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Leakage inductance and frequency-dependent resistance of windings are key parameters for the design of magnetic devices. This 

report focuses on analytical or semi-analytical calculation techniques to be integrated into a medium frequency transformer 

optimization process. To this extend, a review of currently most used method to calculate inductance and resistance of windings 

transformer is established. Based on this review, new calculation methods are developed. Magnetic field cartography is evaluated on 

the basis of two-dimensional structures thanks to a combination of Ampère’s law and image method. From this magnetic field map, 

leakage inductance can be calculated. The obtained accuracy with this method is equivalent to three-dimensional finite element 

modeling. For frequency-dependent resistance evaluation, new methods based on two-dimensional or one-dimensional approach are 

compared to finite element modeling and reviewed models. An analysis of behavior of each model is done, showing that newly 

developed models are more suitable in the case of medium frequency transformer design in terms of accuracy, robustness and 

calculation time. This work could be useful to magnetic devices designers because newly developed models could easily be adapted to 

various geometries, such as toroidal structures or even inductors. 

 
Index Terms— Eddy currents, Electric resistance, Inductance, Power transformers 

 

I. INTRODUCTION 

In the field of energy conversion, power electronics will 

play a major role. For example, the use of solid-state 

transformers can provide new solutions to future electrical 

grids and traction networks [1]. It allows better connection of 

new renewable energy source such as far offshore wind farms 

[2]-[3], or reduction of energy consumption for traction 

systems thanks to higher efficiency and lower weight [4]. 

A key component of solid-state transformers is the medium 

frequency transformer, typically operating between 500 Hz 

and 20 kHz to reduce its size. Its main role is to provide a 

galvanic insulation but the converter also takes advantage of 

other intrinsic properties of transformers: transformation ratio, 

magnetizing and leakage inductances. The design of medium 

frequency transformer must take into account all these 

specifications, which involves a multi-objective optimization 

process [5]-[6]. 

In this paper, we will focus on a crucial active part of the 

medium frequency transformers which is the windings. Two 

windings characteristics must be evaluated accurately during 

the design process: AC resistance and leakage inductance [7]. 

The design process usually need low calculation time 

models to allow a great number of calculation points in the 

shortest time possible. Therefore, most of the accurate 

numerical solutions, such as finite element modeling (FEM), 

leading to high calculation time are not suitable. Analytical or 

semi-analytical models are usually better solutions. 

The purpose of this paper is to propose new models to 

calculate leakage inductance (considering steady current) and 

frequency-dependent resistance of windings and to compare 

them with existing ones. To this aim, part II will present 

existing and newly developed calculation methods for both 

inductance and resistance. Then, part III will evaluate all 

previously identified models on typical test cases. The 

accuracy and calculation time results given by the various 

models will be presented, and compared to numerical FEM 

calculation results in part III. Finally, part IV will analyze the 

performances of the different calculation methods and will list 

advantages, disadvantages and limitations of each one. 

II. METHODS 

In the case of medium frequency applications, it is 

important to note that the same magnetic fields are responsible 

for both stored energy and eddy currents, i.e. leakage 

inductance and frequency-dependent resistance. It is the 

reason why the calculation of magnetic field is a prerequisite. 

A. Magnetic fields and leakage inductance 

1) One-dimensional field of concentric windings 

A classical geometry of transformer is the case of 

concentric primary and secondary windings inside a winding 

window as shown in Fig. 1.  

 

 
Fig. 1.  Concentric windings inside a winding window and associated one-

dimensional magnetic field distribution. 
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In this case, the magnetic field H is oriented along the 

winding axis y. The maximal value of H is located between 

the windings, and can be calculated thanks to Ampère’s law. 

The expression is shown in (1), where I is the total 

magnetomotive force and h is the windings’ height. Finally, 

H increases and decreases linearly in both windings. 

 

yy eHH              hIH /max   (1) 

 

This calculation method is widely used in transformer 

design because of its simplicity, but its limitations should not 

be forgotten. This model does not work if there is not a 

complete Ampère-Turns compensation between primary and 

secondary, such as in the case of an inductor. If the windings 

are not confined into a winding window or even if the winding 

height is inferior to the winding window height, then one-

dimensional field hypothesis becomes false. This is why a 

two-dimensional approach might become necessary. 
 

