2018.09.005�. �hal-
01860113�

https://hal.science/hal-01860113v1
https://hal.archives-ouvertes.fr


OptimalMultirate Sampling in SymbolicModels

for Incrementally Stable SwitchedSystems ?

Adnane Saoud a,b Antoine Girard a

aLaboratoire des Signaux et Systèmes (L2S), CNRS,
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Abstract

Methods for computing approximately bisimilar symbolic models for incrementally stable switched systems are often based
on discretization of time and space, where the value of time and space sampling parameters must be carefully chosen in order
to achieve a desired precision. These approaches can result in symbolic models that have a very large number of transitions,
especially when the time sampling, and thus the space sampling parameters are small. In this paper, we present an approach
to the computation of symbolic models for switched systems with dwell-time constraints using multirate time sampling, where
the period of symbolic transitions is a multiple of the control (i.e. switching) period. We show that all the multirate symbolic
models, resulting from the proposed construction, are approximately bisimilar to the original incrementally stable switched
system with the precision depending on the sampling parameters, and the sampling factor between transition and control
periods. The main contribution of the paper is the explicit determination of the optimal sampling factor, which minimizes the
number of transitions in the class of proposed symbolic models for a prescribed precision. Interestingly, we prove that this
optimal sampling factor is mainly determined by the state space dimension and the number of modes of the switched system.
Finally, an illustration of the proposed approach is shown on an example, which shows the benefit of multirate symbolic models
in reducing the computational cost of abstraction-based controller synthesis.

Key words: Approximate bisimulation; switched systems; symbolic control; multirate sampling; incremental stability.

1 Introduction

A switched system is a dynamical system consisting of
a finite number of subsystems and a law that controls
the switching among them [13,27,14]. The literature on
switched systems principally focuses on the stability and
stabilization problems. However, other objectives need
also to be considered such as safety, reachability or more
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complex objectives such as those expressed in linear tem-
poral logic. For this reason, over recent years, several
studies focused on the use of discrete abstractions and
symbolic control techniques. The area of symbolic con-
trol is concerned with the use of algorithmic discrete
synthesis techniques for designing controllers for contin-
uous and hybrid dynamical systems (see e.g. [29,25] and
the references therein). A key concept in symbolic con-
trol is that of symbolic models, which consist in discrete
abstractions of the continuous dynamics, and which are
amenable to automata theoretic techniques for the syn-
thesis of controllers enforcing a broad range of specifi-
cations [5,4]. Controllers for the original system, with
strong formal guarantees, can then be obtained through
dedicated refinement procedures [29,7,24]. This latter
step requires the original system and the symbolic model
to be related by some formal behavioral relationship such
as simulation, bisimulation relations or their approxi-
mate and alternated versions [29,9].

Preprint submitted to Automatica 17 August 2018



Numerous works have been dedicated to the computa-
tion of symbolic models for various classes of dynamical
systems. Focusing on approximately bisimilar abstrac-
tions, existing approaches make it possible to deal with
nonlinear systems [19,23], switched systems [10], time-
delay systems [21,20], networked control systems [6,35],
stochastic systems [32,34]... All these approaches are es-
sentially based on discretization of time and space and
require the considered system to satisfy some kind of in-
cremental stability property [1]. However, incremental
stability can be dropped if one seeks symbolic models
related only by one-sided approximate simulation rela-
tions [28,36]. In most cases, symbolic models of arbitrary
precision can be obtained by carefully choosing time and
space sampling parameters. However, for a given preci-
sion, the choice of a small time sampling parameter im-
poses to choose a small space sampling parameter result-
ing in symbolic models with a prohibitively large num-
ber of transitions. This constitutes a limiting factor of
the approach because the size of the symbolic models
is crucial for computational efficiency of discrete con-
troller synthesis algorithms. Several studies have been
conducted in order to address this issue by enabling
the computation of more parsimonious symbolic models
with smaller numbers of transitions. Such approaches in-
clude compositional abstraction schemes where symbolic
models of a system are built from symbolic models of its
components [30,22,15]; multi-resolution or multi-scale
symbolic models computed using non-uniform adaptive
space discretizations [31,8]; symbolic models where the
set of symbolic states is not given by a discretization of
the state-space but by input sequences [12,33].

In this paper, we show how the size of symbolic models
can be reduced using multirate sampling. Multirate sam-
pling has been introduced in the area of sampled-data
systems to face some of the sampling processes disadvan-
tages such as the loss of relative degree and changes in
the properties of the zero dynamics (see e.g. [17,11,18]).
In this paper, we present an approach to the computa-
tion of multirate symbolic models for incrementally sta-
ble switched systems, where the period of symbolic tran-
sitions is a multiple of the control (i.e. switching) period.
A similar approach has been explored in the symbolic
control literature in the context of nonlinear digital con-
trol systems [16]. The first contribution of the paper is
to extend this approach to the class of switched systems,
with dwell-time constraints. We show that the obtained
multirate symbolic models are approximately bisimilar
to the original switched system. Then, the second and
main contribution of the paper lies in the explicit deter-
mination of the optimal sampling factor between tran-
sition and control periods, which minimizes the number
of transitions in the class of proposed symbolic models
for a prescribed precision; this problem is not considered
in [16]. Interestingly, we show that the optimal sampling
factor is mainly determined by the state space dimen-
sion and the number of modes of the switched system.

