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Abstract. An effective framework for dynamic texture recognition is
introduced by exploiting local features and chaotic motions along beams
of dense trajectories in which their motion points are encoded by us-
ing a new operator, named LVPfull-TOP, based on local vector pat-
terns (LVP) in full-direction on three orthogonal planes. Furthermore,
we also exploit motion information from dense trajectories to boost the
discriminative power of the proposed descriptor. Experiments on various
benchmarks validate the interest of our approach.
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1 Introduction

Dynamic texture (DT) is a string of textures moving in the temporal domain
such as fire, clouds, trees, waves, foliage, blowing flag, fountain, etc. Analysis
for “understanding” DTs is one of fundamental issues in computer vision tasks.
Various approaches have been proposed for DT description. In general, exist-
ing methods can be classified into six groups as follows. First, optical-flow-based
methods [1] are natural approaches for DT recognition thanks to their efficient
computation and describing videos in effective ways. Second, model-based meth-
ods [2,3] have been widely used for DT since the typical model Linear Dynami-
cal System (LDS) [2] was introduced. Third, filter-based methods have been also
utilized for handling DT recognition. Different filtering operations have been
addressed for encoding dynamic features: Binarized Statistical Image Features
on Three Orthogonal Planes (BSIF-TOP) [4], Directional Number Transitional
Graph (DNG) [5]. Fourth, various geometry-based methods have been presented
using fractal analysis techniques in which fractal dimension and other fractal
characteristics are taken into account for DT representation: dynamic fractal
spectrum (DFS) [6], Multi-fractal spectrum (MFS) [7], wavelet-based MFS de-
scriptor [8]. Fifth, owing to outperforming results, learning-based methods have
recently attracted researchers with promising techniques coming from recent
advances in deep learning: Transferred ConvNet Features (TCoF) [9], PCA con-
volutional network (PCANet-TOP) [10], Dynamic Texture Convolutional Neural



Network (DT-CNN) [9]. Lately, dictionary-learning-based methods [11,12] have
also become more popular in which local DT features are figured out by ker-
nel sparse coding. Sixth, local-feature-based methods have been also considered
with different LBP-based variants owing to their simplicity and efficiency since
Zhao et al. [13] proposed two LBP-based variants for DT depiction: Volume
LBP (VLBP) and LBP on three orthogonal planes (LBP-TOP). Lately, several
efforts based on extensions of these typical operators are addressed to enhance
the discriminative power of DT description [14,15,16,17,18].

This paper addresses a new efficient framework using directional beams of
dense trajectories for DT representation, in which local feature patterns of mo-
tion points are encoded along their trajectories in conjunction with directional
features of their neighbors structured by the proposed LVPfull-TOP operator
with full-direction on three orthogonal planes of sequences. Furthermore, the mo-
tion information extracted from dense trajectories is conducted as a complement
component to enhance the recognition power of DT descriptor. It could be seen
that the advantages of both optical-flow-based and local-feature-based methods
are consolidated into our approach to construct an effective DT descriptor.

2 Related works

LBP-based variants for dynamic texture: An efficient operator, called Lo-
cal Binary Pattern (LBP), has been introduced in [19] to encode local features of
a texture image as a binary chain by regarding relations between the center pixel
and its surrounding neighbors interpolated on the neighboring circle centered at
this pixel. In order to reduce effectively the dimensionality, different mappings
have been proposed to select representative or important patterns: uniform pat-
terns u2, riu2 [19], topological patterns [20], etc. Inherited by the benefits of
LBP for still images, various LBP-based variants have been proposed to inspect
DT recognition. At first, Zhao et al. [13] introduced VLBP considering three
consecutive frames to form a (3P + 2)-bit pattern for each voxel. An another
variant, called LBP-TOP [13], has been also presented to overcome the curse of
dimensionality of VLBP by addressing LBP on three orthogonal planes. Various
extensions based on two above works have been then proposed to advance the
discriminative power: CVLBC [21], CVLBP [15], CLSP-TOP [14], HLBP [16].

