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Abstract

This paper deals with the kinematic analysis and enumeration of singularities
of the six degree-of-freedom 3-RPS-3-SPR series-parallel manipulator. The
characteristic tetrahedron of the S-PM is established, whose degeneracy is
bijectively mapped to the serial singularities of the S-PM. Study parametriza-
tion is used to determine six independent parameters that characterize the
S-PM and the direct kinematics problem is solved by mapping the transfor-
mation matrix between the base and the end-effector to a point in P

7. The
inverse kinematics problem of the 3-RPS-3-SPR series-parallel manipulator
amounts to find the location of three points on three lines. This problem
leads to a minimal octic univariate polynomial with four quadratic factors.

Keywords: Series-parallel manipualtors; S-PM; Singularities; character-
istic tetrahedron; inverse kinematics; direct kinematics

1 Introduction

Serial and parallel manipulators (SM and PM) have received a lot of interest
for the last few decades due to the high stiffness properties of parallel ma-
nipulators1 and large workspace of serial manipulators.2 Hence a marriage
between serial and parallel manipulators with a hope to reap the merits of
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both, has led to hybrid manipulators.3–9 A hybrid manipulator is a serial link-
age mounted on a parallel manipulator and vice-versa or a serial arrangement
of two or more parallel manipulators, known as a Series-Parallel Manipulator
(S-PM). As much as it is regarded for its merits, a S-PM also bears the demer-
its of its constituent manipulators in the sense that its kinematic modeling
and singularity analysis are more complicated. Various approaches have been
proposed in the literature to analyze S-PMs: Shahinpoor5 solved the direct
and inverse kinematics of modular 3-axis parallel manipulators mounted in
series as an n-axis S-PM. Romdhane8 performed the forward displacement
analysis of a Stewart-like S-PM. Tanev3 studied a novel 6 degrees of freedom
(dof) S-PM and derived the closed-form solutions to its forward and inverse
kinematics. Moreover, Zheng et al.9 obtained closed-form kinematic solu-
tions for the design of a 6-dof S-PM composed of a 3-UPU translational PM
and a 3-UPU rotational PM mounted in series. In most of these S-PMs, the
constituent modules possess the degrees of freedom that are pure rotations or
translations. Hence, each module can be replaced by a set of equivalent lower
kinematic pairs that can simplify the understanding of the S-PM behaviour.
There exist other S-PMs in which the PMs that constitute them have their
degrees of freedom coupled and hence give rise to parasitic motions. Hu,
Lu and Alvarado10–12,14,15 have contributed considerably to the design and
analysis of this kind of series-parallel manipulators. Lu and Hu11 pursued the
kinematic analysis of a 2(SP+SPR+SPU) S-PM and plotted its workspace.
They also performed the static analysis10 of S-PMs with k-PMs in series. In
addition, Hu14 formulated the Jacobian matrix for S-PMs as a function of
Jacobians of the individual parallel modules. Alvarado12 used screw theory
and the principle of virtual work to carry out the kinematic and dynamic
analysis of a 2-(3-RPS) S-PM. The 3-RPS-3-SPR S-PM is another example
of a S-PM composed of two parallel modules with coupled degrees of free-
dom. The proximal module is the 3-RPS parallel mechanism which performs
a translation and two non pure rotations about non fixed axes, which induce
two translational parasitic motions16 while the distal module is the 3-SPR
PM that has the same type of dof.24 Hu et al.13 analyzed the workspace of
this manipulator. Alvarado et al.15 erroneously claimed that this S-PM has
5 dof. The reader is referred to as Nayak et al.17 for a better understand-
ing of the mobility of this S-PM. Nayak et al.17 proved that the full-cycle
mobility of this manipulator is equal to six. Nonetheless, there is very little
research on the singularities of S-PMs. It is known that if any of the parallel
modules are in a singular configuration, the S-PM is also singular3 but the
singularities that arise due to the serial arrangement of the PMs are generally
left out. This paper focuses on the enumeration of those serial singularities
in the 3-RPS-3-SPR S-PM. It is shown that six independent parameters can
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be used to describe the kinematics of this manipulator. Furthermore, direct
and inverse kinematics problems for the 3-RPS-3-SPR S-PM are solved using
Study parametrization.

The paper is organized as follows : The manipulator under study is de-
scribed in Section 2. Six independent parameters that characterize the S-PM
are determined in Section 3. Section 4 presents the singularities of the S-PM,
while pointing out its serial singular configurations. Section 5 and 6 deal with
the direct and inverse kinematics problems of the 3-RPS-3-SPR S-PM.

2 Architecture of the 3-RPS-3-SPR series par-

allel manipulator

The architecture of the 3-RPS-3-SPR S-PM under study is shown in Fig. 1.
It consists of a proximal 3-RPS PM module and a distal 3-SPR PM module.
The 3-RPS PM is composed of three legs each containing a revolute, a pris-
matic and a spherical joint mounted in series, while the legs of the 3-SPR
PM have these lower pairs in reverse order. Thus, the three equilateral trian-
gular shaped platforms are the fixed base, the coupler and the end effector,
coloured brown, green and gray, respectively. The vertices of these platforms
are named Ai, Bi and Ci, i = 1, 2, 3, respectively. Hereafter, the subscript
0 corresponds to the fixed base, 1 to the coupler platform and 2 to the end-
effector. A coordinate frame Fi is attached to each platform such that its
origin Oi lies at its circumcenter. The coordinate axes, xi points towards the
vertex P1, P = A,B,C yi is parallel to the opposite side P3P2 and by the
right hand rule, zi is normal to platform plane. Besides, the circum-radius
of the i-th platform is denoted as hi. pi and qi, i = 1, ..., 6 are unit vectors
along the prismatic joints while ui and vi, i = 1, ..., 6 are unit vectors along
the revolute joint axes. αi is the plane passing through Ai with its normal
along ui. Similarly, βi is the plane passing through Ci with its normal along
vi. The spherical joint center Bi is constrained to lie in planes αi and βi

simultaneously.

3 Parametric representation of the 3-RPS-3-

SPR series-parallel manipulator

This section describes the parametrization of the 3-RPS-3-SPR series-parallel
manipulator shown in Fig. 1. It will be shown that six independent param-
eters are sufficient to describe the position and orientation of the moving
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Figure 1: A 3-RPS-3-SPR series-parallel manipulator

4



platform. These parameters are obtained by individually parametrizing the
proximal and the distal modules.
Study’s kinematic mapping18 maps each spatial Euclidean displacement γ
of SE(3) onto a point in 7-dimensional projective space, p ∈ P

7. In this
parametrization, a point [x, y, z] is transformed to [x′, y′, z′] according to:

[1, x′, y′, z′]T = M[1, x, y, z]T (1)

where, the matrix M ∈ SE(3) is represented as:

M =

[

x0
2 + x1

2 + x2
2 + x3

2 0T
3×1

MT MR

]

(2)

MT =





−2x0y1 + 2x1y0 − 2x2y3 + 2x3y2
−2x0y2 + 2x1y3 + 2x2y0 − 2x3y1
−2x0y3 − 2x1y2 + 2x2y1 + 2x3y0



 (3)

MR =





x0
2 + x1

2 − x2
2 − x3

2 −2x0x3 + 2x1x2 2x0x2 + 2x1x3

2x0x3 + 2x1x2 x0
2 − x1

2 + x2
2 − x3

2 −2x0x1 + 2x3x2

−2x0x2 + 2x1x3 2x0x1 + 2x3x2 x0
2 − x1

2 − x2
2 + x3

2





(4)

where MT and MR represent the translational and rotational parts of the
transformation matrix M respectively. The parameters xi, yi, i ∈ {0, ..., 3}
present in the transformation matrix M are called the Study-parameters. An
Euclidean transformation can be represented by a point p ∈ P

7 if and only
if the following equation and inequality are satisfied:

x0y0 + x1y1 + x2y2 + x3y3 = 0 (5)

x0
2 + x1

2 + x2
2 + x3

2 6= 0 (6)

All the points that satisfy the Equation (5) belong to the 6-dimensional Study
quadric, S2

6 . To avoid the inequality (6), usually a normalization condition
xi = 1, i = 0, 1, 2 or 3 or x2

0 + x2
1 + x2

2 + x2
3 = 1 is used.

