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Existence of strong solutions to a fluid–structure system with a
structure given by a finite number of parameters∗

Guillaume Delay†

July 8, 2019

Abstract. We study the existence of strong solutions to a 2d fluid–structure system. The fluid is modelled
by the incompressible Navier–Stokes equations. The structure represents a steering gear and is described by
two parameters corresponding to angles of deformation. Its equations are derived from a virtual work principle.
The global domain represents a wind tunnel and imposes mixed boundary conditions to the fluid velocity. Our
method reposes on the analysis of the linearized system. Under a compatibility condition on the initial data,
we can guarantee local existence in time of strong solutions to the fluid–structure problem.

MSC numbers: 74F10, 74H20, 74H25, 74H30, 76D03.

1 Introduction
The goal of this study is to prove the existence of a unique solution to the fluid–structure problem presented in
this section. We first expose the modelling of the structure. The goal is to approach the behaviour of a steering
gear depending on two angles of rotation θ1 and θ2. We then give the equations of the whole fluid–structure
interaction problem. In the sequel, we have to account for a time dependent domain for the fluid and for
potential singularities. We present an adapted functional framework to tackle those difficulties. We state the
main result of this study about existence and uniqueness of solutions to the fluid–structure interaction problem.
Finally, we expose the scientific context of the study and the plan of the proof that is developped in the next
sections.

1.1 Modelling of the structure
The considered structure lies inside an open bounded domain Ω ⊂ R2 and deforms itself over time. The
deformation depends on two angles θ1 and θ2 and approximates the behaviour of a steering gear structure. The
couple of parameters (θ1, θ2) lies in an admissible domain DΘ which is an open connected subset of R2. Let
Sref , a smooth closed connected subset of Ω, be the reference configuration for the structure (for instance Sref

is the volume occupied by the structure for θ1 = θ2 = 0). We consider a function X defined on DΘ × Sref such
that X(θ1, θ2,y) is the position of the matter associated to the point y in the reference configuration Sref .

The volume occupied by the structure for the parameters (θ1, θ2) ∈ DΘ is a closed bounded connected subset
of Ω denoted S(θ1, θ2) = X(θ1, θ2, Sref). We further assume that for every (θ1, θ2) ∈ DΘ, S(θ1, θ2) ⊂ Ω, i.e.
there is no contact between the structure S(θ1, θ2) and the boundary of the domain ∂Ω.

We give on page 3 the modelling assumptions that have to be fulfilled. They enable an extension of the
present work to a wider class of structures. Moreover, even if we consider only two parameters, all the results
remain valid for any finite number of parameters. The extension of all proofs is indeed straightforward.

1.1.1 Motivations

Structures depending only on a finite number of parameters arise in the field of aeronautics. For instance, let us
consider a steering gear structure. In a first approach, we can model this structure by two rigid solids. Solid S1

is tied to the fixed frame by a pivoting link O and solid S2 is tied to solid S1 by a pivoting link P . The whole
model is represented in Fig. 1a. Note that S1 can be thought of as the aerofoil of a wing and S2 as a steering
gear such as an aileron. For a given Sref ⊂ Ω, the function Xa representing the motion of this structure with
respect to (θ1, θ2) is given below

Xa(θ1, θ2,y) = χS1
(y)Rθ1y + χS2

(y)(Rθ1y
ref
P +Rθ1+θ2(y − yref

P )), ∀y ∈ Sref , ∀(θ1, θ2) ∈ DΘ,
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Figure 1: Three different kinds of structure deformation.

where Rθ =

(
cos θ − sin θ
sin θ cos θ

)
is the rotation matrix of angle θ, yref

P = (yP,1, yP,2) is the coordinate of the

point P in the reference configuration Sref and χE , the characteristic function over a set E ⊂ R2, is given below

∀y ∈ Ω, χE(y) =

{
1 if y ∈ E,
0 else.

(1.1)

In the previous example, the admissible domain DΘ for (θ1, θ2) is chosen such that no overlaps of the structure
occur.