Directional LBP-based patterns: The classical LBP captures only the first-
order derivative variations. Thus, exploiting higher-order derivative variations
is one important approach to develop LBP-based variants for different applica-
tions [22,23,24]. Zhang et al. [23] introduced Local Derivative Pattern (LDP), a
directional extension of LBP, by taking into account local high-order derivative
variations to encode directional patterns of voxels for capturing more robust fea-
tures. To obtain potential information between derivative directions eliminated
in the LDP, Fan et al. [25] proposed Local Vector Pattern (LVP) by regarding
the pairwise of directional vectors to remedy the shortcomings remaining in local
pattern representation. As adopting LVP as a component in our framework, we



recall LVP in detail hereafter. Let I denote a sub-region of a 2D image. The
first-order LVP of the center pixel qc conducted by a direction α (in practice, 4
directions are considered, i.e. α = {0◦, 45◦, 90◦, 135◦}) is calculated as follows.

LVPP,R,α(qc) =
{
h
(
Vα,D(qc), Vα+45◦,D(qc), Vα,D(qi), Vα+45◦,D(qi)

)}
1≤i≤P (1)

where Vα,D(q) = I(qα,D) − I(q), known as the first-order LVP, means the di-
rectional value of a vector obtained by concerning the current pixel q with its
adjacent neighbor (qα,D) in direction of α; D = {1, 2, 3} presents the distance
of the considered pixel with its contiguous points, and the function h(.), called
Comparative Space Transform (CST), with four parameters corresponding to
four directional vectors in (1) is defined as

h(x, y, z, t) =

1, if t− (y ∗ z)
x

≥ 0

0, otherwise.
(2)

Other formulations of LVP and samples of encoding LVP-based patterns for
texture images are clearly discussed in [25].

Dense trajectories: Wang et al. [26] extracted dense trajectories in videos
by utilizing a dense optical flow field to sample and track the motion paths of
points. For a point qf = (xf , yf ) at the f th frame, its position is tracked into
the (f + 1)th frame by interpolating with a median filter on an optical flow
ωf = (uf , vf ), in which uf and vf refer to horizontal and vertical of the optical
flow component. The new position of qf , i.e. qf+1, at the adjacent frame is
inferred as

qf+1 = (xf+1, yf+1) = (xf , yf ) + (M ∗ ωf )|(xf ,yf )
(3)

where (xf , yf ) means the rounded position value of qf , M denotes a median filter
kernel of 3×3 pixels. Finally, a trajectory t = {qf ,qf+1, ...,qf+L−1} with length
of L is formed by concatenating points of consecutive frames. In our framework,
we use the latest version (1.2) of dense trajectories1 as a tool to extract motion
paths of dynamic textures for video representation.

3 Proposed method

3.1 Overview

We introduce an efficient framework taking into account the advantages of
two well-known approaches: optical-flow-based and local-feature-based for an ef-
fective DT representation. The main idea is to exploit local features by using
the proposed LVPfull-TOP operator along dense trajectories together with mo-
tion information extracted from them. Fig. 1 graphically illustrates the proposed

1 http://lear.inrialpes.fr/people/wang/dense trajectories



framework. Our main contribution is four-fold. First, dense trajectories are used
to exploit motions from dynamic textures instead of typical optical-flow-based
approaches. Second, an effective operator, called LVPfull-TOP, is introduced
to capture more second-order derivative variations on three orthogonal planes.
Third, a local-feature-based descriptor is presented by addressing LVPfull-TOP
along a beam of directional trajectories. Fourth, motion angle patterns are uti-
lized to capture more chaotic motions of DT from dense trajectories. In the
following, we then detail the proposed method for DT representation.

Extract trajectories 
using dense 

trajectory tool

Encode motion points and 
their neighbors using 
LVP_full-TOP operator

Compute histogram of all 
directional beams of 

trajectories to form descriptor 

Concatenate these probability 
distributions along a trajectory to 
obtain descriptor of this trajectory

Classify dynamic textures 
using 1-NN and SVM

Fig. 1. Illustration of different steps of our proposed framework.