A geometric constraint for each leg of the 3-RPS parallel manipulator is that
the spherical joint center is restricted to move in the plane whose normal
is directed along the revolute joint axis. Let f0, f1, f2, f3, g0, g1, g2, g3 be the
Study parameters. Using Study’s kinematic mapping,18,19 three plane con-
straint equations Ei = 0, i = 1, 2, 3 can be written as a function of Study
parameters fi, gi, i = 0, 1, 2, 3. Along with the Study’s quadric E4, there are
four constraint equations irrespective of the actuation scheme:

E1 := f0f3 = 0 (7)
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E2 := f1
2h1 − h1f2

2 + 2 f0g1 − 2 f1g0 − 2 f3g2 + 2 g3f2 = 0 (8)

E3 := −2 f0f3h1 + f1f2h1 − f0g2 + f1g3 + f2g0 − f3g1 = 0 (9)

E4 := f0g0 + f1g1 + f2g2 + f3g3 = 0 (10)

where, h1 is the circum-radius of the coupler platform. A different set of
Study parameters, [c0, c1, c2, c3, d0, d1, d2, d3] are considered to parameterize
the distal module to distinguish the two modules. The constraint equations
for the 3-SPR PM can be obtained by considering the conjugate of the dual
quaternion of the 3-RPS PM.20 In other words, assigning

f0 = c0, f1 = −c1, f2 = −c2, f3 = −c3, g0 = d0, g1 = −d1, g2 = −d2, g3 = −d3
(11)

in Eq. (7) to (10) yields the necessary equations.
Each module is a three dof parallel manipulator and to express these mobili-
ties in terms of three parameters, the mechanism should be considered in one
of its operation modes. For example, for the 3-RPS module, f3 = 0 represents
one of its two operation modes.21 In this operation mode, f0 can never be
zero. This fact can be exploited to avoid any point [f0, f1, f2, f3, g0, g1, g2, g3]
of P7 to lie on the exceptional generator f0 = f1 = f2 = f3 = 0. This is
done by using the normalizing condition, f0 = 1. By substituting f3 = 0 and
f0 = 1 in Eqs. (8) to (10), g0, g2 and g3 can be linearly solved as follows:

g0 = 1/2
f1h1

(

f1
2 − 3 f2

2
)

f1
2 + f2

2 + 1
(12)

g2 = −1/2
f1

(

2 f1
2g1 + f1

2h1 + 2 f2
2g1 − 3 f2

2h1 + 2 g1
)

f2
(

f1
2 + f2

2 + 1
) (13)

g3 = −1/2
3 f1

2f2
2h1 − f2

4h1 + 2 f1
2g1 + f1

2h1 + 2 f2
2g1 − f2

2h1 + 2 g1

f2
(

f1
2 + f2

2 + 1
) (14)

Thus, the Euclidean transformation matrix for the proximal module in its
operation mode f3 = 0 can be written as a function of only three parameters
f1, f2 and g1:

T1 =



























1 0 0 0

h1

(

f1
2 − f2

2
)

f1
2 + f2

2 + 1

f1
2 − f2

2 + 1

f1
2 + f2

2 + 1

2f1f2

f1
2 + f2

2 + 1

2f2

f1
2 + f2

2 + 1

− 2h1f2f1

f1
2 + f2

2 + 1

2f1f2

f1
2 + f2

2 + 1
−f1

2 − f2
2 − 1

f1
2 + f2

2 + 1
− 2f1

f1
2 + f2

2 + 1

2f1
2g1 + f1

2h1 + 2f2
2g1 − f2

2h1 + 2 g1

f2
(

f1
2 + f2

2 + 1
) − 2f2

f1
2 + f2

2 + 1

2f1

f1
2 + f2

2 + 1
−f1

2 + f2
2 − 1

f1
2 + f2

2 + 1



























(15)

Similarly for the distal 3-SPR module in its operation mode corresponding to
c3 = 0, normalizing c0 = 1 and eliminating d0, d2 and d3, the transformation
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matrix can be derived as follows:

T2 =





































1 0 0 0

−
c1

4h1 − 6 c1
2c2

2h1 + c2
4h1 + 4 c1

2d1
− c1

2h1 + 4 c2
2d1 + c2

2h1 + 4 d1

(c12 + c22 + 1)2
c1

2 − c2
2 + 1

c12 + c22 + 1

2c1c2
c12 + c22 + 1

2c2
c12 + c22 + 1

−
2c1(2 c1

2c2
2h1 − 2 c2

4h1 − 2 c1
2d1

+ c1
2h1 − 2 c2

2d1 − 2 c2
2h1 − 2 d1)

(c12 + c22 + 1)2 c2

2c1c2
c12 + c22 + 1

−c1
2 − c2

2 − 1

c12 + c22 + 1
− 2c1
c12 + c22 + 1

2 c1
4d1 − c1

4h1 + 4 c1
2c2

2d1 + 6 c1
2c2

2h1

+ 2 c2
4d1 − c2

4h1 + c1
2h1 − c2

2h1 − 2 d1

(c12 + c22 + 1)2 c2
− 2c2
c12 + c22 + 1

2c1
c12 + c22 + 1

−c1
2 + c2

2 − 1

c12 + c22 + 1





































(16)

Therefore, a transformation matrix between the base frame F0 and the mov-
ing frame F2 can be expressed as T = T1.T2 and is a function of six indepen-
dent parameters. For instance, when both the modules are in the operation
mode represented by f3 = 0 and c3 = 0, T is a function of f1, f2, g1, c1, c2
and d1 and as a result , indicates that it is indeed a six dof mechanism. All
possible configurations of the S-PM with its individual modules in different
operation modes, include the following cases:

Case a. c3 = f3 = 0

Case b. c0 = f0 = 0

Case c. c0 = f3 = 0

Case d. c3 = f0 = 0 (17)

It will be shown in the subsequent sections how simple it is to adapt the
results of Case a. to the remaining three cases.

Consequently, matrices T1,T2 and T can be used to express the co-
ordinates of all the vectors in one frame, preferably the fixed co-ordinate
frame F0 as follows:

0rA1
= [1, h0, 0, 0]

T ; 0rA2
= [1, −h0

2
,

√
3h0

2
, 0]T ; 0rA3

= [1, −h0

2
, −

√
3h0

2
, 0]T

1rB1
= [1, h1, 0, 0]

T ; 1rB2
= [1, −h1

2
,

√
3h1

2
, 0]T ; 1rB3

= [1, −h1

2
, −

√
3h1

2
, 0]T

2rC1
= [1, h2, 0, 0]

T ; 2rC2
= [1, −h2

2
,

√
3h2

2
, 0]T ; 2rC3

= [1, −h2

2
, −

√
3h2

2
, 0]T

0u1 = = [0, 0, 1, 0]T ; 0u2 = [1, −
√
3

2
, −1

2
, 0]T ; 0u3 = [1,

√
3

2
, −1

2
, 0]T

2v1 = = [0, 0, 1, 0]T ; 2v2 = [1, −
√
3

2
, −1

2
, 0]T ; 2v3 = [1,

√
3

2
, −1

2
, 0]T

0rBi
= T1

1rBi
; 0rCi

= T 2rCi
; 0vi = T 2vi, i = 1, 2, 3. (18)

7



4 Singularities of the 3-RPS-3-SPR S-PM

It is noticed that the 3-RPS-3-SPR series-parallel manipulator can reach two
kinds of singularities: a parallel singularity in which at least one of its mod-
ules is in a parallel singularity or a serial singularity1 which occurs due to the
serial arrangement of the two modules. This section briefs the derivation of
the forward and inverse kinematic Jacobian matrices with a hope to find out
if a given configuration is singular, at least numerically. It also explains a
geometrical approach to determine the singularities in which the character-
istic tetrahedron22 of the S-PM under study can be expressed algebraically.
The bijective mapping between the degeneracy of the tetrahedron and serial
singularities can then be exploited to enlist all the serial singularities.

4.1 Forward and inverse kinematic Jacobian matrices

If the proximal (P ) and distal (D) modules are considered individually, the
twist i.e., angular velocity vector of a body and linear velocity vector of a
point on the body, of their respective moving platform with respect to their
fixed base can be expressed as a function of the actuated joint rates23 as
follows:

AP
0tP1/0 = BP ṗ13 =⇒

















(0rO1A1
×0 p1)

T 0pT
1

(0rO1B1
×0 p2)

T 0pT
2

(0rO1C1
×0 p3)

T 0pT
3

(0rO1A1
×0 u1)

T 0uT
1

(0rO1B1
×0 u2)

T 0uT
2

(0rO1C1
×0 u3)

T 0uT
3

















[ 0ωP
1/0

0vP
O1/0

]

=

[

I3×3

03×3

]





ṗ1
ṗ2
ṗ3





(19)

AD
1tD2/1 = BDq̇13 =⇒

















(1rO2A1
×1 q1)

T 1qT
1

(1rO2B1
×1 q2)

T 1qT
2

(1rO2C1
×1 q3)

T 1qT
3

(1rO2A1
×1 v1)

T 1vT
1

(1rO2B1
×1 v2)

T 1vT
2

(1rO2C1
×1 v3)

T 1vT
3

















[ 1ωD
2/1

1vD
O2/1

]

=

[

I3×3

03×3

]





q̇1
q̇2
q̇3





(20)

where, 0tP1/0 is the twist of the coupler with respect to the base expressed

in F0 and 1tD2/1 is the twist of the end effector with respect to the coupler
expressed in F1. AP and AD are called forward Jacobian matrices and they

1A serial singularity is defined here as a configuration in which the S-PM experiences
a loss of degree(s) of freedom or, equivalently, a drop in the order of the twist system

8



incorporate the actuation and constraint wrenches of the 3-RPS and 3-SPR
PMs, respectively.23 BP and BD are called inverse Jacobian matrices and
they are the result of the reciprocal product between wrenches of the mech-
anism and twists of the joints for the 3-RPS and 3-SPR PMs, respectively.
ṗ13 = [ṗ1, ṗ2, ṗ3]

T and q̇13 = [q̇1, q̇2, q̇3]
T are the prismatic joint rates of the

proximal and distal modules, respectively. krPQ denotes the vector pointing
from a point P to point Q expressed in frame Fk.