Note that for θ2 6= 0, the function Xa(θ1, θ2, .) is not a diffeomorphism as it is discontinuous through the
interface ∂S1∩∂S2 between the two solids. In the same way, for θ̇2 6= 0, the velocity field is discontinuous inside
the structure (we denote θ̇2 the time derivative of θ2). In other words, if we keep S1 at rest and rotate S2 around
P , a discontinuity of the velocity appears through the interface between the two solids. This discontinuity can
reduce the regularity expected for the fluid velocity. Indeed, if we assume no–slip boundary conditions between
the fluid and the structure and if at time t the trace of the velocity is discontinuous on ∂S(θ1(t), θ2(t)), then
a Sobolev embedding argument shows that we cannot hope for a better regularity in space for the velocity of
the fluid than the Sobolev space L2(0, T ; H1(Ω\S(θ1(t), θ2(t))))1, while for strong solutions we usually expect
the velocity in the Sobolev space L2(0, T ; H2(Ω\S(θ1(t), θ2(t)))) 1. This loss of regularity would harm the
estimates of the nonlinear terms (see Appendix B). That is why we consider a smooth approximation Xb of the
deformation Xa.

In the sequel, y = (y1, y2) is the Lagrangian coordinate and y⊥ = (−y2, y1) is normal to y. The behaviour
of the smooth structure is represented in Fig. 1b, we give Xb below

Xb(θ1, θ2,y) = gθ1(y1)er1 + gθ2(y1)er2 + y2
N(y1)

‖N(y1)‖
, y = (y1, y2) ∈ Sref , (θ1, θ2) ∈ DΘ, (1.2)

where gθ1 and gθ2 are real–valued functions. The domain DΘ is chosen small enough, for instance DΘ =
B((0, 0), ε̃) for some ε̃ > 0, and Sref can be chosen as Sref = S(0, 0). We use the notations: er1 = (cos θ1, sin θ1),
er2 = (cos(θ1 + θ2), sin(θ1 + θ2)), N(y1) = g′θ1(y1)eθ1 + g′θ2(y1)eθ2, where eθ1 = e⊥r1 and eθ2 = e⊥r2. Moreover,
we have ‖N(y1)‖ = ((N1(y1))2 + (N2(y1))2)1/2, where Ni is the ith coordinate of N.

The function y1 7→ gθ1(y1)er1 + gθ2(y1)er2 gives for (θ1, θ2) ∈ DΘ the position of a curve. Every fibre of
matter that is normal to this curve in the reference configuration stays normal when (θ1, θ2) changes. This
means that the deformation of this curve gives the deformation of the whole structure. The normal direction
to the curve at abscissa y1 is given by N(y1). We assume that θ2 is small enough and that (g′θ1)2 + (g′θ2)2 > 0,
this implies ‖N(y1)‖ > 0. This model is inspired by the fish–like model described in [28, Section 7].

To enforce smoothness of Xb, gθ1 and gθ2 are taken as C∞ functions which are smooth approximations of
respectively yP,1 + (y1 − yP,1)χ[0,yP,1](y1) and (y1 − yP,1)χ[yP,1,ymax](y1), where χI is defined in a similar way as
(1.1) for I ⊂ R. For instance, let ε > 0 and consider µε a C∞ cut–off function such that µε(y1) = 1, for y1 < yP,1,

µε(y1) ∈ [0, 1], for yP,1 ≤ y1 ≤ yP,1 + ε,
µε(y1) = 0, for yP,1 + ε < y1.

Then, we can use {
gθ1(y1) = yP,1 + µε(y1)(y1 − yP,1),
gθ2(y1) = (1− µε(y1))(y1 − yP,1),

1These spaces are given here in an informal manner. They will be defined more precisely later.
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in (1.2) to get a smooth deformation as represented in Fig. 1b. The velocity field of the structure is not any
more discontinuous, we can thus expect the fluid velocity to have the usual regularity of strong solutions.
Remark 1.1. When ε tends to 0, these functions become{

gθ1(y1) = χ[a,b[(y1)y1 + χ[b,c](y1)yP,1,
gθ2(y1) = χ[b,c](y1)(y1 − yP,2),

(1.3)

for some real numbers a,b,c. In this case, we recover the behaviour of a pivoting structure with two rigid solids
(see Fig. 1c), corresponding to a transformation denoted Xc. However, with this definition, the two solids
overlap each other, so that we will not use it neither in the sequel. Also let us remark that the limit Xc of our
smooth approximation Xb is not the original model Xa.