This paper is organized as follows. In Section 2, we in-
troduce the class of incrementally stable switched sys-
tems under study and we present the abstraction frame-
work used in the paper. In Section 3, we present the
construction of symbolic models for incrementally sta-
ble switched systems with dwell-time constraints, using
multirate sampling. In Section 4, we establish the opti-
mal sampling factor between control and transition pe-
riods which minimizes the number of transitions in the
symbolic model. Finally, in Section 5, we illustrate our
approach using an example taken from [10], which shows
the benefits of the proposed multirate symbolic models.

A preliminary version of this work has been presented
in the conference paper [26] where switched systems
without dwell-time constraints are considered. The cur-
rent paper extends the approach to consider dwell-time
constraints; results of [26] being recovered as particular
cases. We also provide novel numerical experiments.

Notations: Z, N and N+ denote the sets of integers,
of non-negative integers and of positive integers, respec-
tively. R,R+

0 and R+ denote the sets of real numbers, of
non-negative real numbers, and of positive real numbers,
respectively. For s ∈ R+

0 , bsc denote its integer part, i.e.
the largest nonnegative integer r ∈ N such that r ≤ s.
For x ∈ Rn, ‖x‖ denotes the Euclidean norm (i.e. the
2-norm) of x. A continuous function γ : R+

0 → R+
0 is

said to belong to class K if it is strictly increasing and
γ(0) = 0; γ is said to belong to class K∞ if γ is of class
K and γ(s) → ∞ as s → ∞. A continuous function
β : R+

0 × R+
0 → R+

0 is said to belong to class KL if, for
all fixed t ∈ R+

0 , the map β(·, t) belongs to class K, and
for all fixed s ∈ R+, the map β(s, ·) is strictly decreasing
and β(s, t)→ 0 as t→∞.

2 Preliminaries

2.1 Incrementally stable switched systems

We introduce the class of switched systems:

Definition 1 A switched system is a quadruple Σ =
(Rn, P,P, F ), consisting of:

• a state space Rn;
• a finite set of modes P = {1, . . . ,m};
• a set of switching signals P ⊆ S(R+

0 , P ), where
S(R+

0 , P ) denotes the set of piecewise constant func-
tions from R+

0 to P , continuous from the right and with
a finite number of discontinuities on every bounded
interval of R+

0 ;
• a collection of vector fields F = {f1, . . . , fm}, indexed

by P .
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The discontinuities 0 < t1 < t2 < . . . of a switching sig-
nal are called switching times; by definition of S(R+

0 , P ),
there are only a finite number of switching times on ev-
ery bounded interval of R+

0 and thus Zeno behaviors are
avoided. A switching signal p ∈ S(R+

0 , P ) has dwell-
time τd ∈ R+ if the sequence of switching times satisfies
tk+1− tk ≥ τd, for all k ≥ 1. The set of switching signals
with dwell-time τd is denoted Sτd(R+

0 , P ).

A piecewise C1 function x : R+
0 → Rn is said to be a tra-

jectory of Σ if it is continuous and there exists a switch-
ing signal p ∈ P such that, at each t ∈ R+

0 where the
function p is continuous, x is continuously differentiable
and satisfies:

ẋ(t) = fp(t)(x(t)). (1)

We make the assumption that the vector fields fp, p ∈
P , are locally Lipschtiz and forward complete (see e.g.
[2] for necessary and sufficient conditions), so that for
all switching signals p ∈ P and all initial states x ∈
Rn, there exists a unique trajectory, solution to (1) with
x(0) = x, denoted x(., x,p). We will denote by φpt the
flow associated to the vector field fp. Then, for a constant
switching signal given by p(t) = p, for all t ∈ R+

0 , we
have x(t, x,p) = φpt (x), for all t ∈ R+

0 .

In the following, we consider incrementally globally
uniformly asymptotically stable (δ-GUAS) switched sys-
tems, see [10] for a formal definition. Intuitively, incre-
mental stability means that all trajectories associated to
the same switching signal converge to the same trajec-
tory, independently of their initial conditions. Sufficient
conditions for incremental stability are given in [10] in
terms of existence of multiple Lyapunov functions.

Definition 2 : Smooth functions Vp : Rn × Rn → R+
0 ,

p ∈ P , are multiple δ-GUAS Lyapunov functions for Σ
if there exist K∞ functions α, α, κ ∈ R+ and µ ≥ 1 such
that for all x, y ∈ Rn, and p, p′ ∈ P ,

α(‖x− y‖) ≤ Vp(x, y) ≤ α(‖x− y‖); (2)

∂Vp
∂x

(x, y)fp(x) +
∂Vp
∂y

(x, y)fp(y) ≤ −κVp(x, y); (3)

Vp(x, y) ≤ µVp′(x, y). (4)

In [10], it is proved that Σ = (Rn, P,P, F ) is δ-GUAS
if there exist multiple δ-GUAS Lyapunov functions for
Σ and the set of switching signals P ⊆ Sτd(R+

0 , P ) with

dwell-time τd >
ln(µ)
κ .