3.2 Components of the proposed descriptor

LVPfull-TOP operator: Because only 4 derivative directions of the center
pixel are considered in LDP and LVP operators, the relations between the cen-
ter and other neighbors are less exploited. To remedy this problem, we ex-
tend encoding of LVP on full-direction, called LVPfull with 8 directions of
α = {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}, to capture full spatial relations
between a pixel qc and its neighbors as follows.

LVPP,R,full(qc) =

P−1∑
i=0

h(.)2i
∣∣∣
α

(4)

where h(.) is referred by Equations 1 and 2, P is neighbors of the considered
pixel qc sampled on a circle with radius R. Due to full-directional encoding,
each first-order LVPfull code of a pixel has a 64-bit binary pattern in total. It
leads to be impossible in real implementation. Therefore, we apply the concept
of u2 mapping of the typical LBP [19] for LVPu2 on each direction to reduce the
dimension of descriptor, i.e. 8 ×

(
P (P − 1) + 3

)
bins for full-direction where P

is the sampled neighbors.
Furthermore, based on the idea of LBP-TOP [13], we investigate the proposed

LVPfull on three orthogonal planes to form a new operator, LVPfull-TOP which
is able to effectively obtain spatio-temporal structures of dynamic features.

Features of directional trajectory: Let t = {q1,q2, ...,qL,qL+1} be a tra-
jectory with length of L which is formed by L+ 1 motion points corresponding
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Fig. 2. (Best viewed in color) Encoding FDT with
the proposed LVPfull-TOP in direction α = 0◦.
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Fig. 3. (Best viewed in color)
Computing motion angle pat-
terns for a trajectory.

to L+ 1 consecutive frames F = {f1, f2, ..., fL, fL+1}. Fig. 2 graphically demon-
strates the proposed method to encode features of directional trajectory (FDT)
t in direction α = 0◦. Accordingly, we consider movements of the motion point
qi ∈ t and its neighbors positioned by a vicinity of B in order to compute
probability distributions for chaotic motions as well spatial features of qi along
trajectory t using the proposed LVPfull-TOP operator with full-direction. Fi-
nally, the gained histograms are concatenated to shape the FDT of t as follows.

FDTL,full(t) =

L+1∑
i=1

[
Hm

(
LVPfull-TOP(qi, fi)

)
, HB

(
LVPfull-TOP(pk∈B , fi)

)]
(5)

where LVPfull-TOP(qi, fi) is local vector pattern of a pixel qi at the frame fi
based on full-direction in three orthogonal planes; pk refers to the kth neighbor
of qi in the vicinity B; Hm(.) and HB(.) are respectively the distributions of the
motion point qi and its neighbors placed in B.

Motion angle patterns (MAP): To capture motion information from dense
trajectories, we extend the idea of [27]. Accordingly, two angles of β = π/4 and
β = π/8 can be considered to form 8 and 16 bins of directional motion angle
pattern for each pair of motion points respectively. Fig. 3 graphically illustrates a
sample of this calculation for a trajectory t, i.e. MAPβ(t), using angle of β = π/8
with its length of L located by L+1 motion points in corresponding consecutive
frames. These obtained motion angle patterns at point level are concatenated to
shape MAP histogram of the whole trajectory.



Proposed video descriptor: Let T = {t1, t2, ..., tn} be a set of trajectories
with the same length of L extracted from a video V using a tool of dense trajec-
tories introduced in [26]. To construct a robust descriptor for DT recognition,
we combine and normalize the features of directional beams of T trajectories
with the structures of their motion angle patterns, named FD-MAP and defined
as follows.

FD-MAPL,β(V) =

n∑
i=1

[
FDTL,full(ti),MAPβ(ti)

]
(6)

To investigate the advantage of the angle vector complement component, we also
evaluate recognition of FDTL,full(T ) descriptor on the benchmark DT datasets.

3.3 Classification

For DT recognition, we adopt two classifying algorithms as follows.
Support vector machines (SVMs): We utilize a linear SVM algorithm pro-

vided in the LIBLINEAR library [28] to implement a multi-class classifier. All
our experiments in this work are inspected by the latest version (2.20) with the
default parameters of this tool.

k-nearest neighbors (k-NN): To be comparable with results of existing meth-
ods [14,15,16], we employ the simple of k-nearest neighbors, i.e. k = 1 (1-NN),
in which chi-square (χ2) measure as dissimilarity measure.