It is noteworthy that if matrix AP (resp. AD) is singular, then the
proximal (resp. distal) module will be in a parallel singular configuration.
The entries of matrices AP and AD represent the Plücker coordinates of six
independent lines in P

3. When any two or more of these lines are dependent,
the configuration corresponds to a parallel singularity. Many scientific papers
deal with this singularity type of both modules.21,24–30 It is noteworthy that
the 3-RPS-3-SPR S-PM is in a parallel singularity if and only if any of its
modules is in a parallel singularity as proved in the following subsection.

On the other hand, due to the serial stacking of the 3-RPS and 3-SPR
PMs, the S-PM can also have some serial singular configurations even if the
individual modules are non-singular2. Hence, a kinematic Jacobian matrix
of the S-PM is necessary to explore the serial singularities. If both AP and
AD are nonsingular, the so called serial Jacobian matrix of the S-PM can be
expressed as follows:17

JS-PM =
[

2Ad1 A
−1
P BP

0R1 A
−1
D BD

]

(21)

with 2Ad1 =

[

I3×3 03×3

−0r̂O1O2
I3×3

]

, 0r̂O1O2
=





0 −0zO1O2

0yO1O2

0zO1O2
0 −0xO1O2

−0yO1O2

0xO1O2
0





and 0R1 =

[

0R1 I3×3

I3×3
0R1

]

where, 2Ad1 is called the adjoint matrix. 0r̂O1O2
is the cross product matrix

of vector 0rO1O2
= [0xO1O2

,0 yO1O2
,0 zO1O2

], pointing from point O1 to point O2

expressed in frame F0.
0R1 is called the augmented rotation matrix between

frames F0 and F1 and it contains the rotation matrix 0R1 from frame F0 to
frame F1. JS-PM fits into the kinematic model of the S-PM in the following
way:

0t2/0 = JS-PM

[

ṗ
q̇

]

(22)

where 0t2/0 is the twist of the moving platform with respect to the fixed base
expressed in F0 and ṗ = [ṗ1, ṗ2, ṗ3]

T and q̇ = [q̇1, q̇2, q̇3]
T are the joint rates

2The 3-RPS and the 3-SPR PMs do not have any serial singularities as long as the
prismatic link lengths pi and qi, i = 1, 2, 3 do not vanish
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of the proximal and the distal modules, respectively. The rank of this matrix
provides the local mobility of the S-PM.17 Moreover, when JS−PM is singu-
lar, the series-parallel manipulator at hand is in a serial singularity. When a
manipulator configuration is given, it is straightforward to calculate numer-
ically the serial kinematic Jacobian matrix from Eq. (21) and to deduce if it
is a serial singular configuration. However, it is tedious to derive a symbolic
or an implicit equation that could be used to enlist all serial singularities.
Therefore, a geometric approach is adopted.

F
0

F
n

F
1

Module 1

Module 2

Module n

F
2

F
n-1

Figure 2: n parallel mechanisms (named modules) arranged in series

Equations (21) and (22) can be extended to a series-parallel manipulator
with n number of modules in series as shown in Fig. 2. Thus, the moving
platform twist with respect to the fixed base expressed in coordinate frame
F0 is as follows :

0tn/0 =
n

∑

i=1

0R(i−1)
nAdi

(i−1)tMi

i/(i−1) = J6×3n











ρ̇M1

ρ̇M2

...
ρ̇Mn











with 0Ri =

[

0Ri I3×3

I3×3
0Ri

]

, nAdi =

[

I3×3 03×3

−(i−1)r̂OiOn
I3×3

]

and

J6×3n =
[

nAd1 A
−1
M0

BM0

0R1
nAd2A

−1
M1

BM1
... 0Rn A

−1
Mn

BMn

]

(23)
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where, J6×3n is the 6× 3n kinematic Jacobian matrix of the n-module S-PM
manipulator. Mi stands for the i-th module, AMi

and BMi
are the forward

and inverse Jacobian matrices of Mi, respectively. ρ̇Mi
is the vector of the

actuated prismatic joint rates for the i-th module.

4.2 Twist and wrench systems of the 3-RPS-3-SPR
PM

Each leg of the 3-RPS and 3-SPR parallel manipulators is composed of three
joints, but the order of the limb twist system is equal to five and hence there
exist five twists associated to each leg. Thus, the constraint wrench system
of the i-th leg of the 3-RPS and 3-SPR parallel modules is spanned by a
pure force W i

P and W i
D shown as the black and red vectors, respectively in

Fig. 4. These forces are reciprocal to all the joint twists in each leg, in the
respective modules. The three forces in each module span its wrench system
WP or WD which is the third special three-system of screws:16

0WP =
3

⊕

i=1

0W i
P = span

{[

0u1
0rO2B1

×0 u1

]

,

[

0u2
0rO2B2

×0 u2

]

,

[

0u3
0rO2B3

×0 u3

]}

0WD =
3

⊕

i=1

0W i
D = span

{[

0v1
0rO2B1

×0 v1

]

,

[

0v2
0rO2B2

×0 v2

]

,

[

0v3
0rO2B3

×0 v3

]}

0WS−PM = 0WP ∩ 0WD

dim(0WP ) = dim(0WD) = 3

(24)

Alternatively, the twist system of the 3-RPS-3-SPR S-PM is the union of
the twist systems of two modules. The twist systems of each module are the
orthogonal vector subspaces of the respective wrench systems and are also
the third special three-system of screws:16

0TP =0 W⊥

P

0TD =0 W⊥

D
0TS−PM = 0TP ∪ 0TD

dim(0TP ) = dim(0TD) = 3

(25)

The mobility of the 3-RPS-3-SPR S-PM is equal to the dimension of the
overall twist system, dim( 0TS−PM). For a general configuration, when the
twist systems of each module are independent i.e., dim(0TP ∩ 0TD) = 0, the
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mobility was established to be six in [17]:

dim( 0TS−PM) = dim(0TP ∪ 0TD) = dim(0TP ) + dim(0TD)− dim(0TP ∩ 0TD)

= dim(0TP ) + dim(0TD)

= 3 + 3 = 6

(26)

As a conclusion, the following theorem is stated.

Theorem 1 A parallel singularity of an S-PM arises if and only if at least
one of its modules reaches a parallel singularity.

Proof: When the actuators are blocked, the twist system of any module in
a parallel singularity is of order more than zero or, equivalently, the wrench
system is of order less than six. The sufficient condition is that if at least one
module is in a parallel singularity, then the S-PM is in a parallel singularity.
In this case, from Eq. (26), if the order of the twist system is more than
zero for any module, it is reflected in the order of the twist system of the
whole S-PM. The necessary condition can be proved as follows. If none of
the modules is in a parallel singularity, the wrench system of each module
is of order six when the actuated joints are blocked. Thus, the order of the
wrench system of the full S-PM is also of order six and thus the S-PM is not
in a parallel singularity.