In this paper, we assume that the previous condition
holds and in order to construct symbolic models for the
switched systems, we shall make the supplementary as-
sumption that there exists a K∞ function γ such that
for multiple δ-GUAS Lyapunov functions we have:

∀x, y, z ∈ Rn, p ∈ P, |Vp(x, y)− Vp(x, z)| ≤ γ(‖y − z‖).
(5)

Remark 1 In [10], it is shown that if we are interested
in the dynamics of the switched system on a compact set
C ⊆ Rn and Vp, p ∈ P , are C1 on C, then, (5) holds with
the linear K∞ function given by γ(s) = cγs where

cγ = max
x,y∈C,p∈P

∥∥∥∥∂Vp∂y (x, y)

∥∥∥∥ ,
Remark 2 For all x ∈ Rn, (2) implies that for all p ∈ P ,
Vp(x, x) = 0, then for all x, y ∈ Rn, p ∈ P we have from
(5) that:

Vp(x, y) ≤ |Vp(x, y)− Vp(x, x)| ≤ γ(‖x− y‖).

Then, there is no loss of generality in assuming that the
second inequality in (2) holds with α = γ.

Remark 3 The smoothness assumption on functions
Vp, p ∈ P , in Definition 2 can be relaxed, and condition
(3) can be replaced by

Vp(φ
p
t (x), φpt (y)) ≤ e−κtVp(x, y) (6)

for all x, y ∈ Rn, p ∈ P and t ∈ R+
0 .

2.2 Transition systems

We present the notion of transition systems, which al-
lows us to describe, in a unified framework, switched
systems and their symbolic models.

Definition 3 A transition system is a tuple T =
(X,U, Y,∆, X0) consisting of:

• a set of states X;
• a set of inputs U ;
• a set of outputs Y ;
• a transition relation ∆ ⊆ X × U ×X × Y ;
• a set of initial states X0 ⊆ X.

T is said to be metric if the set of outputs Y is equipped
with a metric d, symbolic if X and U are finite or count-
able sets.

The transition (x, u, x′, y) ∈ ∆ will be denoted (x′, y) ∈
∆(x, u) and means that the system can evolve from state
x to state x′ under the action of input u, while producing
output y. An input u ∈ U belongs to the set of enabled
inputs at state x ∈ X, denoted enab∆(x), if ∆(x, u) 6= ∅.
T is said to be deterministic if for all x ∈ X and for
all u ∈ enab∆(x), ∆(x, u) consists of a unique element.
State x ∈ X is said to be blocking if enab∆(x) = ∅,
otherwise it is said to be non-blocking.

A trajectory of the transition system is a finite or infi-
nite sequence of transitions σ = (x0, u0, y0)(x1, u1, y1)
(x2, u2, y2) . . . where (xi+1, yi) ∈ ∆(xi, ui), for i ≥ 0.
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It is initialized if x0 ∈ X0. A state x ∈ X is reach-
able if there exists an initialized trajectory such that
xi = x, for some i ≥ 0. The transition system is said to
be non-blocking if all reachable states are non-blocking.
The output behavior associated to the trajectory σ is the
sequence of outputs y0y1y2 . . .

In this paper, we consider the approximation relation-
ship for transition systems based on the notion of ap-
proximate bisimulation [9], which requires that the dis-
tance between the output behaviors of two transition
systems remains bounded by some specified precision.
The following definition is taken from [8] and generalizes
that of [9] to accommodate the encoding of the output
map within the transition relation.

Definition 4 Let T1 = (X1, U, Y,∆1, X
0
1 ) and T2 =

(X2, U, Y,∆2, X
0
2 ) be two metric transition systems with

the same input set U and the same output set Y equipped
with a metric d. Let ε ≥ 0 be a given precision. A relation
R ⊆ X1×X2 is said to be an ε-approximate bisimulation
relation between T1 and T2 if for all (x1, x2) ∈ R, u ∈ U :

∀(x′1, y1) ∈ ∆1(x1, u),∃(x′2, y2) ∈ ∆2(x2, u),

d(y1, y2) ≤ ε and (x′1, x
′
2) ∈ R;

∀(x′2, y2) ∈ ∆2(x2, u),∃(x′1, y1) ∈ ∆1(x1, u),

d(y1, y2) ≤ ε and (x′1, x
′
2) ∈ R.

The transition systems T1 and T2 are said to be ε-
approximately bisimilar, denoted T1 ∼ε T2, if:

• ∀x1 ∈ X0
1 , ∃x2 ∈ X0

2 , such that (x1, x2) ∈ R;

• ∀x2 ∈ X0
2 , ∃x1 ∈ X0

1 , such that (x1, x2) ∈ R.

The approximate bisimulation relation guarantees that
for each output behavior of T1 (respectively of T2), there
exists an output behavior of T2 (respectively of T1) such
that the distance between these output behaviors is uni-
formly bounded by ε (see [9]).

3 Symbolic models with multirate sampling

In this section, we extend the results of [26] to the case
of switched systems with dwell-time constraints. Let us
consider a switched system Στd = (Rn, P,Pτd , F ), in
which the switching is periodically controlled with con-
trol period τ ∈ R+ and in which a dwell-time τd ∈ R+ is
imposed on switching signals. For simplicity, we assume
that τ = τd/k where k ∈ N+.