4 Experiments

4.1 Experimental settings

Settings for extracting trajectories: Because most of chaotic motion points
in DT sequences are usually “living” in a short period, we investigate dense
trajectories with length of L = {2, 3} using the tool presented in [26]. Since the
default parameters of this tool are set for recognition of human actions in videos,
to be suitable for the particular DT characteristics, we changed the original
parameter of rejecting trajectory min var = 5× 10−5 in order to obtain “weak”
directional trajectories of turbulent motion points. Fig. 4 graphically illustrates
trajectories extracted from the corresponding sequences with the customized
settings. Empirically, for datasets (like DynTex++) which are built by splitting
from other original videos, some of cropped sequences have number of obtained
trajectories that are not sufficient for DT representation (see Fig. 4(c)). In this
case, a few tracking parameters should be decreased to boost the quantity of
trajectories in our framework as min distance = 1 and quality = 10−8 2.

Parameter settings for descriptors: We use the first-order LVPfull-TOP with
D = 1, P = 8, R = 1 to structure local vector patterns of dynamic features
in full-direction on three orthogonal planes. To be compliant with LBP-based
methods, encoding spatial patterns of each motion point is adopted with its

2 Please see [26] for more details about these above parameters.



(a) (b) (c)

Fig. 4. (Best viewed in color) Samples (a), (b), (c) of directional trajectories extracted
from the corresponding videos in UCLA, DynTex, and DynTex++ respectively in which
green lines show paths of motion points through the consecutive frames.

neighbors PB = 8 circled by radius RB = 1, i.e. B = {PB , RB} = {8, 1} (see
Fig. 2). In this case, the FDTL,full descriptor has 3 × 9 × 8 ×

(
P (P − 1) + 3

)
dimensions with u2 mapping utilized for the proposed operator. Furthermore,
the angle vector complement with L × |MAPβ | bins is also employed to form
the FD-MAPL,β descriptor with |FDTL,full| + L × |MAPβ | bins, where L is
length of the considered trajectory, |.| is the size of the descriptor. Regarding the
configuration for the DT representation, the best parameter setting is selected
as follows to compare with existing approaches: FD-MAPL,β with L = 2 and
β = π/4, which will be further provided to the classifiers.

4.2 Datasets and experimental protocols

UCLA dataset: UCLA dataset [2] consists of 50 categories with 200 different
DT videos, corresponding to four sequences per class, which demonstrate the
moving of dynamic textures such as fire, boiling water, fountain, waterfall, flower,
and plant. Each original sequence is captured in 75 frames with dimension of
110×160 for each frame. The categories are arranged in varied ways to compose
more challenging sub-datasets as follows.

– 50-class: Original 50 classes are utilized using two experimental protocols:
leave-one-out (50-LOO) [4,17,29] and 4-fold cross validation (50-4fold) [14,16].

– 9-class and 8-class: Original 50 classes of sequences are divided into 9 se-
mantic categories [29,6] consisting of “boiling water” (8), “fire” (8), “flowers”
(12), “fountains” (20), “plants” (108), “sea” (12), “smoke” (4), “water” (12),
and “waterfall” (16), where the numbers in parentheses take account of se-
quences in each class. The “plants” category is eliminated from 9-class to
form more challenging 8-class scheme [29,6]. For these two schemes, following
[29,30,14], a half of DTs is randomly selected for training and the remain-
ing for testing work. The final evaluation of recognition is estimated by the
average of rates in 20 runtimes.

DynTex dataset: DynTex dataset [31] consists of more than 650 high-quality
DT sequences recorded in various conditions of environment. Following [4,16,13],
we use a common version of this dataset containing 35 categories (DynTex35)
in which each sequence is randomly cropped into 8 non-overlapping sub-videos
that splitting points are not in half of the X, Y, and T axes. In addition, two
more sub-sequences are also obtained for the experiment by cutting along the



temporal axis of the original sequence. Consequently, 10 sub-DTs with different
spatial-temporal dimension split from each sequence make classification tasks
more challenging.