2) Field of basic conductors 

This paragraph explains how to calculate magnetic field 

produced by a single conductor carrying a current inside 

vacuum. Two basic shapes of conductor will be considered: 

round and rectangular. These basic conductors will be used 

extensively for magnetic field two-dimensional calculation in 

transformers.  

a) Round conductor 

A round conductor of radius rc carrying a current I is 

considered. Magnetic field in this case is purely orthoradial 

and its expression inside and outside the conductor can be 

easily obtained from Ampère’s law (2). 

 

)2/(

)2/()( 2

rIH

rrIH c











   
if

if
  

c

c

rr

rr




 (2) 

 

Fig. 2 shows a schematic of the configuration as well as an 

example of magnetic field cartography in this case. 

 

 
Fig. 2.  Schematic of a round conductor and magnetic field distribution of a 

1 mm radius conductor carrying 1 A. 

 

b) Rectangular conductor 

In the case of a rectangular conductor, H is not orthoradial, 

particularly inside and near the conductor. However, its 

component can be calculated by using (3) (development may 

be found in [8]). 
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Fig. 3 shows a schematic of the configuration with all the 

parameters mentioned in (3), as well as an example of 

magnetic field cartography in this case. 

 

 
Fig. 3.  Schematic of a rectangular conductor and magnetic field distribution 

of a 1 mm  2 mm conductor carrying 1 A. 

 

3) Conductors next to a column 

In this configuration, one or several basic conductors are 

considered placed next to a column constituted of a high 

permeability material, the conductors themselves being in 

vacuum. This configuration might be representative of the 

case where the concentric windings are outside the winding 

window. 

Using magnetic image method [9], this situation is 

equivalent to having mirrored conductors as shown in Fig. 4. 

The schematic is just here to illustrate how the magnetic field 

can be calculated for any shape of conductors next to a 

magnetic circuit. 

 

 
Fig. 4.  Image method for conductors next to a high permeability material 

surface. 

 

Usually, transformer core material has a very high 

permeability with µr > 1000. But if not, equation (4) can be 

used to set the value of currents in image conductors. 
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The problem is then equivalent to multiple conductors in 

vacuum, and superposition principle can be used to determine 

total magnetic field as shown in (5). 

 

   ccconductorccconductor yxHyxHH ,,   (5) 

 

A similar approach has been developed in [10], by using 

Biot-Savart law and discretization of the windings in multiple 

source points. Both methods are equivalent, but the one 

developed here requires less discretization and should be 

easier to implement. Nevertheless, windings sections must be 

a combination of round and rectangular shapes for the method 

presented here (5) to be applicable. 

 

4) Conductors inside a winding window 

One-dimensional field assumption is not always valid inside 

a winding window, for example when windings heights are 

not the same or do not match the window height, which is 

often the case for power transformers. This is why a two-

dimensional magnetic field calculation might be necessary. 

Applying the image method to conductors inside a winding 

window would theoretically create an infinity of image 

conductors. This is because the mirror effect of image method 

not only duplicates the current sources, but also the material 

interfaces [11]. It creates mirrored version of magnetic 

mirrors. For a winding window, there are two pairs of 

magnetic mirrors which results in a sort of infinite tiling of the 

two-dimensional space as shown in Fig. 5.  Mirrored cells may 

be indexed with m and n depending on their position relative 

to the original cell. A and B are respectively the winding 

window width and height. 

 

 
Fig. 5.  Image method for conductors inside a winding window. 

 

Nevertheless, superposition principle remains valid even for 

an infinity of conductors and total magnetic field may be 

calculated with (6), where the position of image conductor 

according to cell index is obtained from (7) considering 

geometric parameters defined in Fig. 5. 
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However, it is not possible numerically to compute the 

magnetic field of the theoretical infinity of cables. Therefore, 

in practice, a limited number of cells must be considered. 

From (2) and (3), it is clear that an image conductor far away 

from the original cell will have a low contribution to magnetic 

field value inside the original cell. In practice, setting an 

empirical limit such that only reflected conductors distant less 

than the maximal dimension of A and B from the original cell 

must be taken into account gives good results. 