The sampled dynamics of Στd can then be described by
the transition system Tτ (Στd) = (X,U, Y,∆τ , X

0) as
follows:

• the set of states is X = Rn × P ;
• the set of inputs is U = P ;

• the set of outputs is Y = Rn ∪ Rk×n;
• the transition relation is given for (x, p), (x′, p′) ∈ X,
u ∈ U , y ∈ Y , by ((x′, p′), y) ∈ ∆τ ((x, p), u) if and
only if{

x′ = φuτ (x), p′ = u

y = x
if u = p

{
x′ = φukτ (x), p′ = u,

y = (x, φuτ (x), . . . , φu(k−1)τ (x))
if u 6= p

• the set of initial states X0 = Rn × P .

We should emphasize that transitions in Tτ (Στd) have
either duration τ or τd = kτ . The state (x, p) ∈ X in-
dicates that the state of the switched system is x ∈ Rn
and that the active mode is p ∈ P . Then, one can either
go on with mode p, which corresponds to the first type
of transitions of duration τ ; or switch to another mode
p′ 6= p, which corresponds to the second type of transi-
tions where the new mode p′ is held for duration τd. It
is easy to see that the dwell-time constraint is fulfilled
by construction. It is noteworthy that this construction
differs from, and is more compact than, that of [10].

Tτ (Στd) is non-blocking (enab∆τ
((x, p)) = U for all

(x, p) ∈ X), deterministic, and metric when the set
of outputs Y is equipped with the metric given by
dY (y, y′) = +∞ if y, y′ do not have the same dimension
and

dY (y, y′) = ‖y − y′‖ if y, y′ ∈ Rn

dY (y, y′) =
k

max
j=1
‖yj − y′j‖ if y, y′ ∈ Rk×n

with y = (y1, . . . , yk), y′ = (y′1, . . . , y
′
k).

3.1 Multirate sampling of switched systems

In the previous transition system, one transition coin-
cides with the control period (of duration τ or kτ if the
transition system keeps the same mode or changes it,
respectively). In this paper, we consider multirate sam-
pling where a transition corresponds to a sequence of
r control periods, where the sampling factor r ∈ N+.
Thus, multirate transition systems are obtained by con-
catenating r successive transitions of Tτ (Στd).

Let us define T rτ (Στd) = (X,Ur, Y r,∆r
τ , X

0) where:

• the set of states is X = Rn × P ;
• the set of inputs is Ur = P r;
• the set of outputs Y r = (Rn ∪ Rk×n)r;
• the transition relation is given for (x, p), (x′, p′) ∈ X,
u ∈ Ur, with u = (u1, . . . , ur), and y ∈ Y r , with
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y = (y1, . . . , yr) by ((x′, p′), y) ∈ ∆r
τ ((x, p), u) if and

only if

(x, p) = (x1, p1), (x′, p′) = (xr+1, pr+1), with

((xi+1, pi+1), yi) ∈ ∆τ ((xi, pi), ui), i = 1, . . . , r

• the set of initial states X0 = Rn × P .

T rτ (Στd) is non-blocking (enab∆r
τ
((x, p)) = Ur for all

(x, p) ∈ X), deterministic, and metric when the set of
outputs Y r is equipped with the following metric dY r :

∀y = (y1, . . . , yr), y
′ = (y′1, . . . , y

′
r) ∈ Yr,

dY r (y, y
′) =

r
max
i=1

dY (yi, y
′
i). (7)

Let us remark that for r = 1, T rτ (Στd) coincides with
Tτ (Στd). When r 6= 1, the following result shows that
Tτ (Στd) and T rτ (Στd) produce equivalent infinite output
behaviors. This result is straightforward and is stated
without proof.

Claim 1 For any infinite output behavior (y0, y1, y2, . . . )
of Tτ (Στd), there exists an infinite output behavior
(z0, z1, z2, . . . ) of T rτ (Στd) with zi = (zi1, . . . , z

i
r) such

that
∀i ∈ N, j = 1, . . . , r, zij = yir+j−1. (8)

Conversely, for any infinite output behavior (z0, z1,
z2, . . . ) of T rτ (Στd) with zi = (zi1, . . . , z

i
r), there exists an

infinite output behavior (y0, y1, y2, . . . ) of Tτ (Στd) such
that (8) holds.

Remark 4 Using Tτ (Στd) or T rτ (Στd) for the purpose
of synthesis provides identical guarantees on the sam-
pled behavior of the switched system, since the infinite
output behaviors of both transition systems are equiva-
lent. However, it leads to different implementations of
switching controllers. For controllers synthesized using
Tτ (Στd), the sensing and actuation periods (of duration
τ or kτ) are equal; while for controllers synthesized using
T rτ (Στd), the sensing period consists of r actuation peri-
ods. In the latter case, at sensing instants, the controller
selects a sequence of r modes, each of which is actuated
for a duration τ or kτ .

3.2 Construction of symbolic models

For an incrementally stable switched system Σ with
multiple δ-GUAS Lyapunov functions, a construction
of symbolic models that are approximately bisimilar to
Tτ (Στd) has been proposed in [10], based on a discretiza-
tion of the state-space Rn. Theorem 4.2 in that paper,
shows that symbolic models of arbitrary precision can
be computed by using a sufficiently fine discretization
of the state-space. However, this usually results in sym-
bolic models that have a very large number of transi-
tions, especially when the control period τ is small.