4.3 Enumeration of serial singularities

A serial singularity is encountered

• when there exists a wrench common to both the modules of the S-PM
or, equivalently, if the dimension of the intersection of the two wrench
systems is more than zero:

dim(0WP ∩ 0WD) > 0 (27)

• if the union of the two wrench systems is of dimension lower than six.
Indeed,

dim(0WP ∪ 0WD) = dim(0WP ) + dim(0WD)− dim(0WP ∩ 0WD)

= 3 + 3− dim(0WP ∩ 0WD) (28)

From Eqs. (27) and (28), dim(0WP ∪ 0WD) < 6

12



A straightforward sufficient condition for Eq. (27) or (28) to hold is that
at least one revolute joint axis in the base is parallel to the corresponding
revolute joint axis in the moving platform. In other words, 0ui || 0vi for any
i = 1, 2, 3. For the i-th leg, by equating the coordinates of vectors 0ui and

0vi,
three systems of equations are obtained from Eq. (18) in parameters c1, c2, f1
and f2. Solving the system of equations for three of the four parameters, say,
c1, f1 and c2 leads to the following algebraic expressions corresponding to the
serial singular configurations:

0u1 || 0v1 =⇒ c1 = 0, f1 = 0
0u2 || 0v2 =⇒ c1 = −

√
3c2, f1 = −

√
3f2

0u3 || 0v3 =⇒ c1 =
√
3c2, f1 =

√
3f2

0ui || 0vi ∀i = 1, 2, 3 =⇒ c1 = −f1, c2 = −f2 (29)

When all the base revolute joint axes are parallel to their corresponding
platform revolute joint axes, the fixed base and the moving platform are
parallel to each other. In this case, the transformation matrix T is the
Identity matrix resulting in T1 = T−1

2 . Figure 3 shows the four cases for
arbitrary design parameters. In the first three cases, the constraint wrench
τ0 prevents the moving-platform from rotating about its axis. Thus, the
manipulator has only 5 dof. When the base is parallel to the moving platform,
the constraint wrench system of the whole manipulator is spanned by three
forces τ01, τ02 and τ03 leading to an instantaneous three dof S-PM. The degrees
of freedom include a pure vertical translation and two non-pure horizontal
rotations. In this case, the last condition shown in (29) can be substituted in
the expression for T to find the coordinates of the platform circumcenter O2

to be [0, 0,
2(d1 + g1)

f2
], where only a z-translation is allowed. There can be

other similar configurations in which the base and the platform are parallel
with translations along all three coordinate axes. It is noteworthy that the
algebraic relations governing the serial singular configurations described so
far are independent of the parameters h0, h1, h2, g1 and d1.

There exist other serial singular configurations in which the constraint
wrenches at each spherical joint are not coincident and hence form the first
special two system of screws.16 The following section describes a methodology
to determine these singularities.

4.4 Characteristic tetrahedron of serial singularities

At each spherical joint, if the constraint forces are not coincident, they form
a force pencil. A characteristic tetrahedron is defined combining the planes
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of the three pencils along with the coupler platform plane passing through
the spherical joints as shown in Fig. 4.
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Figure 4: The characteristic tetrahedron of the 3-RPS-3-SPR S-PM

A theorem proposed by Uphoff et al.. in [22] is used to identify the
remaining serial singularities.

Theorem 2 ((ref. [22])) A platform manipulator is in a wrench singularity
if and only if the characteristic tetrahedron is singular

In this context, the wrench singularities correspond to the serial singularities
of the S-PM. The method was initially designed to determine the parallel
singularities of a parallel manipulator and the novelty of this paper lies in
using the same method to enumerate serial singularities of a S-PM. The
homogeneous co-ordinates of the planes (the normal vector to the plane, wi

and a point on the plane are known) representing the faces of the tetrahedron
are expressed as follows:

Π1 : a = [w01, w1] = [−rTB1
(u1 × v1), (u1 × v1)

T ]

15



Π2 : b = [w02, w2] = [−rTB2
(u2 × v2), (u2 × v2)

T ]

Π3 : c = [w03, w3] = [−rTB3
(u3 × v3), (u3 × v3)

T ]

Π4 : d = [w04, w4]

= [−rTB1
((rB1

− rB2
)× (rB1

− rB3
)), ((rB1

− rB2
)× (rB1

− rB3
))T ](30)

All the vectors are expressed in frame F0. Hence, a serial singularity occurs
when the determinant of the matrix of plane coordinates [ab cd] vanishes.
A similar approach using Grassman-Cayley algebra was used to find singu-
larities of a six-dof manipulator, 3-PPPS in [31]. From Eqs. (18) and (30),

|ab cd| = − 27 (c1f1 + c2f2 − 1)h1
3

2 (c12 + c22 + 1)3
(

f1
2 + f2

2 + 1
)3 (4 c1

4f1f2
2 − 8 c1

3c2f1
2f2 − 8 c1

3c2f2
3

+ 4 c1
3f1

2f2
2 − 4 c1

3f2
4 + 4 c1

2c2
2f1

3 + 12 c1
2c2

2f1f2
2 − 8 c1

2c2f1
3f2

+ 4 c1c2
2f1

4 + 12 c1c2
2f1

2f2
2 − 4 c2

4f1
3 − 8 c2

3f1
3f2 + c1

4f1 − 8 c1
3c2f2

+ 3 c1
3f1

2 − 3 c1
3f2

2 + 6 c1
2c2

2f1 − 6 c1
2c2f1f2 + 3 c1

2f1
3 + 3 c1

2f1f2
2

+ 3 c1c2
2f1

2 − 3 c1c2
2f2

2 − 6 c1c2f1
2f2 − 6 c1c2f2

3 + c1f1
4 + 6 c1f1

2f2
2

− 3 c1f2
4 − 3 c2

4f1 − 6 c2
3f1f2 − 3 c2

2f1
3 − 3 c2

2f1f2
2 − 8 c2f1

3f2 + c1
3

+ 3 c1
2f1 − 3 c1c2

2 − 6 c1c2f2 + 3 c1f1
2 − 3 c1f2

2 − 3 c2
2f1 − 6 c2f1f2

+ f1
3 − 3 f1f2

2) (31)

Thus, the points on the surface |ab cd| = 0 correspond to serial singular
configurations for the 3-RPS-3-SPR S-PM. From Eq. (31), the manipulator
is in a serial singular configuration when either c1f1 + c2f2 − 1 = 0 or the
second factor, a 7 degree polynomial, p7(c1, f1, c2, f2) = 03. In order to
enumerate different serial singularities, the conditions for rank deficiency of
the matrix [ab cd] listed in Table 1 of [22] are studied.

Case 1: 4 faces meet in a point Two subcases must be considered de-
pending on whether the point of intersection is real or lies at infinity. In
both cases, the variety spanned by the 6 constraint wrench lines is a general
linear complex32 and the 3-RPS-3-SPR S-PM instantaneously behaves as a 5
dof mechanism.
a. A real point: Considering the second factor of Eq. (31) p7(c1, c2, f1, f2),
substituting arbitrary values for any three of the four parameters and finding

3A 3D animation of the singular surface by varying c1, c2, f1 and f2 from -3 to 3 is up-
loaded in https://www.dropbox.com/s/dzif65bhx59nxd6/sing1.mp4?dl=0 for the first fac-
tor of Eq. (31) and in https://www.dropbox.com/s/koezrl6xom3pmmr/singp7.mp4?dl=0
for the second factor of Eq. (31).
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the fourth one shows that the faces of the characteristic tetrahedron inter-
sect in a point. One such configuration is shown in Fig. 5a. Point P is the
intersection point of the four planes Πj, j = 1, 2, 3, 4.
b. A point at infinity: This happens when the intersection lines of the
planes are parallel. In other words, it is sufficient to check if the ideal point
(nothing but the point at infinity of a line) of one of these lines lies in the
other three planes. Let the ideal point of line of intersection, L12, of planes
Π1 and Π2 be P∞

12 . It is sufficient to check if this point lies on the line of
intersection, L34, of planes Π3 and Π4. However, this approach is computa-
tionally expensive and yields no results. Therefore, it is first checked whether
point P∞

12 lies on the line of intersection, L13, of planes Π1 and Π3 as follows:

rP∞

12
: (0, l12) = (0,w1 ×w2) (32)

L13 : (l13, l13) = (w1 ×w3, w01w3 − w03w1) (33)

r∞P∞

12

∧ L12 = 0 : w3 · l12 = 0, −w03l12 +w3 × l12 = 0 (34)

Solving Eq. (34) for c1, f1, c2 and f2 yields the relationship c1f1+c2f2−1 = 0
or c1f2 − c2f1 = 0. The former relationship corresponds to the intersection
of the planes in a real line. It will be discussed in the following paragraph.
The latter corresponds to the configuration where the planes Π1,Π2 and Π3

share the same ideal point. It can also mean that they have a common line
of intersection at infinity, which will be dealt with in the next paragraph.
In other words, their lines of intersection are parallel. Formulating another
equation such that the point P∞

12 lies in the plane Π4 and solving the two
equations results in the following relationships:

c1f2 − c2f1 = 0
rP∞

12
· ([w04, w4]) = 0

}

=⇒

f1 = − c1
c21 + c22

, f2 = − c2
c21 + c22

OR

c1 = − f1
f 2
1 + f 2

2

, c2 = − f2
f 2
1 + f 2

2

(35)

If the parameters c1, c2, f1 and f2 satisfy the foregoing conditions, the S-
PM is in a serial singularity with the planes of its characteristic tetrahedron
intersecting in a point at infinity. One such configuration is depicted in
Fig. 5b.