We shall keep in mind only the example of Xb (see Fig. 1b), though our original motivation was to deal with
Xa (see Fig. 1a). More generally, our approach will be applicable to many more choices of deformations X. Let
us list below the assumptions used in the sequel.

Modelling Assumptions.

• For every y ∈ Sref = S(0, 0), X(0, 0,y) = y.
• Sref is a smooth simply connected closed subset of Ω.
• For every (θ1, θ2) ∈ DΘ, we have X(θ1, θ2, Sref) ⊂ Ω and inf

(θ1,θ2)∈DΘ

d(X(θ1, θ2, Sref), ∂Ω) > 0.

• For every (θ1, θ2) ∈ DΘ, X(θ1, θ2, .) is a C∞ diffeomorphism from Sref to its image S(θ1, θ2).
• The function X is C∞ on DΘ × Sref .

• The functions ∂θ1X(θ1, θ2, .) and ∂θ2X(θ1, θ2, .) form
a free family in L2(∂Sref) for every (θ1, θ2) in DΘ.

(1.4)
(1.5)
(1.6)

(1.7)
(1.8)

(1.9)

In (1.4), we have assumed that Sref = S(0, 0) to ease the study. In (1.6), we assume that the structure stays
away from the boundary of the wind tunnel. Assumption (1.7) enables us to use a change of variables. This
is a crucial step in our approach, as we shall see in Section 3.1. Assumption (1.8) ensures continuity of the
velocity field inside the structure and on its boundary. This assumption could be weakened, as C n would be
sufficient for n large enough, but we keep C∞ for simplicity. In our approach, Assumption (1.9) is natural and
mandatory to determine the equations of the structure, as we shall see below in Section 1.1.2. We now state
the fact that the proposed deformation Xb fulfils those assumptions.

Lemma 1.2. For DΘ small enough, the function Xb defined in (1.2) satisfies the modelling assumptions (1.4)–
(1.9).

A proof of this statement is provided in Appendix A. In the sequel, we do not only consider Xb but any X
that satisfies (1.4)–(1.9).

The inverse diffeomorphism of X(θ1, θ2, .) whose existence is guaranteed by (1.7) is denoted Y(θ1, θ2, .), we
have

∀(θ1, θ2) ∈ DΘ, ∀y ∈ Sref , Y(θ1, θ2,X(θ1, θ2,y)) = y. (1.10)

The diffeomorphisms X(θ1, θ2, .) and Y(θ1, θ2, .) are illustrated in Fig. 2.
Remark 1.3. The choice of Xb allows changes of volume for the structure and then for the fluid. In our setting
where mixed boundary conditions are considered, this is not a problem. However, in the case, for instance, of
homogeneous Dirichlet boundary conditions on ∂Ω, the diffeomorphism Xb would have to be modified to ensure
a constant volume to the structure.

1.1.2 Dynamics of the structure

In order to simplify the equations of the structure, we consider the following assumption for the dynamics of
the structure.

Modelling Assumption.

• No friction and no elastic forces are considered in the structure. (1.11)

The equations satisfied by the structure are obtained by a virtual work principle [2, p. 14–17]. We know
that the admissible parameters of the structure are (θ1, θ2) ∈ DΘ, and that the admissible velocities vs satisfy

vs ∈ Vect(∂θ1X(θ1, θ2, .), ∂θ2X(θ1, θ2, .)).

3



Φ(θ1, θ2, .)

X(θ1, θ2, .)

Sref

S(θ1(t), θ2(t))

y y′
Φ(θ1, θ2,y) X(θ1, θ2,y

′)

Ψ(θ1, θ2, .)

Y(θ1, θ2, .)

Ω Ω

Fref F (θ1(t), θ2(t))

O

θ1

θ2

O

Figure 2: Correspondance between real and reference structure configurations.