In this section, we establish a similar result for the mul-
tirate transition system T rτ (Στd). This idea is inspired
by the work presented in [16], in which symbolic models
are computed for digital control systems using multirate
sampling. Our results can be seen as an extension to the
class of switched systems with dwell-time. In addition, in
the following sections, we will provide a theoretical anal-
ysis allowing us to choose the optimal sampling factor
r, minimizing the number of transitions in the symbolic
model, which is not available in [16].

Let η ∈ R+ be a space sampling parameter, the set of
states Rn is approximated by the lattice:

[Rn]η =

{
q ∈ Rn|qi = ki

2η√
n
, ki ∈ Z, i = 1, . . . , n

}
.

We associate a quantizer Qη : Rn −→ [Rn]η given by
Qη(x) = q if and only if

∀i = 1, . . . , n, qi −
η√
n
≤ xi < qi +

η√
n
.

where xi and qi denote the i-th coordinates, i = 1, . . . , n
of x and q, respectively. We can easily show that for all
x ∈ Rn, ‖Qη(x)− x‖ ≤ η.

Let us define the transition system T rτ,η(Στd) =

(Xη, U
r, Y r,∆r

τ,η, X
0
η) as follows:

• the set of states is Xη = [Rn]η × P ;
• the set of inputs is Ur = P r;
• the set of outputs Y r = (Rn ∪ Rk×n)r;
• the transition relation is given for (q, p), (q′, p′) ∈ Xη,
u ∈ Ur, y ∈ Y r, by ((q′, p′), y) ∈ ∆r

τ,η((q, p), u) if and
only if

q′ = Qη(x′) and ((x′, p′), y) ∈ ∆r
τ ((q, p), u);

• the set of initial states is X0
η = [Rn]η × P .

T rτ,η(Στd) is symbolic, non-blocking (enab∆r
τ,η

((q, p)) =

Ur for all (q, p) ∈ Xη), deterministic and metric when
the set of outputs Y r is equipped with the metric dY r
given by (7).

Theorem 1 Consider a switched system Στd , and let
us assume that there exist multiple δ-GUAS Lyapunov
functions Vp, p ∈ P , for Στd such that (5) holds for

some K∞ function γ, let the dwell-time τd >
ln(µ)
κ . Let

time and space sampling parameters τ, η ∈ R+, sampling
factor r ∈ N+ and precision ε ∈ R+ satisfy:

η ≤ γ−1
(

1
µ (1− λ(τ)r)α(ε)

)
(9)

where λ(τ) = max(e−κτ , µe−κτd), then, the transition
systems T rτ (Στd) and T rτ,η(Στd) are ε-approximately
bisimilar.
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PROOF. Let us prove that the relation R defined by:

R =

{
((x, p1), (q, p2)) ∈ X ×Xη

∣∣∣∣∣ p1 = p2 = p

Vp(x, q) ≤ 1
µα(ε)

}

is an ε-approximate bisimulation relation between
T rτ (Στd) and T rτ,η(Στd).

Let ((x, p1), (q, p2)) ∈ R, then we have p1 = p2 = p
and Vp(x, q) ≤ 1

µα(ε). Let u = (u1, . . . , ur) ∈ Ur and

((x′, p′), y) ∈ ∆r
τ ((x, p), u), where y = (y1, . . . , yr) ∈ Y r,

then by definition of ∆r
τ :

(x, p) = (x1, p1), (x′, p′) = (xr+1, pr+1), with

((xi+1, pi+1), yi) ∈ ∆τ ((xi, pi), ui), i = 1, . . . , r.

Similarly, let ((q′, p′), z) ∈ ∆r
τ,η((q, p), u), where z =

(z1, . . . , zr) ∈ Y r, then by definition of ∆r
τ,η:

(q, p) = (q1, p1), (q′, p′) = (Qη(qr+1), pr+1), with

((qi+1, pi+1), yi) ∈ ∆τ ((qi, pi), ui), i = 1, . . . , r.

By the definition of ∆τ , we have for all i = 1, . . . , r,
pi+1 = ui, and

Vpi+1
(xi+1, qi+1) ≤ e−κτ Vpi(xi, qi), if pi = pi+1,

Vpi+1
(xi+1, qi+1) ≤ µ e−κτd Vpi(xi, qi), if pi 6= pi+1.

where the two inequalities are obtained by (3) and (4).
Then, it follows that for all i = 1, . . . , r + 1,

Vpi(xi, qi) ≤ λ(τ)i−1Vp1(x1, q1) ≤ λ(τ)i−1 1
µα(ε). (10)

Then, from (5), (10) and (9), we have

Vp′(x
′, q′) = Vpr+1

(xr+1, Qη(qr+1))

≤ Vpr+1
(xr+1, qr+1) + γ(η)

≤ λ(τ)r 1
µα(ε) + γ(η) ≤ 1

µα(ε).

Thus, ((x′, p′), (q′, p′)) ∈ R.