A similar approach has been established in [11]. However, a 

preferential direction was supposed to take into account the 

infinity of conductors. This last assumption was too restrictive 

and consequently the calculated field was highly inaccurate in 

certain zones of the window area. 

 

5) Core-type and shell-type leakage inductance 

The previous models for calculation of two-dimensional 

magnetic field can now be applied to some transformer 

structures. 

In particular, core-type and shell-type structures, which are 

the most common ones for power transformers, can be studied 

with a multiple 2D planes analysis. As shown in Fig. 6, each 

plane represents a portion of the geometry of the transformer 

and has its associated depth. The planes numbered “1” 

correspond to conductors inside the winding window, and the 

planes numbered “2” correspond to conductors next to a 

column but outside the winding window. 

 
Fig. 6.  a) Core-type structure. b) Planes and associated depths for core-type 

structure (top view). c) Shell-type structure. d) Planes and associated depths 

for shell-type structure (top-view). 

 

Determining the total leakage inductance of a transformer 

can be carried out by setting perfectly opposed magnetomotive 

forces into the primary and secondary windings and 
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calculating the total magnetic energy Emag. This energy will 

then correspond only to leakage flux because magnetizing flux 

will be equal to zero. To calculate this energy, firstly magnetic 

field is calculated for each 2D plane. Then this field is 

integrated over the whole plane to get the value of the plane 

energy E2D. This integration must be performed over a 

sufficiently large area for infinite or semi-infinite 

configurations (winding next to a column). Any numerical 

integration method is possible as long as a good precision and 

a low calculation time are guaranteed. Finally, the energies 

E2D are multiplied by their respective depths d2D and summed 

using (8) to obtain the total magnetic energy Emag. 

 

  DDmag dEE 22
 (8) 

  

Leakage inductance can then be obtained from (9), where I 

is either primary or secondary current depending on which 

side the leakage inductance is considered. 

 

2

2

1
LIEmag 

 (9) 

 

B. Frequency-dependent resistance 

At low frequency or direct current, winding resistance can 

be simply calculated from material electrical conductivity and 

geometric dimensions. However, when the frequency 

increases, magnetic field will create eddy currents in 

opposition to excitation current due to Faraday’s law of 

induction. 

These eddy currents can be categorized into two types 

representing skin effect and proximity effect [12]. Skin effect 

corresponds to eddy currents inside a conductor created by the 

current flowing in the same conductor. Proximity effect 

represents eddy currents inside a conductor created by currents 

flowing in nearby conductors. Because both phenomena 

originate from two independent sources, they are independent 

[13]. Total losses can be split as shown in (10), where I is the 

peak current inside the conductor, Hext is the magnetic field 

produced by nearby conductors and f is the frequency. 

 

     fHPfIPIPP extproxskinDCJoule ,,   (10) 

 

A practical way to represent the increase of losses with the 

frequency is to use factors quantifying this increase compared 

to DC losses. In this paper, skin factor defined in (11) and 

proximity factor defined in (12) will be used.  
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It should be noted that skin effect losses Pskin are directly 

related to the current I flowing inside the considered conductor 

and this is why it makes sense to define skin factor in (11). 

However, proximity effect losses Pprox are indirectly related to 

the current I. In fact, proximity losses are due to the external 

magnetic field Hext. But in transformer windings, external 

magnetic field Hext is a function of the current I. This function 

depends on the transformer geometry (number of turns, 

number of independent conductors per turns and location of 

each independent conductor). So it also makes sense to define 

a proximity factor in (12). 

Finally, the frequency dependent resistance RAC and the 

global resistance factor FR are defined thanks to (13). 

 

  DCPSDCRAC RFFRFR   (13) 

 

These factors will be used to consistently define the 

different models. Next paragraphs will present various 

existing models and the development of new ones. 

 

1) Dowell’s model 

Dowell’s model [14] is probably the most commonly used 

one to calculate frequency-dependent resistance in transformer 

design phase. Main hypothesis of this model is the one-

dimensional magnetic field, as presented previously in II.A.1. 

Windings are supposed to be composed of m successive layers 

of thickness d parallel to the magnetic field. By definition, 

these layers must have a rectangular shape, which is very 

suitable for windings constituted of foil or flat conductors. 