Other popular schemes stated as benchmark sub-datasets for DT recognition
are compiled from [31] using leave-one-out as experimental protocol [10,4].

– Alpha consists of 60 DT videos equally divided into three categories, i.e.
“sea”, “grass”, and “trees”, with 20 sequences in each of them.

– Beta contains 162 DT videos grouped into 10 classes with various numbers
of sequences for each: “sea”, “vegetation”, “trees”, “flags”, “calm water”,
“fountains”, “smoke”, “escalator”, “traffic”, and “rotation”.

– Gamma comprises 10 classes with 264 DT videos in total: “flowers”, “sea”,
“naked trees”, “foliage”, “escalator”, “calm water”, “flags”, “grass”, “traf-
fic”, and “fountains”. Each of which includes a sample of diverse sequences.

DynTex++ dataset: From more than 650 sequences of the original DynTex,
Ghanem et al. [30] filtered 345 raw videos to build DynTex++ in which the
filtered videos only contain the main dynamic texture, not consist of other DT
features such as panning, zooming, and dynamic background. They are finally
divided into 36 classes in which each class has 100 sequences with fixed dimension
of 50× 50× 50, i.e. 3600 dynamic textures in total. Similarity to [4,30], training
set is formed by randomly selecting a half of DTs from each class and the rest for
testing. This is repeated 10 times to obtain the average rate as the final result.

4.3 Experimental results

Estimations of our method on the datasets using the proposed descriptors
are presented in Tables 1 and 2 respectively, in which the highest classifica-
tion rates corresponding to the settings are in bold. It is clear from those tables
that the combination between the descriptor of directional trajectories FDT and
the complement component of motion angle patterns MAP outperforms signif-
icantly in comparison with only using FDT descriptor on these datasets. The
obtained rates from the observations are then compared with the state-of-the-
art approaches through Table 3, in which the highest rates are in bold and
results of VLBP [13], LBP-TOP [13] operators are referred to the evaluations of
[16,32] in the meanwhile the remains are taken from the original approaches. In
general, our proposed FD-MAP descriptor achieves outstanding results in com-
parison with most of competitive LBP-based approaches on various DT datasets
for recognition problems. For comparison with deep learning approaches, our
method outperforms significantly on UCLA dataset (see Table 3), but not better
on other datasets since deep-learning-based methods use sophisticated learning
techniques with a gigantic cost of computation in the meanwhile our framework
only concentrates on encoding directional trajectories of DT sequences.

UCLA dataset: It can be observed from Tables 1 and 3 that the proposed
descriptor achieves promising results compared to competing methods (both
LBP-based and deep-learning-based methods) on all subsets.