Let i = 1, . . . , r, if ui = pi, we have yi = xi, zi = qi,
then from (2), (10) and since λ(τ) ≤ 1 and 1

µ ≤ 1,

dY (yi, zi) = ‖xi − qi‖ ≤ α−1(Vpi(xi, qi)) ≤ ε. (11)

If ui 6= pi, we have yi = (yi,1, . . . , yi,k), zi =
(zi,1, . . . , zi,k) where yi,j = φui(j−1)τ (xi) and zi,j =

φui(j−1)τ (qi), j = 1, . . . , k. Then, from (3), (4), (10) and

since λ(τ) ≤ 1, we have for all j = 1, . . . , k,

Vui(yi,j , zi,j) ≤ Vui(xi, qi) ≤ µVpi(xi, qi) ≤ α(ε).

Then, by (2), we have for all j = 1, . . . , k,

‖yi,j − zi,j‖ ≤ α−1(Vui(yi,j , zi,j)) ≤ ε.

Hence,

dY (yi, zi) =
k

max
j=1
‖yi,j − zi,j‖ ≤ ε. (12)

It then follows from (11), (12) that

dY r (y, z) =
r

max
i=1

dY (yi, zi) ≤ ε.

Hence, the first condition of Definition 4 holds.

In a similar way, we prove that for all ((q′, p′), z) ∈
∆r
τ,η((q, p), u) there exists ((x′, p′), y) ∈ ∆r

τ ((x, p), u)
such that ((x′, p′), (q′, p′)) ∈ R and dY r (y, z) ≤ ε. Hence,
R is an ε-approximate bisimulation relation between
T rτ (Στd) and T rτ,η(Στd).

Now, let (x, p) ∈ X0 = Rn × P , and (q, p) ∈ X0
η =

[Rn]η × P , given by q = Qη(x), then ‖x − q‖ ≤ η. Fol-
lowing Remark 2, we have that the second inequality of
(2) holds with α = γ. It follows that

Vp(x, q) ≤ γ(‖x− q‖) ≤ γ(η) ≤ 1
µα(ε)

where the last inequality comes from (9). Hence
((x, p), (q, p)) ∈ R. Conversely, for all (q, p) ∈ X0

η =

[Rn]η×P , let (x, p) ∈ X0 = Rn×P , given by x = q, then
Vp(x, q) = 0 and ((x, p), (q, p)) ∈ R. Hence, T rτ (Στd)
and T rτ,η(Στd) are ε-approximately bisimilar. 2

Some remarks regarding the size of the symbolic models
are in order. It appears from (9) that, for a given pre-
cision ε ∈ R+ and control period τ ∈ R+, using larger
sampling factor r ∈ N+ allows us to use larger values
of η ∈ R+ and thus coarser discretizations of the state
space. This results in symbolic models with fewer sym-
bolic states. However, the number of transitions initiat-
ing from a symbolic state ismr and thus grows exponen-
tially with the sampling factor. Hence, the advantage of
using multirate symbolic models in terms of number of
transitions in the symbolic model is still unclear. This
issue is addressed in the following section, where we de-
termine the optimal value of the sampling factor.

Remark 5 The results of [26] on multirate symbolic
models for incrementally stable switched systems (with-
out dwell-time) can be recovered easily from the particu-
lar case of the present study when µ = 1 (i.e. there exists
common δ-GUAS Lyapunov function), and k = 1 (i.e.
the dwell-time coincides with the control period, τd = τ).

6



4 Optimal sampling factor

In the following, we consider multirate symbolic models
T rτ,η(Στd) computed using the approach described above,
where we restrict the set of states to some compact set
C ⊆ Rn with nonempty interior. The number of sym-
bolic states in Xη ∩ (C×P ) can be accurately estimated
by vC

ηn ×m, where vC ∈ R+ is a positive constant pro-

portional to the volume of C. Then the number of sym-
bolic transitions initiating from states in Xη∩(C×P ) is

vC
mr+1

ηn . We assume that the number of modes m ≥ 2.

4.1 Problem formulation

In this section, given a desired precision ε ∈ R+, and a
control period τ ∈ R+, we establish the optimal values
r∗ ∈ N+ and η∗ ∈ R+, which characterizes the multirate
symbolic model T rτ,η(Στd) of precision ε (as guaranteed
by Theorem 1) with the minimal number of symbolic
transitions initiating from states in Xη ∩ (C × P ).

Since,C is a compact set, following Remark 1, we assume
that (5) holds for a linearK∞ function γ given by γ(s) =
cγswhere cγ ∈ R+. Thus, we aim at solving the following
mixed integer nonlinear program:

Minimize vC
mr+1

ηn

over r ∈ N+, η ∈ R+

under η ≤ (1− λ(τ)r)
α(ε)
µcγ

(13)

where the inequality constraints comes from (9) to guar-
antee a precision ε.