However, in the case of round wires cables or Litz cables, 

this model can be adapted by the introduction of a porosity 

factor ηw (ratio of winding height hw and window height h). 

Round conductors are transformed to square ones and empty 

space between them is taken into account through the porosity 

factor. In the following equations, δ represents the skin depth 

at the considered frequency. 
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2) Ferreira’s model 

This model also considers the case of a one-dimensional 

field, but unlike Dowell’s model, basic conductors are 

supposed round [15]. In the following equations, ds is the 

diameter of a basic conductor (strand or wire), and bern and 

bein are the Kelvin-Bessel functions of order n. 

 

2
 sd
  (17) 
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Proximity factor has been factorized into two terms in (19). 

KP represents the winding structure factor and is independent 

of the frequency, whereas fP represents the frequency-

dependent factor and depends only on frequency and 

conductor diameter. 

 

3) Reatti and Kazimierczuk model 

In [16], the authors have developed a model very similar to 

Ferreira’s one. However, the porosity factor has been taken 

into account. All formulas are the same as Ferreira’s model 

except for the winding structure factor defined by (21). 
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Other models based on Ferreira’s model exist, considering 

various structures for windings. For example, Litz cable 

structure is considered in [17] and [18]. However, main 

hypotheses (one-dimensional field and layers inside winding) 

are the same therefore these models will not be considered in 

this paper. 

 

4) Asymptotic model 

Contrary to previously presented models, this one does not 

take into account skin effect and only represents impact of 

proximity losses due to external magnetic field. Therefore 

FS = 1 and FR = 1 + FP. 

The basic formula is presented in [19], and expresses the 

proximity losses inside a round conductor of diameter ds 

inside a homogeneous magnetic field H as shown in (22). In 

this equation, ρ is the resistivity, µ the permeability, l the 

length and ω the angular frequency. 
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2242 Hld
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For a winding of width w, height h containing N turns 

placed inside a one-dimensional field such as the one 

described in II.A.1, a proximity factor can be expressed as 

shown in (23). Development of this equation may be found in 

Appendix A, and η corresponds to the proportion of 

conductive material inside the winding being considered as 

composed of evenly distributed round conductors with 

insulating material between them. 
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For a given geometry, the proximity factor is proportional 

to f 2. Thus it creates a line in logarithmic scale and this is why 

this model is called “asymptotic”. 

 

5) Albach’s model 

In [20], the author has developed formulas for both skin and 

proximity losses inside a round conductor subject to any 

external magnetic field distribution. 

Skin factor is expressed as shown in (25) where α is defined 

in (24). In is the modified Bessel function of first kind and a is 

the radius of the conductor. 
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Proximity losses are calculated thanks to spatial Fourier 

series decomposition. In (26), coefficients ak and bk (resp. ck 

and dk) are the decomposition coefficients of Hr (resp. Hφ) on 

the surface of the conductor in polar coordinates. 
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However, windings composed of Litz wires have strands 

whose size is usually very small compared to the size of the 

winding itself. Therefore external magnetic field can be 

considered constant over a strand. In this case, previous 

equation can be simplified into (27) as shown in Appendix B. 
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Finally, a proximity factor can be expressed under the 

assumption of a one-dimensional field with the same method 

used for asymptotic model, as shown in (28). The 

development of this equation may be found in Appendix A. 
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This proximity factor was split into a frequency- 

independent factor KP and a frequency-dependent factor fP, as 

done previously with Ferreira’s model. In fact, Albach and 

Ferreira models have the same skin factors FS and frequency-

dependent factor fP (demonstration in Appendix C); the only 

difference between them lies in the expression of the winding 

structure factor KP. 
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III. RESULTS 

A. Magnetic fields and leakage inductance 

To test out the models of magnetic field and leakage 

inductance calculation, structures presented on Fig. 6 were 

used. The considered geometry has a winding window of 

100 mm  200 mm. Windings are 150 mm high, the distance 

between the first winding and the core is 10 mm, and the 

distance between the second winding the and first winding is 

20 mm. Both windings are comprised of only one turn for the 

purpose of calculation. For both core-type and shell-type 

structures, the same geometry is used but the winding window 

of the core-type structure contains a total of four windings 

whereas the shell-type one has only two windings. 