Table 1. Classification rates (%) on UCLA using FDTL,full and FD-MAPL,β

50-LOO 50-4fold 9-class 8-class

Descriptor 1-NN SVM 1-NN SVM 1-NN SVM 1-NN SVM

FDT2 97.00 99.00 98.50 99.00 97.50 98.75 98.48 98.59

FDT3 97.00 98.50 98.50 99.00 97.60 97.70 98.91 99.35

FD-MAP2,π/4 97.00 99.50 98.50 99.00 97.30 99.35 99.02 99.57

FD-MAP2,π/8 97.00 99.50 98.50 99.50 97.25 99.15 98.70 99.13

FD-MAP3,π/4 97.50 99.00 99.00 99.00 98.00 99.00 98.59 99.35

FD-MAP3,π/8 97.50 98.50 99.00 99.00 97.35 99.00 99.13 99.13

Table 2. Rates (%) on DynTex and Dyntex++ with FDTL,full and FD-MAPL,β

DynTex35 Alpha Beta Gamma DynTex++

Descriptor 1-NN SVM 1-NN SVM 1-NN SVM 1-NN SVM 1-NN SVM

FDT2 95.71 98.86 93.33 98.33 84.57 92.59 80.30 91.67 92.63 95.66

FDT3 96.00 98.86 91.67 98.33 83.95 93.21 80.68 91.67 92.62 95.31

FD-MAP2,π/4 95.71 98.86 91.67 98.33 84.57 92.59 80.30 91.67 92.87 95.69

FD-MAP2,π/8 95.71 98.57 91.67 98.33 84.57 92.59 80.30 91.67 93.07 95.56

FD-MAP3,π/4 96.00 98.57 91.67 98.33 83.95 93.21 81.06 91.29 92.81 95.26

FD-MAP3,π/8 96.00 98.57 91.67 98.33 83.95 92.59 81.06 91.67 92.55 95.47

50-class: It can be verified that our obtained results (99.5% and 99%) are
similar to methods’ using deep learning techniques, i.e. PCANet-TOP [10] and
DT-CNN [9]. Although our descriptor takes dimension of 12,760 bins, larger than
MBSIF-TOP’s [4] with 7-scale (5,376 bins), to obtain the same accuracy (99.5%),
it is clear that our method is more efficient in other DT datasets (DynTex,
DynTex++) in which MBSIF-TOP [4] achieves those with different multi-scale
settings. DFS [6], a geometry-based method, gains rate of 100% in 4-fold cross
validation scenario, but not perform better ours in other DT datasets.

9-class: Our proposed framework gains the best result of 99.35% compared
to all existing approaches including deep-learning-based methods, DT-CNN [9]
with rates of 98.05% and 98.35% using AlexNet and GoogleNet architectures
respectively, (except DNGP [5], just 0.25% higher than ours).

8-class: On the more challenging 8-class scheme, our method demonstrates
outstanding performance with 99.57%, the highest evaluation in comparison with
the state-of-the-art approaches while the best rate of DT-CNN [9] just achieves
99.02% by the GoogleNet framework. A geometry-based method, 3D-OTF [7],
also obtains nearly same ours but it failed in testing on other DT datasets.

DynTex dataset: It could be seen from Table 3 that our descriptor performs
better than all competing LBP-based methods. Furthermore, it is also compar-
ative to deep-learning-based methods such as PCANet-TOP [10], st-TCoF [32].

DynTex DynTex35: Our method obtains the best performance on this dataset
with 98.86% rate of classification with the selected settings for comparison (see
Table 2) compared to most of LBP-based approaches except MEWLSP [18] with



Table 3. Comparison on UCLA, Dyntex, and Dyntex++ datasets.

Dataset UCLA DynTex

Method 50-LOO 50-4fold 9-class 8-class DynTex35 Alpha Beta Gamma DynTex++

VLBP [13] - 89.50 96.30 91.96 81.14 - - - 94.98
LBP-TOP [13] - 94.50 96.00 93.67 92.45 96.67 85.80 84.85 94.05
DFS [6] - 100s 97.50s 99.00s 97.16s 85.24s 76.93s 74.82s 91.70s

3D-OTF [7] - 87.10s 97.23s 99.50s - 82.80s 75.40s 73.50s 89.17s

CLSP-TOP [14] 99.00 99.00 98.60 97.72 98.29 95.00 91.98 91.29 95.5
MBSIF-TOP [4] 99.50 99.50 98.75 97.80 98.61 90.00 90.70 91.30 97.12
MEWLSP [18] 96.50 96.50 98.55 98.04 99.71 - - - 98.48
CVLBP [15] - 93.00 96.90 95.65 85.14 - - - -
HLBP [16] 95.00 95.00 98.35 97.50 98.57 - - - 96.28
DNGP [5] - - 99.60s 99.40s - - - - 93.80s

DDLBP with MJMI [33] - - - - - - - - 95.80s

WLBPC [17] - 96.50 97.17 97.61 - - - - 95.01
CVLBC [21] 98.50 99.00 99.20 99.02 98.86 - - - 91.31
Chaotic vector [3] - - 85.10 85.00 - - - - 69.00
Orthogonal Tensor DL [12] - - - - 99.00 87.80s 76.70s 74.80s 94.70s