Let us first remark that for a given r ∈ N+, the opti-
mal value η ∈ R+ is obviously obtained as η = (1 −
λ(τ)r)

α(ε)
µcγ

. It follows that (13) is equivalent to the fol-

lowing integer program:

Minimize vC
(µcγ)n

(α(ε))n
mr+1

(1−λ(τ)r)n

over r ∈ N+
(14)

The value vC
(µcγ)n

(α(ε))n ∈ R+ does not depend on r and thus

does not affect the solution of (14), which can finally be
equivalently formulated as:

Minimize g(r) = mr+1

(1−λ(τ)r)n

over r ∈ N+
(15)

A first interesting information that can be inferred from
(15) is that the optimal sampling factor only depends on
the control period τ ∈ R+, the dimension of the state-
space n ∈ N+, the number of modes m ∈ N+, the dwell

time τd, the constant µ ≥ 1 given in (4) and the decay
rate κ ∈ R+ of the multiple δ-GUAS Lyapunov func-
tions. In particular, it is noteworthy that it is indepen-
dent of the desired precision ε ∈ R+ and of the compact
set C.

4.2 Explicit solution

In this section, we show that the previous optimization
problems can be solved explicitly. We first consider the
relaxation of the integer program (15) over the positive
real numbers:

Lemma 1 Let g : R+ → R+ be given as in (15). Then,
g has a unique minimizer r̃∗ ∈ R+ given by

r̃∗ =
1

− ln(λ(τ))
ln

(
1− n ln(λ(τ))

ln(m)

)
(16)

with λ(τ) = max(e−κτ , µe−κτd).

Moreover, g is strictly decreasing on (0, r̃∗] and strictly
increasing on [r̃∗,+∞).

PROOF. Let us compute the first order derivative of g:

g′(r) =
m

(1− λ(τ)r)2n

(
ln(m)mr(1− λ(τ)r)n

+mrn ln(λ(τ))λ(τ)r(1− λ(τ)r)n−1
)

=
mr+1

(1− λ(τ)r)n+1

(
ln(m)(1− λ(τ)r)

+ n ln(λ(τ))λ(τ)r
)

=
ln(m)mr+1

(1− λ(τ)r)n+1

(
1− λ(τ)r

(
1− n ln(λ(τ))

ln(m)

))
.

By remarking that ln(m)mr+1

(1−λ(τ)r)n+1 > 0 for all r ∈ R+,

it is easy to see that g′(r) has the same sign as(
1− λ(τ)r

(
1− n ln(λ(τ))

ln(m)

))
, and that it is negative on

(0, r̃∗), zero at r̃∗ and positive on (r̃∗,+∞). The result
stated in Lemma 1 follows immediately. 2

We can now state the main result of the section:

Theorem 2 For any desired precision ε ∈ R+, and any
control period τ ∈ R+, the optimal parameters r∗ ∈ N+

and η∗ ∈ R+, solutions of (13), which minimize the num-
ber of symbolic transitions of T rτ,η(Στd), initiating from
states in Xη ∩ (C ×P ), while satisfying (9), are given by

r∗ = br̃∗c or r∗ = br̃∗c+ 1 (17)

and η∗ = (1− λ(τ)r
∗
)
α(ε)
µcγ

(18)

where r̃∗ is given by (16).
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PROOF. From Lemma 1, it follows that

∀r ∈ N+, with r < br̃∗c, g(r) > g(br̃∗c)

and

∀r ∈ N+, with r > br̃∗c+ 1, g(r) > g(br̃∗c+ 1).

Then, it follows that the minimal value of g over N+ is
obtained for r∗ = br̃∗c or r∗ = br̃∗c+ 1. Then, from the
discussions in Section 4.1, it follows that the solution of

(13) is given by r∗ and η∗ = (1− λ(τ)r
∗
)
α(ε)
µcγ

. 2

In practice, we compute the optimal parameters of the
multirate symbolic models by evaluating the function g
at br̃∗c and br̃∗c + 1. We then pick the one, out of two
possible values of r∗, which minimizes g and compute η∗

using (18).

We would like to point out that the previous result can
be applied to either linear or nonlinear switched systems.
The only requirement is that we restrict the analysis to a
compact subset of Rn. Finally, it is interesting to remark
that for small values of the control period τ ∈ R+, the
optimal sampling factor r∗ is mainly determined by the
state space dimension and the number of modes.

Corollary 1 There exists τ ∈ R+, such that for any
desired precision ε ∈ R+, and any control period τ ∈
(0, τ ], the optimal parameters r∗ ∈ N+ and η∗ ∈ R+,
solutions of (13), which minimize the number of symbolic
transitions of T rτ,η(Στd), initiating from states in Xη ∩
(C × P ), while satisfying (9), are given by

r∗ =

⌊
n

ln(m)

⌋
or r∗ =

⌊
n

ln(m)

⌋
+ 1

and η∗ = (1− e−r
∗κτ )

α(ε)

µcγ
.

PROOF. First let us remark that for τ ≤ τd − ln(µ)
κ ,

we have λ(τ) = e−κτ . Then, let τ be given by

τ = min

τd − ln(µ)

κ
,

2 ln(m)

nκ

1−

⌊
n

ln(m)

⌋
n

ln(m)

 .

(19)
From Theorem 2.2 in [3], we have that for all n,m ∈ N+

with m ≥ 2, n
ln(m) ∈ R+ \ N+. Then, it follows that

b n
ln(m)c <

n
ln(m) and that 2 ln(m)

nκ

(
1−

⌊
n

ln(m)

⌋
n

ln(m)

)
> 0.

Moreover τd − ln(µ)
κ > 0. Hence, τ > 0.