Case 2: 3 sides meet in a line : The first factor of Eq. (31), c1f1+c2f2−
1 = 0 corresponds to the serial singularity in which the variety spanned by
the 6 constraint wrench lines is a special linear complex32 and the mechanism
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Figure 5: Serial singularity when all faces of the characteristic tetrahedron
meet in a point

has 5 dof. To prove that c1f1 + c2f2 = 1 corresponds to the singularity when
3 sides of the characteristic tetrahedron meet in a line, two sub cases are
considered when the line of intersection of the three sides is
a. A real line: The condition c1f1 + c2f2 − 1 = 0 is derived using line
geometry. For a line intersection of the three planes, it is sufficient to prove
the incidence of the intersection line of first two sides with the third one.
The Plücker coordinates of the line of intersection, L12 of planes Π1 and Π2

are calculated. The line L12 and the plane Π3 are incident if and only if the
following conditions are satisfied.33

L12 : (l12, l12) = (w1 ×w2, w01w2 − w02w1) (36)

Π3 ∧ L12 = 0 : w3 · l12 = 0, −w03l12 +w3 × l12 = 0 (37)

The four equations in Eq. (37) are solved for parameters c1, c2, f1 and f2 to

obtain the solution f2 = −c1f1 − 1

c2
with arbitrary values for c1, c2 and f1.

It means that if the choice of these parameters are bound by the relation
c1f1 + c2f2 − 1 = 0, the three sides intersect in a line and is consistent
with the first factor of Eq. (31). Figure 6a shows one of the serial singular
configurations in which the three sides meet in a line L. It implies that six
constraint forces intersect the line L and hence belong to a singular linear
line complex.
b. A line at infinity: In this case, the side planes are all parallel to each
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Figure 6: Serial singular configurations when three sides of the characteristic
tetrahedron meet in a line

other which is possible only when the fixed base and the moving platform
planes are parallel to each other. Since the 3-RPS-3-SPR PM has 6 dof, the
only possibilities for the platform and the base to remain parallel is when
the moving platform has pure translational motions or has a rotation about
the z0-axis along with translational motions. The former case is studied
in Subsec. 4.3 where, corresponding revolute joint axes are parallel to each
other leading to a 3 dof freedom mechanism. The latter case is investigated
by considering the transformation matrix T, and forcing the rotation matrix
to be of pure rotation about z0-axis. This is done by equating T(2, 4) and
T(3, 4) to zero and solving for two of the four parameters c1, c2, f1 and f2:

T(2, 4) = −T(4, 2) = 0
T(3, 4) = −T(4, 3) = 0

}

=⇒

f1 =
c1

c21 + c22
, f2 =

c2
c21 + c22

OR

c1 =
f1

f 2
1 + f 2

2

, c2 =
f2

f 2
1 + f 2

2

(38)

The relations in Eq. (38) satisfy the equation c1f1 + c2f2 − 1 = 0. Hence,
this equation is a necessary and a sufficient condition for three sides to
have a common line of intersection and it instantaneously reduces the de-
gree of freedom of the S-PM at hand by 1. Furthermore, by substituting
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Figure 7: Can two sides and base of the characteristic tetrahedron of the
3-RPS-3-SPR S-PM meet in a line?

Eq. (38) in T, the magnitude of rotation about the z0-axis is given by

σ = tan−1(
2c1c2
c22 − c21

) = tan−1(
2f1f2
f 2
2 − f 2

1

). A serial singular configuration in

which σ = 67◦ is shown in Fig. 6b. Note that in theory the platform can
have an upright position or an upside down position and yet stay parallel to
the base.

Case 3: 2 sides and base meet in a line Considering a side plane
Πi, i = 1, 2, 3 and the base plane Π4, their line of intersection must pass
through Bi. To prove if Πi, Πj and Π4, i, j = 1, 2, 3 have a common line of
intersection, it is sufficient to prove that the points Bi and Bj simultaneously
lie on the planes Πj and Πi, respectively. If there exists a line common to all
the three planes, it should be along BiBj as shown in Fig. 7. For instance,
if planes Π1, Π2 and Π4 are considered, simultaneous incidence of point B1

on Π2 and that of point B2 on Π1 must be satisfied and is expressed by the
following equations:

rB1
· ([w02, w2]) = 0 =⇒

− 2
√
3c1c2f1 − 2

√
3c1f1f2 + 3 c1

2f1 + 3 f1
2c1 − 3 f2

2c1 − 3 c2
2f1 − 3 c1 − 3 f1 = 0

(39)

rB2
· ([w01, w1]) = 0 =⇒

− 4
√
3c1c2f2 − 4

√
3c2f1f2 + 4 c2c1f1 + 4 f2c1f1 + c1

√
3 +

√
3f1 − 3 c2 − 3 f2 = 0

(40)

Finding the Groebner basis of the polynomials in Eqs. (39) and (40) with
a graded reverse lexicographic ordering (tdeg in Maple) of the parameters
c1 <grlex c2 <grlex f1 <grlex f2, results in a basis of four polynomials. The
four equations can then be solved for c1, c2, f1 and f2. Two solutions are
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obtained, the first one turns out to be a complex solution and the second one
is exactly the last case of (29). The second solution should also be rejected
since it is assumed for this analysis that none of the faces of the characteristic
tetrahedron degenerates into a line. Also for other combinations of sides and
their intersections with the base plane, the following equations are solved for
the parameters:

rB2
· ([w03, w3]) = 0 =⇒

3 c1
2f2 − 2 c1c2f1 − 2 c1f1f2 − 3 c2

2f2 + 3 c2f1
2 − 3 c2f2

2 + 3 c2 + 3 f2 = 0
(41)

rB3
· ([w02, w2]) = 0 =⇒

c1
2f1 − 2 c1c2f2 + c1f1

2 − c1f2
2 − c2

2f1 − 2 c2f1f2 + c1 + f1 = 0 (42)

rB1
· ([w03, w3]) = 0 =⇒

− 4
√
3c1c2f2 − 4

√
3c2f1f2 − 4 c1c2f1 − 4 c1f1f2 + c1

√
3 +

√
3f1 + 3 c2 + 3 f2 = 0

(43)

rB3
· ([w01, w1]) = 0 =⇒

2
√
3c1c2f1 + 2

√
3c1f1f2 + 3 c1

2f1 + 3 c1f1
2 − 3 c1f2

2 − 3 c2
2f1 − 3 c1 − 3 f1 = 0

(44)

In each case, the solutions obtained are either complex or correspond to the
last case of (29), showing that the S-PM at hand cannot have a configuration
in which any two sides and the base of its characteristic tetrahedron meet in
a line.
Another approach to solve this case is by finding the condition for incidence
of an intersection line between two sides and the base:33

Lij : (lij, lij) = (wi ×wj, w0iwj − w0jwi) (45)

Π4 ∧ Lij = 0 : w4 · lij = 0, −w03lij +w4 × lij = 0, i = 1, 2, 3 (46)

Equation (46) does not yield any real or non-trivial solutions. As a result, it
is proved by contradiction that the 3-RPS-3-SPR S-PM cannot have a serial
singular configuration in which any two sides and the base of the character-
istic tetrahedron meet in a line.

Cases 4 and above The remaining cases in Table 1 of [22] include two
sides meet in a plane, one side and base meet in a plane, two sides and base
meet in a plane, two faces meet in a plane. Since the S-PM cannot attain a
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Table 1: Enumeration of serial singularities for the 3-RPS-3-SPR S-PM

Geometrical condition Algebraic expression Inst.dof Config. ex.
Parallel revolute joints

i. 0u1 || 0v1 c1 = 0, f1 = 0 5 Fig. 3a

ii. 0u2 || 0v2 c1 = −
√
3c2, f1 = −

√
3f2 5 Fig. 3b

iii. 0u3 || 0v3 c1 =
√
3c2, f1 =

√
3f2 5 Fig. 3c

iv.
parallel base and platform
(platform pure translation)

0ui || 0vi ∀i = 1, 2, 3
c1 = −f1, c2 = −f2 3 Fig. 3d

Degeneracy of the characteristic tetrahedron22

vi.
4 faces meet in a point

(general linear complex32)

a. a real point p7(c1, c2, f1, f2) = 0 (Eq. (31)) 5 Fig. 5a

b. a point at infinity c1 = − f1
f 2
1 + f 2

2

, c2 = − f2
f 2
1 + f 2

2

5 Fig. 5b

vi.
3 sides meet in a line

(special linear complex)

a. a real line c1f1 + c2f2 − 1 = 0 5 Fig. 6a

b. a line at infinity
parallel base and platform
(rotation about z0-axis)

c1 =
f1

f 2
1 + f 2

2

, c2 =
f2

f 2
1 + f 2

2

5 Fig. 6b

configuration of Case 3, it is certain that it cannot reach any configuration
corresponding to the remaining cases. For example, if two sides could meet
in a plane, this case should have appeared as a solution to Eqs. (39) and (40)
and in which case, there definitely would have existed a line of intersection
between the meeting plane and the base.