Fig. 7 shows the magnetic field obtained for the core-type 

structure inside and outside the winding window, with a 

current of 1 A flowing inside each winding. Magnetic fields 

obtained with 2DFEM or with analytical model look identical. 

To confirm this observation, total energies of these planes 

were calculated and compared in Table I. The maximum 

difference on the calculation results between the two different 

methods is below 1%. 

 

 
Fig. 7.  Magnetic field distribution for: a) Winding window, analytical model; 

b) Leg side, analytical model; c) Winding window, 2DFEM; d) Leg side, 
2DFEM. 

 

 
 

From these energy values, total leakage inductance was 

calculated analytically on each structure. Also, the newly 

developed “2x2D” model was compared to classical 1D 

method using magnetic field calculated as presented in II.A.1 

on the one hand, and to 3DFEM results on the other hand. 

This comparison is available in Table II. The “2x2D” method 

gives results very close to 3DFEM ones with less than 2% 

deviation, whereas one-dimensional approach overestimates 

leakage inductance by more than 10% in this case. 

 

 
 

B. Frequency-dependent resistance 

To be able to compare the calculation results achieved by 

the analytical models and the 2D finite element modeling, a 

typical transformer structure was considered. This two-

dimensional structure is located inside a winding window and 

constituted of two identical windings. Basic conductors are 

strands with 0.5 mm diameter and 33 µm enamel thickness. A 

winding is made up of 1 000 strands organized as shown in 

Fig. 8, with 10 strands per horizontal row. Horizontal 

distances between core and windings and between windings 

are all equal to 5 mm. Finally, the winding height wh is equal 

to 56.6 mm and the vertical gap eh
 is fixed to obtain the 

desired porosity factor following (29) where Ds and ds are the 

strand diameter with and without enamel. 
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s

w
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
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TABLE I 

COMPARISON OF MAGNETIC ENERGY OF PLANES 

Plane 
Energy 

(Analytical) 

Energy 

(FEM) 
Difference 

Winding window 1.8885.10-7 J/m 1.8963.10-7 J/m -0.41% 
Led Side 9.0958.10-7 J/m 9.0944.10-7 J/m +0.01% 

Comparison of energies of considered planes obtained with analytical 
method and with finite element method (FEM) simulation. FEM is 

considered as reference. 

 

TABLE II 
COMPARISON OF LEAKAGE INDUCTANCE CALCULATION METHODS 

Structure Method 
Leakage 

Inductance 
Difference Time 

Core -
type 

Analytical 1D 1.6775.10-7 H +13.44% 0.3 ms 

Analytical 22D 1.4691.10-7 H -0.54% 230 ms 

FEM 3D  

8k tetrahedrons 

1.4896.10-7 H +0.85% 28 s 

FEM 3D  
1M tet. 

1.4770.10-7 H 0% 3066 s 

Shell -

type 

Analytical 1D 8.3776.10-8 H +13.84% 0.3 ms 

Analytical 22D 7.2434.10-8 H -1.57% 100 ms 

FEM 3D  

5k tet. 

7.4310.10-8 H +0.98% 21 s 

FEM 3D  

0.7M tet. 

7.3590.10-8 H 0% 1139 s 

Comparison of leakage inductance values obtained with analytical and 

numerical methods. FEM 3D with 0.7 - 1 million tetrahedrons is taken as 
reference. 
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Fig. 8.  Geometry definition of windings and window used for test cases of 

frequency-dependent resistance calculation. 

 

Even if this geometry may not be representative of a Litz 

wire winding of a medium frequency transformer, it is a good 

test case to compare models with each other. Moreover, the 

limited number of strands allows a good meshing of the 

geometry for finite element modeling by using an eddy current 

solver (in this case, ten triangles along a strand diameter) with 

reasonable computation time. It should be noted that in this 

configuration, current was considered equally divided between 

all strands, which corresponds to an ideal twisting pattern. Fig. 

9 presents the obtained results in all considered cases of 

porosity factors. The resistance factor was calculated with 

each of the models and FEM modeling for various frequencies 

(corresponding to ratio diameter to skin depth ds/δ) in the 

range of 100 Hz - 1 MHz. For asymptotic and Albach, 2D 

refers to (22) and (27) being used with a two-dimensional 

magnetic field calculation method, whereas 1D refers to (23) 

and (28). 