Equiangular Kernel DL [11] - - - - - 88.80s 77.40s 75.60s 93.40s

PCANet-TOP [10] - 99.50d - - - 96.67d 90.74d 89.39d -

st-TCoF [32] - - - - - 98.33d 98.15d 98.11d -

DT-CNN-AlexNet [9] - 99.50d 98.05d 98.48d - 100d 99.38d 99.62d 98.18d

DT-CNN-GoogleNet [9] - 99.50d 98.35d 99.02d - 100d 100d 99.62d 98.58d

Ours 99.50s 99.00s 99.35s 99.57s 98.86s 98.33s 92.59s 91.67s 95.69s

Note: Superscript “d” indicates deep-learning methods, “s” is for results using SVM, otherwise using 1-NN;
“-” means “not available”.

99.71% but it is not efficient on UCLA as well not verified on other challenging
DynTex variants (i.e. Alpha, Beta, Gamma).

DynTex alpha: Our proposal achieves the highest rate of 98.33% compared
to all LBP-based methods; and even outperforms deep learning methods (i. e.
PCANet-TOP [10], st-TCoF [32] with rate of 96.67%, 98.33% respectively).

DynTex beta and gamma: In the best configurations formed for comparison,
our result of 92.59% and 91.67% on DynTex beta and gamma respectively shows
that our method performs the best compared to all existing approaches except
deep learning methods, i.e. st-TCoF [32] and DT-CNN [9] utilizing a complicated
computation in training step.

Dyntex++ dataset: It is evident from Table 3 that our proposal gained com-
parative results in comparison with LBP-based approaches. More specifically,
our best result of recognition rate on this scheme is 95.69% (see Table 2), nearly
same DDLBP with MJMI [33] (95.8%), the highest rate of recognition on this
scheme using SVM classifier. With 92.87% using 1-NN, our descriptor outper-
forms DNGP [5] and CVLBC [21] over 2% and 1% respectively in the meanwhile
it is not better than other LBP-based methods. This may be because DT se-
quences in DynTex++ dataset, which includes sub-videos split from the original
DynTex dataset, comprise lack of directional trajectories (see Fig. 4(c)) for en-
coding although we reduced the min distance parameter of the tool to minimum
value for extracting more trajectories (see more detail in 4.1). In LBP-based ap-
proaches, MEWLSP [18] points out the highest rate of 98.48% in this scheme,



even higher than the rate of DT-CNN [9] (98.18%) using AlexNet for learning
patterns. However, it is not better than ours on UCLA dataset as well has not
been tested on other challenging DynTex variants (i.e. Alpha, Beta, Gamma).
Deep learning methods [9] have outstanding results but they take a long time to
learn features with a huge complex computation.

5 Conclusions

An effective framework for DT representation has been proposed in this pa-
per in which directional trajectories extracted from DT sequences are encoded
by the proposed operator LVPfull-TOP, an extension of local vector pattern
operator to full-direction on three orthogonal planes in order to exploit the en-
tire reactions between motion points and their neighbors. In addition, we also
introduced motion angle patterns of directional trajectories to capture the angle
vector of pairs of their motion points as a complementary feature for texture
representation in order to make the proposed descriptor more robust. Evalua-
tions on different DT datasets have demonstrated that the proposed framework
significantly outperforms recent state-of-the-art results. A combination between
LVP and a filtering technique [34] will be the subject of a future work.
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31. Péteri, R., Fazekas, S., Huiskes, M.J.: Dyntex: A comprehensive database of dy-
namic textures. Pattern Recognition Letters 31(12) (2010) 1627–1632

32. Qi, X., Li, C.G., Zhao, G., Hong, X., Pietikainen, M.: Dynamic texture and scene
classification by transferring deep image features. Neurocomputing 171 (2016)
1230 – 1241

33. Ren, J., Jiang, X., Yuan, J., Wang, G.: Optimizing LBP structure for visual
recognition using binary quadratic programming. IEEE Signal Processing Letters
21(11) (2014) 1346–1350

34. Nguyen, T.P., Vu, N., Manzanera, A.: Statistical binary patterns for rotational
invariant texture classification. Neurocomputing 173 (2016) 1565–1577


	Directional Beams of Dense Trajectories for Dynamic Texture Recognition