To this end, all possible serial singularities are listed in Tab. 1
It is recalled here that the singularity analysis performed in this sec-

tion is by considering both modules in the operation mode corresponding
to c3 = f3 = 0. In fact, there are three other possibilities, c0 = f0 = 0,
c0 = f3 = 0 and c3 = f0 = 0. For these cases, the algebraic expressions
for serial singularities can be obtained by the following replacements to the
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ones listed in Tab. 1. These replacements hold true only for the orientation
parameters. Favorably, the serial singular configurations for f3 = c3 = 0 ex-
pressed in Tab. 1 are only functions of orientation parameters ci, fi, i = 1, 2.

Case a. c3 = f3 = 0 : Listed in Tab. 1

Case b. c0 = f0 = 0 : f2 → −f1, f1 → f2, c1 → −c2, c2 → c1

Case c. c0 = f3 = 0 : c1 → −c2, c2 → c1

Case d. c0 = f3 = 0 : f2 → −f1, f1 → f2 (47)

Proof: For the 3-RPS (fi, i = 0, 1, 2, 3) and the 3-SPR (ci, i = 0, 1, 2, 3)
parallel manipulator modules, the orientation Study parameters can be ex-
pressed in terms of the Tilt and Torsion angles,34 azimuth (φ), tilt (θ) and
torsion (σ) as follows:

f0 = cos(
θ1
2
) cos(

σ1

2
) c0 = cos(

θ2
2
) cos(

σ2

2
)

f1 = sin(
θ1
2
) cos(φ1 −

σ1

2
) c1 = − sin(

θ2
2
) cos(φ2 −

σ2

2
)

f2 = sin(
θ1
2
) sin(φ1 −

σ1

2
) c2 = − sin(

θ2
2
) sin(φ2 −

σ2

2
)

f3 = cos(
θ1
2
) sin(

σ1

2
) c3 = − cos(

θ2
2
) sin(

σ2

2
) (48)

The operation mode c0 = 0 or f0 = 0 renders the torsion angle σ1 = 0
or σ2 = 0 and if f3 = 0 or c3 = 0, σ1 = 180◦ or σ2 = 180◦, respectively.
Furthermore, if, for instance in the operation mode corresponding to f0 = 0,
the 3-RPS PM can never have f3 = 0, thus the parameters fi, i = 0, 1, 2, 3
can be normalized by forcing f3 = 1. Consequently, the operation modes
(OM) as functions of tilt and azimuth angles can be represented for each
module as follows:

3-RPS OM-1 3-SPR OM-1

f0 = 1 c0 = 1

f1 = tan(
θ1
2
) cos(φ1) c1 = − tan(

θ2
2
) cos(φ2)

f2 = tan(
θ1
2
) sin(φ1) c2 = − tan(

θ2
2
) sin(φ2)

f3 = 0 c3 = 0
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3-RPS OM-2 3-SPR OM-2

f0 = 0 c0 = 0

f1 = tan(
θ1
2
) sin(φ1) c1 = − tan(

θ2
2
) sin(φ2)

f2 = − tan(
θ1
2
) cos(φ1) c2 = tan(

θ2
2
) cos(φ2)

f3 = 1 c3 = 1

(49)

Thus, it is obvious that for the 3-RPS PM, algebraic expressions in OM-2
can be obtained from those in OM-1 by replacing f2 → −f1 and f1 → f2.
For the 3-SPR PM, these replacements will be c2 → c1 and c1 → −c2.
Accordingly, all the serial singular configurations of the 3-RPS-3-SPR PM
can be enumerated starting from Case a (where both modules are in OM-1)
of Eq. (47).

5 Direct Kinematics Model(DKM)

The six prismatic joints of the 3-RPS-3-SPR S-PM are assumed to be actu-
ated. Direct kinematics gives the pose, i.e., the position and orientation, of
the moving platform for given prismatic joint lengths. For the 3-RPS and the
3-SPR PMs, the prismatic joint lengths are named as p1, p2, p3 and q1, q2, q3,
respectively. If Study parameters x0, x1, x2, x3, y0, y1, y2 and y3 represent the
pose of the moving platform relative to the base, the direct kinematics prob-
lem aims to find xi and yi, i = 0, 1, 2, 3 given pj and qj, j = 1, 2, 3.

As mentioned in Sec. 3, the transformation matrix between the fixed base
and the moving platform, T is determined to be a function of f1, f2, g1, c1, c2
and d1 for the case c3 = f3 = 0. Therefore, the sphere constraint equa-
tions21 for each module after factoring out the non-zero terms are expressed
as follows:

|| 0rBi
− 0rAi

||2 = p2i i = 1, 2, 3 =⇒
S1 :=

(

−p1
2 + h0

2 − 4h0h1 + 4h1
2
)

f1
4f2

2 + 4 f1
4g1

2 + 4h1f1
4g1 + h1

2f1
4

+ (−2 p1
2 + 2h0

2 − 8h1
2)f1

2f2
4 + 8 f1

2f2
2g1

2 − 8h1f1
2f2

2g1 + (−2 p1
2

+ 2h0
2 − 6h0h1 − 2h1

2)f1
2f2

2 + 8 f1
2g1

2 + 4h1f1
2g1 + (−p1

2 + h0
2

+ 4h0h1 + 4h1
2)f2

6 + 4 f2
4g1

2 − 12h1f2
4g1 + (−2 p1

2 + 2h0
2 + 2h0h1

+ 5h1
2)f2

4 + 8 f2
2g1

2 − 12h1f2
2g1 +

(

−p1
2 + h0

2 − 2h0h1 + h1
2
)

f2
2

+ 4 g1
2 = 0 (50)
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S2 :=
(

4h0
2 + 8h0h1 + 4h1

2 − 4 p2
2
)

f1
4f2

2 + 16 f1
4g1

2 + 16h1f1
4g1 + 4h1

2f1
4

+
(

16
√
3h0h1 + 16

√
3h1

2
)

f1
3f2

3 + 16
√
3f1

3f2g1h1 + 8
√
3f1

3f2h1
2

+
(

8h0
2 + 40h1

2 − 8 p2
2
)

f1
2f2

4 + 32 f1
2f2

2g1
2 + 16h1f1

2f2
2g1 + (8h0

2

+ 4h1
2 − 8 p2

2)f1
2f2

2 + 32 f1
2g1

2 + 16h1f1
2g1 + (16

√
3h0h1

− 16
√
3h1

2)f1f2
5 + 16

√
3f1f2

3g1h1 +
(

16
√
3h0h1 − 16

√
3h1

2
)

f1f2
3

+ 16
√
3f1f2g1h1 +

(

4h0
2 − 8h0h1 + 4h1

2 − 4 p2
2
)

f2
6 + 16 f2

4g1
2

+
(

8h0
2 − 16h0h1 + 8h1

2 − 8 p2
2
)

f2
4 + 32 f2

2g1
2 + (4h0

2 − 8h0h1

+ 4h1
2 − 4 p2

2)f2
2 + 16 g1

2 = 0 (51)

S3 :=
(

4h0
2 + 8h0h1 + 4h1

2 − 4 p3
2
)

f1
4f2

2 + 16 f1
4g1

2 + 16h1f1
4g1 + 4h1

2f1
4

+
(

−16
√
3h0h1 − 16

√
3h1

2
)

f1
3f2

3 − 16
√
3f1

3f2g1h1 − 8
√
3f1

3f2h1
2

+
(

8h0
2 + 40h1

2 − 8 p3
2
)

f1
2f2

4 + 32 f1
2f2

2g1
2 + 16h1f1

2f2
2g1 + (8h0

2

+ 4h1
2 − 8 p3

2)f1
2f2

2 + 32 f1
2g1

2 + 16h1f1
2g1 + (−16

√
3h0h1

+ 16
√
3h1

2)f1f2
5 − 16

√
3f1f2

3g1h1 +
(

−16
√
3h0h1 + 16

√
3h1

2
)

f1f2
3

− 16
√
3f1f2g1h1 +

(

4h0
2 − 8h0h1 + 4h1

2 − 4 p3
2
)

f2
6 + 16 f2

4g1
2

+
(

8h0
2 − 16h0h1 + 8h1

2 − 8 p3
2
)

f2
4 + 32 f2

2g1
2 + (4h0

2 − 8h0h1

+ 4h1
2 − 4 p3

2)f2
2 + 16 g1

2 = 0 (52)

|| 0rCi
− 0rBi

||2 = q2i i = 1, 2, 3 =⇒
S4 :=

(

4h1
2 − 4h1h2 + h2

2 − q1
2
)

c1
4c2

2 + 4 c1
4d1

2 − 4 c1
4d1h1 + c1

4h1
2

+
(

−8h1
2 + 2h2

2 − 2 q1
2
)

c1
2c2

4 + 8 c1
2c2

2d1
2 + 8 c1

2c2
2d1h1 + (−2h1

2

− 6h1h2 + 2h2
2 − 2 q1

2)c1
2c2

2 + 8 c1
2d1

2 − 4 c1
2d1h1 + (4h1

2 + 4h1h2

+ h2
2 − q1

2)c2
6 + 4 c2

4d1
2 + 12 c2

4d1h1 + (5h1
2 + 2h1h2 + 2h2

2

− 2 q1
2)c2

4 + 8 c2
2d1

2 + 12 c2
2d1h1 +

(

h1
2 − 2h1h2 + h2

2 − q1
2
)

c2
2

+ 4 d1
2 = 0 (53)