From these results, Dowell’s model is always closer to FEM 

one than Ferreira’s or Reatti’s. Moreover, asymptotic model 

gives the same results as Albach’s one at low frequencies 

whereas it is completely false at higher frequencies. Therefore, 

Dowell and Albach look as the best performing models. 

To compare them in a better way, two main zones can be 

considered: before and after a ratio of diameter to skin depth 

of 2. The mean absolute error was calculated for each model 

in both zones and results are presented in Fig. 10. Dowell’s 

model presents an error increasing consistently with the 

reduction of porosity factor in each zone. However, Albach’s 

model has an error quite independent of the porosity factor. 

This error remains low at low frequencies, particularly for 

Albach 2D, but it is much higher at high frequencies. 

To complement these results, it should be mentioned that 

the calculation time is about 0.5 ms for all one-dimensional 

models and about 25 ms in the case of two-dimensional 

models. 

 
Fig. 9.  Frequency-dependent resistance factor obtained for all tested models 
on test cases with different porosity factor (one per graph). 



> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 

 

 

8 

 
Fig. 10.  Mean Absolute Error (MAE) of three best-performing models. First 
graph is MAE only for frequencies where skin effect is negligible. Second 

graph is MAE only for frequencies where skin effect is not negligible. 

 

IV. DISCUSSION 

A. Magnetic fields and leakage inductance 

For magnetic field calculation, results show very good 

agreement between the newly developed “2x2D” method and 

2D finite element modeling. Magnetic fields and plane 

energies are almost identical in the considered case. 

Moreover, leakage inductance calculation based on this 

“2x2D” method presents a good accuracy when comparing 

with finite element modeling for both core-type and shell-type 

structures. It means that the decomposition of the structure in 

multiple characteristic planes is a good hypothesis. 

However, the accuracy of this approach is limited inside the 

winding window because the calculation would require an 

infinity of images to make the error close to zero. This 

limitation is highlighted by a small difference of 0.41% 

between numerical simulation and plane energy in Table I, 

whereas leg side results are almost identical with a difference 

of 0.01%. 

Winding window energy is not the only cause of difference 

between leakage inductance calculated analytically and 

numerically. The other one is the two-dimensional 

decomposition. In fact, the associated depth of each plane is 

inaccurate because the geometry varies along this depth, 

particularly in corner region of windings as it can be seen on 

Fig. 6. It explains why there is more difference for leakage 

inductance than for planes energies. Nevertheless, accuracy 

(below 2%) can be considered as very satisfying, especially 

when considering that calculation time has been reduced by 

more than 100 times. However, one-dimensional calculation is 

still faster because there is no discretization at all, but at the 

expense of a much lower accuracy. So the newly developed 

“2x2D” model is a good compromise between accuracy and 

calculation time. 

This model is also a very good solution to compute 

magnetic field only in a specific area without having to 

calculate it over the whole geometry, as it is the case in finite 

element modeling. 

Finally, maybe the most important advantage of this model 

is its adaptability. The method used is very general and 

applicable to almost any transformer or magnetic device 

geometry, provided that it can be decomposed into multiple 

two-dimensional structures (symmetries). There is no need for 

windings to be concentric, and it can be easily adapted to 

toroidal structures by using the two-dimensional 

decomposition presented in [21]. 

B. Frequency-dependent resistance 

1) General comments 

In the case of frequency-dependent resistance calculation 

methods, the results show a great disparity between models on 

accuracy levels and frequency behavior. First of all, three 

main zones can be considered for resistance factor curve 

obtained by FEM, in black straight line on Fig. 9. First zone 

corresponds to a resistance factor close to one which means 

that there is no significant proximity or skin effect. Then, by 

increasing the frequency, a second zone appears with a first 

slope corresponding to proximity effect. This transition can 

occur at different ratio ds/δ depending on the geometry. Here, 

the geometry of the winding does not vary so much between 

the different cases so the transition always occur around ds/δ = 

0.7. Finally, the last zone corresponds to another slope, lower 

than the previous one, combining proximity and skin effects. 