Now, let us remark that for all θ ∈ R+, we have that
θ(1− θ

2 ) ≤ ln(1+θ) ≤ θ. Let r̃∗ be given by (16), then it
follows from the previous inequalities that for all τ ∈ R+.

n

ln(m)

(
1− nκτ

2 ln(m)

)
≤ r̃∗ ≤ n

ln(m)
.

Then, using (19), it follows that for all τ ∈ (0, τ ],⌊
n

ln(m)

⌋
≤ r̃∗ ≤ n

ln(m)

which implies that br̃∗c = b n
ln(m)c. The stated result is

then a consequence of Theorem 2. 2

5 Illustrating example

In this section, we illustrate our main results and demon-
strate the benefits of the proposed approach by consid-
ering the same example as in [10]. We consider a two-
dimensional switched affine system with two modes (i.e.
n = 2, m = 2) and given by

ẋ(t) = Ap(t)x(t) + bp(t)

with b1 = [−0.25 − 2]
T

, b2 = [0.25 1]
T

and

A1 =
[−0.25 1
−2 −0.25

]
, A2 =

[−0.25 2
−1 −0.25

]
.

The system does not have a common δ-GUAS Lyapunov
function but admits multiple δ-GUAS Lyapunov func-
tions of the form Vp(x, y) =

√
(x− y)TMp(x− y), with

M1 = [ 2 0
0 1 ] , M2 = [ 1 0

0 2 ] .

Let us first remark that even if the Lyapunov function
Vi, i ∈ {1, 2} is not smooth, it satisfies condition (6) with
κ = 0.25. The equations (2), (4) and (5) hold withα(s) =

s, α(s) =
√

2s, µ =
√

2 and γ(s) =
√

2s. Imposing

a dwell-time τd = 2 > ln(µ)
κ , the switched system is

incrementally stable.

We compute multirate symbolic models using the ap-
proach described in Section 5. We set the control pe-
riod τ = 0.2 (i.e. k = 10) and the desired precision

ε = 0.25 ×
√

2. We restrict the dynamics to a compact
subset of R2 given by C = [−6, 6] × [−4, 4]. We com-
pute the symbolic models for several sampling factors
r = 1, . . . , 9, the space sampling parameter is then cho-

sen as η = (1 − λ(τ)r)
α(ε)
µcγ

. Figure 1 shows the number

of symbolic transitions as a function of r and we can see
that this number is minimal for r = 3.

Using (19), we compute τ = 0.61. Thus, τ ∈ (0, τ ] and
the assumptions of Corollary 1 hold. In particular, since
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Fig. 1. Number of symbolic transitions in the multirate sym-
bolic models T rτ,η(Στd) of the switched system with dwell–
time for different values of the sampling factor r; Computa-
tion times for generating symbolic models and synthesizing
safety controllers (MATLAB implementation, processor 2.2
GHz Intel Core i7, memory 16 GB 1600 MHz DDR3).

n
ln(m) = 2.89, the optimal sampling factor is either 2

or 3. We can then check numerically that the optimal
sampling factor is r∗ = 3, which is consistent with the
experimental data.

We now synthesize safety controllers (see e.g. [29]), which
keep the output of the symbolic models inside the com-
pact region C while avoiding C ′ = [−1.5, 1.5] × [−1, 1].
Figure 1 reports the computation times for generating
symbolic models and synthesizing controllers for r =
1, . . . , 9. The time for generating the symbolic model
is linear with respect to the number of transitions and
thus perfectly correlated with the number of transitions.
However, the time for synthesizing the controller de-
pends on the fixed point algorithm (see [29]) for which
the worst case complexity is polynomial in the number
of transitions which explains why the number of transi-
tions and the CPU time are not perfectly correlated (a
higher number of iterations is needed to reach the fixed
point for r = 1 and r = 2 than for the other values). We
can check that using the optimal sampling factor r = 3
allows us to reduce, for that example the computation
times by about 70% in comparison to the approach cor-
responding to r = 1. For r = 3, Figure 2 shows a trajec-
tory of the switched system and the associated switch-
ing signal controlled with the symbolic controller for the
initial state x0 = [0 3]T .

6 Conclusion

In this paper, we have proposed the use of multirate
sampling for the computation of symbolic models for
incrementally stable switched systems, with dwell-time
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Fig. 2. Top: Trajectory of the switched system with dwell–
time and the associated switching signal controlled with the
symbolic controller for the initial state x0 = [0 3]T . The
control period is τ = 0.2 while the sampling factor r = 3
(instants of transitions are indicated with circles). Bottom:
Same trajectory in the state-space.

constraints. We have demonstrated that our technique
makes it possible to use more compact abstractions (i.e.
with fewer transitions) than the standard existing ap-
proach presented in [10]. Moreover, the optimal sam-
pling factor has been determined theoretically and we
provided a simple expression depending solely on the
number of modes and on the dimension of the state
space, which makes it possible to use this result as a rule
of thumb when computing symbolic models of switched
systems. Our approach has been validated experimen-
tally on a numerical example, which showed that multi-
rate symbolic models indeed enable controller synthesis
at a reduced computational cost. We are confident that
similar results can be established for other classes of in-
crementally stable dynamical systems.
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