S5 :=
(

h1
2 + 2h1h2 + h2

2 − q2
2
)

c1
4c2

2 + 4 c1
4d1

2 − 4 c1
4d1h1 + c1

4h1
2

+
(

4
√
3h1

2 + 4
√
3h1h2

)

c1
3c2

3 − 4
√
3c1

3c2d1h1 + 2
√
3c1

3c2h1
2

+
(

10h1
2 + 2h2

2 − 2 q2
2
)

c1
2c2

4 + 8 c1
2c2

2d1
2 − 4 c1

2c2
2d1h1 + (h1

2

+ 2h2
2 − 2 q2

2)c1
2c2

2 + 8 c1
2d1

2 − 4 c1
2d1h1 + (−4

√
3h1

2

+ 4
√
3h1h2)c1c2

5 − 4
√
3c1c2

3d1h1 +
(

−4
√
3h1

2 + 4
√
3h1h2

)

c1c2
3

− 4
√
3c1c2d1h1 +

(

h1
2 − 2h1h2 + h2

2 − q2
2
)

c2
6 + 4 c2

4d1
2 + (2h1

2
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− 4h1h2 + 2h2
2 − 2 q2

2)c2
4 + 8 c2

2d1
2 +

(

h1
2 − 2h1h2 + h2

2 − q2
2
)

c2
2

+ 4 d1
2 = 0 (54)

S6 :=
(

−h1
2 − 2h1h2 − h2

2 + q3
2
)

c1
4c2

2 − 4 c1
4d1

2 + 4 c1
4d1h1 − c1

4h1
2

+
(

4
√
3h1

2 + 4
√
3h1h2

)

c1
3c2

3 − 4
√
3c1

3c2d1h1 + 2
√
3c1

3c2h1
2

+
(

−10h1
2 − 2h2

2 + 2 q3
2
)

c1
2c2

4 − 8 c1
2c2

2d1
2 + 4 c1

2c2
2d1h1 + (−h1

2

− 2h2
2 + 2 q3

2)c1
2c2

2 − 8 c1
2d1

2 + 4 c1
2d1h1 + (−4

√
3h1

2

+ 4
√
3h1h2)c1c2

5 − 4
√
3c1c2

3d1h1 +
(

−4
√
3h1

2 + 4
√
3h1h2

)

c1c2
3

− 4
√
3c1c2d1h1 +

(

−h1
2 + 2h1h2 − h2

2 + q3
2
)

c2
6 − 4 c2

4d1
2 + (−2h1

2

+ 4h1h2 − 2h2
2 + 2 q3

2)c2
4 − 8 c2

2d1
2 +

(

−h1
2 + 2h1h2 − h2

2 + q3
2
)

c2
2

− 4 d1
2 = 0 (55)

By substituting the prismatic joint lengths pi and qi, Eqs. (50) to (55) can
be solved for the parameters f1, f2, g1, c1, c2 and d1. Since each module can
have up to eight direct kinematics solutions21,24 in each operation mode, the
3-RPS-3-SPR S-PM can have up to 64 solutions for its direct kinematics
problem in each case of Eq. (47). The transformation matrix between the
fixed frame F0 and the moving platform frame F2 is established as T in
Sec. 3. By expressing this matrix in dual quaternion form or mapping it to a
point in P

7 leads to the representation of the S-PM at hand in terms of the
orientation Study parameters xi, i = 0, 1, 2, 3 as follows:









x0

x1

x2

x3









=









c1f1 + c2f2 − 1
−c1 − f1
−c2 − f2
c1f2 − c2f1









(56)

The expressions for the translational Study parameters yi, i = 0, 1, 2, 3 as
a function of f1, f2, g1, c1, c2 and d1 are shown in the Appendix. Note that
every term in the right-hand side of Eq. (56) is divided by c1f1+c2f2−1 6= 0.
The case c1f1+ c2f2− 1 = 0 is a particular singularity condition identified as
the case vi. a. in Table 1. It is easy to verify from Eqs. (56) and (68) that the
Study parameters xi, yi, i = 0, 1, 2, 3 satisfy the Study’s quadric equation:

x0y0 + x1y1 + x2y2 + x3y3 = 0 (57)

The Plücker coordinates (p01, p02, p03, p23, p31, p12) of the corresponding Finite
Screw Axis (FSA) are given by35

p01 = (−x2
1 − x2

2 − x2
3)x1, p23 = x0y0x1 − (−x2

1 − x2
2 − x2

3)y1

p02 = (−x2
1 − x2

2 − x2
3)x2, p31 = x0y0x2 − (−x2

1 − x2
2 − x2

3)y2

p03 = (−x2
1 − x2

2 − x2
3)x3, p12 = x0y0x3 − (−x2

1 − x2
2 − x2

3)y3

(58)
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The following conclusions are drawn from Eqs. (56) and (58):

• x0 = 0 implies that the transformation is a finite screw motion21 with
an angle of 180◦, also called as a π screw by Study. It corresponds to
the singularity condition vi. in Tab. 1.

• x1 = x2 = 0 makes p01 = p02 = 0, implying that the direction of the
FSA is vertical. It corresponds to the singularity condition iv. in Tab. 1
where the platform and the base are parallel to each other.

• x3 = 0 makes p03 = 0, implying that the FSA is parallel to the x0y0
plane. In this case, c1f2 = c2f1. If c1 = 0, then it corresponds to the
singular configuration i. in Tab. 1.

In fact, the direct kinematics problem is solved by first calculating the
parameters f1, f2, g1, c1, c2, d1 and then finding the Study parameters xi, yi,
i = 0, 1, 2, 3 of the whole series-parallel manipulator. To derive six equations
in input prismatic joint lengths pj, qj, j = 1, 2, 3 and output Study param-
eters xi, yi, i = 0, 1, 2, 3 is algebraically cumbersome and is still an open
problem.

6 Inverse Kinematics Model (IKM)

The inverse kinematics problem of the manipulator under study aims at find-
ing the prismatic joint lengths as a function of the moving platform pose.
Given the Study parameters, xi, yi, i = 0, 1, 2, 3 representing the transfor-
mation between the moving platform and the fixed base, the prismatic joint
lengths pj, qj, j = 1, 2, 3 must be determined. In other words, given points
Ci and Ai, point Bi, i = 1, 2, 3 (refer Fig. 1) must be determined.