This transition will always occur around ds/δ = 2 because of 

skin effect. These three zones and their associated boundary 

frequencies have been identified in [22] and [23]. Actually, 

skin effect is already present before this limit but is not high 

enough to have a significant impact on the resistance factor. 

The slope in this zone is lower because the skin effect acts as a 

shielding of the strands and prevents the penetration of 

external magnetic field inside them, thus confining proximity 

effect in a reduced portion of the conductors. In other words, 

magnetic field induced by eddy currents is not negligible 

anymore in this zone and reduce drastically the static magnetic 

fields inside conductors. 

Before discussing the results obtained for each model, it 

should be noted that, in the case of medium frequency 

transformer, the accuracy level in the zones before ds/δ = 2 is 

much more important that the one obtained after. In fact, a 

proper design must have a low resistance factor, and this case 

usually corresponds to the situation where skin effect is 

negligible if an important number of conductors has to be 

considered. Therefore, the inaccuracy that can occur in the 

high frequency zone will mostly impact designs that wouldn’t 

have been retained (in a first design step) because their losses 

would have been too high even in the low frequency region. 
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However, it is still relevant to be accurate enough in this zone 

(after ds/δ = 2), in a second design step, for possible high-

frequency harmonics of the considered current, and ensure that 

these harmonics will not cause too many additional losses. 

 

2) Models comparison 

Ferreira’s model always overestimates resistance factor. 

This is because the porosity factor is not considered for this 

model and therefore the gaps between conductors are ignored 

as if the vertical dimension was completely filled with 

conductors. It results in an overestimation of proximity losses. 

This is why this model will not be further investigated. 

Dowell’s model is almost exact for a porosity factor of 0.78. 

In this case, the distance between windings and core eh is zero 

and the porosity factor is only due to gaps between strands 

inside windings. Therefore, the one-dimensional hypothesis 

for magnetic field is valid. The use of equivalent foil to 

represent strands seems to be in accordance with Dowell’s 

hypothesis regarding the level of accuracy obtained (less than 

2%). The model remains exact even at high frequency where 

skin effect is important because Dowell’s model is not 

influenced by magnetic field of nearby conductors. In fact, the 

equation is obtained by setting boundary conditions on both 

sides of the foil and solving Maxwell equations. The field on 

the side of the foil is independent of the frequency so 

boundary conditions remain valid on the whole frequency 

range and the equation of the resistance factor is also valid. 

This is why Dowell’s model gives the best results in the case 

of one-dimensional field. However, when the distance 

between core and windings increases, one-dimensional 

hypothesis is no longer valid which explains why Dowell’s 

model accuracy decreases in both zones before and after 

significant skin effect. 

Reatti and Kazimierczuk model is similar to Ferreira’s 

model except that it takes into account the porosity factor. 

This is why the model behaves like Dowell’s model. However, 

its accuracy at high frequency is limited because the eddy 

currents due to magnetic field induced by eddy currents of 

nearby conductors is not taken into account. Thus this model 

is less accurate than Dowell’s one and will not be further 

investigated. 

The main disadvantage of the asymptotic model is its 

behavior in the high frequency zone. Even if the resistance 

factor is accurate at low frequency, skin effect is not 

considered at all. Therefore, no shielding effect is preventing 

eddy current development inside conductors at high 

frequency, and the losses are greatly overestimated. 

Everything happens as if proximity effect was independent of 

frequency, and this is why the asymptotic behavior occurs. 

The disadvantage is the same for one-dimensional or two-

dimensional versions, so this model will not be further 

investigated. 

For a porosity factor of 0.78, Albach’s model has the same 

behavior as Reatti and Kazimierczuk. This is because in this 

case, formulation of equations are almost equivalent. It means 

Albach’s model suffers from the same limitation at high 

frequency, not taking into account mutual influence between 

conductors due to magnetic field produced by eddy currents. 

However, when the porosity factor decreases, Albach’s model 

accuracy remains almost constant. This is because the porosity 

factor is not directly used, but the proportion of conductive 

material inside winding η is considered instead. Overall, this is 

why this model gives the best results in the cases of low 

porosity factor, with a very good accuracy at low frequency 

and a contained error at high frequency. The one-dimensional 

version of the model has an error of less than 10% at low 

frequency and below 100% at high frequency, whereas the 

two-dimensional version has an error below 2% at low 

frequency and 60% at high frequency. In fact, both versions 

have the same accuracy for a porosity factor of 0.78 because 

one-dimensional hypothesis is valid in this case. For lower 

porosity factor, the two-dimensional model is logically more 

accurate because the magnetic field is two-dimensional. 