Let the given transformation matrix between the fixed frame F0 and the
moving platform frame F2 beM. Thus, the coordinates of point Ci expressed
in F2 as shown in Eq. (18) can be represented in F0 as 0rCi

= M 2rCi
. Let

the homogeneous coordinates of point Bi expressed in coordinate frame F0

be 0rBi
= [1, Bxi, Byi, Bzi]. The homogeneous coordinates of planes αi and

βi shown in Fig. 1 are:

αi : [−rTAi
ui, uT

i ]

βi : [−rTCi
vi, vT

i ]

where all the vectors are expressed in frame F0. To determine the points Bi,
the constraints to be respected are: point Bi must lie in the plane αi and βi

simultaneously and the distance between points Bi and Bj, i 6= j = 1, 2, 3

27



must be equal to the side length of the coupler triangular platform,
√
3h1,

h1 being the circum-radius. Three constraints in each leg lead to a total of
nine algebraic constraint equations:

PointBi belongs to plane αi:

F1 := By1 = 0 (59)

F2 := −
√
3Bx 2 − By2 (60)

F3 :=
√
3Bx 3 − By3 (61)

PointBi belongs to plane βi:

F4 := (−2x0x3 + 2x1x2)Bx 1 +
(

x0
2 − x1

2 + x2
2 − x3

2
)

By1 + (2x0x1+

2x2x3)Bz 1 + 2x0y2 + 2x1y3 − 2x2y0 − 2x3y1 = 0 (62)

F5 :=
(

−
√
3x0

2 −
√
3x1

2 +
√
3x2

2 +
√
3x3

2 + 2x0x3 − 2x1x2

)

Bx 2 + (−2
√
3x0x3

− 2
√
3x1x2 − x0

2 + x1
2 − x2

2 + x3
2)By2 + (2

√
3x0x2 − 2

√
3x1x3 − 2x0x1

− 2x2x3)Bz 2 − 2
√
3x0y1 + 2

√
3x1y0 + 2

√
3x2y3 − 2

√
3x3y2 − 2x0y2 − 2x1y3

+ 2x2y0 + 2x3y1 = 0 (63)

F6 :=
(√

3x0
2 +

√
3x1

2 −
√
3x2

2 −
√
3x3

2 + 2x0x3 − 2x1x2

)

Bx 3 + (2
√
3x0x3

+ 2
√
3x1x2 − x0

2 + x1
2 − x2

2 + x3
2)By3 + (−2

√
3x0x2 + 2

√
3x1x3 − 2x0x1

− 2x2x3)Bz 3 + 2
√
3x0y1 − 2

√
3x1y0 − 2

√
3x2y3 + 2

√
3x3y2 − 2x0y2 − 2x1y3

+ 2x2y0 + 2x3y1 (64)

||rBi
− rBj

||2 = 3h2
1 i 6= j = 1, 2, 3 =⇒

F7 := (Bx 1 − Bx 2)
2 + (By1 − By2)

2 + (Bz 1 − Bz 2)
2 − 3h1

2 = 0 (65)

F8 := (Bx 1 − Bx 3)
2 + (By1 − By3)

2 + (Bz 1 − Bz 3)
2 − 3h1

2 = 0 (66)

F9 := (Bx 2 − Bx 3)
2 + (By2 − By3)

2 + (Bz 2 − Bz 3)
2 − 3h1

2 = 0 (67)

Fi, i = 1, ..., 9 can be solved for the nine parameters Bxj , Byj and Bzj ,
j = 1, 2, 3 to further obtain the prismatic joint lengths.
After substituting the Study parameters and the design parameters, a Groeb-
ner basis of the constraint polynomials can be obtained over the ring C[h0, h1, h2]
as a function of Bxj, Byj and Bzj, j = 1, 2, 3. A graded reverse lexicographic
ordering of these variables results in a univariate polynomial of degree eight
in any variable Bxj, Byj or Bzj. It shows that the inverse kinematics prob-
lem of the S-PM at hand has a maximum number of eight solutions. This is
not surprising because the problem can be considered as placing three points
Bi on three skew lines Li, i = 1, 2, 3, where Li is the line of intersection of
planes αi and βi shown in Fig. 1. This is a classical geometrical problem
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Table 2: Solutions to inverse kinematics of the 3-RPS-3-SPR S-PM when
h0 = 2, h1 = 1, h2 = 2 and (x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3) = (2.8215 :
−1.2912 : −0.3348 : 1.2434 : 2.1837 : 1.1542 : 1.6012 : −3.3256).

IKM sol. Bx1 By1 Bz1 Bx2 By2 Bz2 Bx3 By3 Bz3
1 1.190 0.0 1.095 0.922 -1.597 1.710 -0.398 -0.689 1.051
2 -0.385 0.0 2.289 -0.049 0.084 3.986 -0.773 -1.339 3.317
3 - 0.867 0.0 2.650 0.562 - 0.972 2.550 - 0.412 - 0.712 1.140
4 - 1.500 0.0 3.130 0.169 - 0.293 3.470 - 0.564 - 0.976 2.060
5 0.893 0.0 1.320 0.991 - 1.710 1.540 - 0.517 - 0.895 1.780
6 - 1.080 0.0 2.810 0.461 - 0.797 2.790 - 0.841 - 1.450 3.720
7 1.210 0.0 1.080 0.724 - 1.250 2.170 - 0.384 - 0.665 0.975
8 - 1.600 0.0 3.210 - 0.032 0.055 3.940 - 0.845 - 1.460 3.750

and it has been proven36 that the maximum number of solutions is indeed
eight with a minimal octic univariate polynomial. The interesting feature
of the inverse kinematics of the 3-RPS-3-SPR S-PM is that the univariate
polynomial factors into four quadratic polynomials. Further examination
reveals that the four factors belong to four different combinations of the op-
eration modes of each module like the four cases shown in Eq. (47). Since
the transition between two operation modes is a constraint singularity, one
of the singularities separating the IKM solutions is a constraint singularity21

in each module.
The IKM is solved for an example with Study parameters: (x0 : x1 : x2 :

x3 : y0 : y1 : y2 : y3) = (2.8215 : −1.2912 : −0.3348 : 1.2434 : 2.1837 : 1.1542 :
1.6012 : −3.3256). The design parameters are chosen to be h0 = 2, h1 =
1, h2 = 2. Eight real solutions to IKM are found as shown in Table 2.

The corresponding configurations of the S-PM are displayed in Fig. 8.
Moreover, the operation mode (OM) of each module is mentioned by recalling
the cases from Eq. (47):

• Case a. (IKM solutions 1 and 2 in Table 2) c3 = f3 = 0 =⇒ 3-RPSOM1−
3-SPROM1

• Case b. (IKM solutions 3 and 4 in Table 2) c0 = f0 = 0 =⇒ 3-RPSOM2−
3-SPROM2

• Case c. (IKM solutions 5 and 6 in Table 2) c0 = f3 = 0 =⇒ 3-RPSOM2−
3-SPROM1
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• Case d. (IKM solutions 7 and 8 in Table 2) c3 = f0 = 0 =⇒ 3-RPSOM1−
3-SPROM2

There are two inverse kinematic solutions in each of these cases. How these
two solutions are separated is still an open issue and is the subject of future
work. Figure 9 presents the eight solutions to the inverse kinematics problem
of the manipulator as eight possibilities to locate the three points, Bi on three
skew lines Li : αi ∧ βi, i = 1, 2, 3.

7 Conclusions

Study parametrization of individual modules of the 3-RPS-3-SPR Series-
Parallel Manipulator (S-PM) was used to determine six parameters that
characterize the manipulator. The kinematic Jacobian matrix was derived
and can be used to numerically determine whether a manipulator configu-
ration is singular or not. Moreover, the serial singularities that arise due to
the stacking of the two parallel modules were enumerated by mapping these
singularities to the degeneracy of the characteristic tetrahedron of the S-PM.
Both geometric conditions and algebraic expressions for the serial singular-
ities were established and listed in Table 1. The Direct Kinematics Model
(DKM) of the 3-RPS-3-SPR S-PM was solved to find out that the maximum
number of solutions to the DKM was the product of the maximum number
of solutions to the DKM of each module. When each module is restricted to
lie in one of the operation modes, the maximum number of assembly modes
is up to 64. Furthermore, the Inverse Kinematics Model (IKM) was solved
to find out that the univariate polynomial splits into four factors based on
the operation mode in which each module lies. The number of solutions to
the IKM was found to be up to eight and an example was shown to depict
those eight solutions.
As a part of the future work, the constraint equations will be written only as
a function of input and output parameters in order to solve the DKM directly
instead of splitting it into two stages as shown in this paper. Moreover, the
workspace of the S-PM will be plotted and the singularities separating the
solutions to IKM will be explored.
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(b) Case b.
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(c) Case c.
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(d) Case d.

Figure 8: Eight inverse kinematic solutions for the 3-RPS-3-SPR S-PM when
h0 = 2, h1 = 1, h2 = 2 and (x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3) = (2.8215 :
−1.2912 : −0.3348 : 1.2434 : 2.1837 : 1.1542 : 1.6012 : −3.3256).
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Figure 9: Eight solutions to IKM as locating 3 points on 3 lines problem
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Methods in Mechanism Analysis and Synthesis,” J. Robotica 25(6), 661–
675 (2007).

33
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Appendix

Direct Kinematics: Translational parameters, yi, i = 0, 1, 2, 3 as functions of
f1, f2, g1, c1, c2, d1.
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1

2
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f1
2 + f2

2 + 1
)

(c12 + c22 + 1) c2f2
(2 c1

3c2f1
2f2g1 + c1

3c2f1
2f2h1 + 2 c1

3c2f2
3g1

+ c1
3c2f2

3h1 − 2 c1
3d1f1

2f2
2 − 2 c1

3d1f2
4 + c1

3f1
2f2

2h1 + c1
3f2

4h1 − 2 c1
2c2

2f1
3g1

− c1
2c2

2f1
3h1 − 2 c1

2c2
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2c2f1
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