However, if calculation time is critical, the one-dimensional 

version is still a solution for this type of geometry. 

 

All these observations explain why Albach’s model is 

considered as the best candidate for medium frequency 

transformer design. It provides a good accuracy and a great 

resilience to porosity factor variations from a design to 

another, with no additional calculation time in its one-

dimensional version. Actually, it is even faster than Dowell’s 

model as Bessel functions inputs depend only on strand 

diameter and frequency, whereas the inputs of trigonometric 

functions of Dowell’s model include the porosity factor and 

therefore depend on the transformer geometry. This allows a 

reduction of the calculation time when applied to a great 

number of geometries. 

Moreover, the model is very adaptable. As long as the 

magnetic field is known for a given geometry, the proximity 

losses can be calculated and a resistance factor formula can be 

derived. This hypothesis is still satisfied for configurations 

without concentric windings, such as toroidal structures or 

even inductors where there is no secondary and therefore no 

Ampère-Turns compensation. 

Nevertheless, this model has some limitations. First one, 

already discussed, is its reduced accuracy at higher frequency. 

This problem could be limited if equation (26) was used 

instead of its simplified version (27) and an iterative process 

was followed [20]. This last option would complicate the 

model implementation and it would have a high negative 

impact on the global calculation time in a first design step. A 

possible way would be to use the improved version only for a 

very limited number of designs (second design step). It leads 

us to another downside of this model which is the necessity of 

calculating magnetic field inside windings with enough 

accuracy. The method presented in this article to calculate 

magnetic field is very adaptable, but at high frequency, the 

windings cannot be homogenized as a macroscopic 

rectangular conductor and each strand contribution must be 

considered. Therefore the computation time would depend on 

the number of strands, which is a real inconvenience. A way to 

solve this last problem would be to combine Albach’s model 

to determine equivalent complex magnetic permeability and 
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electrical conductivity for a given winding structure, following 

a method such as the one presented in [24]. It would correct 

the accuracy at higher frequency, but to the detriment of a 

more complex model and an important calculation time. This 

could be a solution to calculate a precise frequency-dependent 

resistance for specific designs, but again, it is not suitable for 

integration inside an optimization process. 

V. CONCLUSION 

In this article, a review of magnetic field, leakage inductance 

and frequency-dependent resistance calculation methods has 

been done. For each subject, new methods of calculation were 

developed. The two-dimensional (“2x2D”) method for 

magnetic field calculation revealed its accuracy with low 

calculation time, and leads to precise leakage inductance 

evaluation in the case of usual core-type and shell-type 

transformer structures. 

Concerning the frequency-dependent resistance calculation 

method, the newly developed model based on Albach’s theory 

is more accurate, more robust and faster than reviewed 

models. 

Overall, newly developed models are already an 

improvement from reviewed ones, and are very promising due 

to their possibility of further improvements: adaptability to 

new structures (toroidal, inductors) and increased accuracy for 

high frequency. In this sense, they are very good candidates 

for magnetic devices design and optimization. Implementation 

of these tools is in progress. 

APPENDIX A 

Demonstration of one-dimensional proximity factor for 

asymptotic model. 
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Demonstration of one-dimensional proximity factor for 

Albach’s model. 
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APPENDIX B 

Simplification of Albach model in case of homogeneous 

magnetic field. 

Series Fourier of any magnetic field in polar coordinates on 

the surface of the conductor: 
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If magnetic field is constant over the strand: 

 

     eHHeHHH

eHeHH

xyryx

yyxx

sincossincos 


 

 

By identification: 
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yHb 1
  

yHc 1
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Then by injecting this result in (26), one can obtain (27). 

APPENDIX C 

Demonstration of equality between FS and fP of Albach and 

Ferreira models. 
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Relations between Bessel and Kelvin-Bessel functions: 
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From these relations and (18) and (25): 
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Same method is applied for (20) and (28): 
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