Thus, the virtual work principle can be formulated for every time t ∈ [0, T ] as
Find (θ1(t), θ2(t)) ∈ DΘ, such that for every w ∈ Vect(∂θ1X(θ1(t), θ2(t), .), ∂θ2X(θ1(t), θ2(t), .)),∫
Sref

ρ

(
d2

dt2
(X(θ1(t), θ2(t),y))− fbody(t,X(θ1(t), θ2(t),y))

)
·w(y) dy

−
∫
∂S(θ1(t),θ2(t))

fF→S(γx) ·w(Y(θ1(t), θ2(t), γx)) dγx = 0,

(1.12)

where fbody is a distributed source term in the body (modelling for instance the gravity), ρ is a positive constant
that represents the mass per unit volume of the structure in the reference configuration Sref and fF→S is the
force exerted by the fluid on the structure along ∂S(θ1(t), θ2(t)).

Note that the presence of fbody is compatible with Assumption (1.11), as this term represents external forces.
It does not depend on θ1, θ2 and their derivatives.

Remark 1.4. Assumption (1.11) has been used in (1.12) as no interior works have been considered.

Let us denote respectively θ̇j and θ̈j the first and second time derivatives of the function θj . Then, the
velocity of the structure can be written as

vs(t,y) =
d

dt
X(θ1(t), θ2(t),y) =

2∑
j=1

θ̇j(t)∂θjX(θ1(t), θ2(t),y), ∀t ∈ [0, T ], ∀y ∈ Sref , (1.13)

and its acceleration as

d

dt
vs(t,y) =

d2

dt2
(X(θ1(t), θ2(t),y)) =

2∑
j=1

θ̈j(t)∂θjX(θ1(t), θ2(t),y) +

2∑
j,k=1

θ̇j(t)θ̇k(t)∂θjθkX(θ1(t), θ2(t),y).

Now, problem (1.12) can be rewritten as follows



Find (θ1, θ2) ∈ DΘ, such that for every i ∈ {1, 2}, we have,∫
Sref

ρ

2∑
j=1

θ̈j∂θjX(θ1, θ2,y) · ∂θiX(θ1, θ2,y) dy = −
∫
Sref

ρ

2∑
j,k=1

θ̇j θ̇k∂θjθkX(θ1, θ2,y) · ∂θiX(θ1, θ2,y) dy

+

∫
Sref

fbody(t,X(θ1, θ2,y)) · ∂θiX(θ1, θ2,y) dy

+

∫
∂S(θ1,θ2)

fF→S(γx) · ∂θiX(θ1, θ2,Y(θ1, θ2, γx)) dγx.

Let us denote the structure body source term

(fs)i =

∫
Sref

fbody(t,X(θ1, θ2,y)) · ∂θiX(θ1, θ2,y) dy. (1.14)

On a matrix form, the equations of the structure read
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Figure 3: The geometrical configuration.

Mθ1,θ2

(
θ̈1

θ̈2

)
= MI(θ1, θ2, θ̇1, θ̇2) + MA(θ1, θ2, fF→S) + fs on (0, T ), (1.15)

where fs = ((fs)1, (fs)2) and

Mθ1,θ2 =

(
(∂θ1X(θ1, θ2, .),∂θ1X(θ1, θ2, .))S (∂θ2X(θ1, θ2, .),∂θ1X(θ1, θ2, .))S
(∂θ1X(θ1, θ2, .),∂θ2X(θ1, θ2, .))S (∂θ2X(θ1, θ2, .),∂θ2X(θ1, θ2, .))S

)
∈ R2×2, (1.16)

MI(θ1, θ2, θ̇1, θ̇2) =

(
−(θ̇2

1∂θ1θ1X(θ1, θ2, .) + 2θ̇1θ̇2∂θ1θ2X(θ1, θ2, .) + θ̇2
2∂θ2θ2X(θ1, θ2, .),∂θ1X(θ1, θ2, .))S

−(θ̇2
1∂θ1θ1X(θ1, θ2, .) + 2θ̇1θ̇2∂θ1θ2X(θ1, θ2, .) + θ̇2

2∂θ2θ2X(θ1, θ2, .),∂θ2X(θ1, θ2, .))S

)
∈ R2,

(1.17)
where (.,.)S is the scalar product

(Φ,Ψ)S =

∫
Sref

ρΦ(y) ·Ψ(y) dy, (1.18)

and

MA(θ1, θ2, fF→S) =


∫
∂S(θ1,θ2)

∂θ1X(θ1, θ2,Y(θ1, θ2, γx)) · fF→S(γx) dγx∫
∂S(θ1,θ2)

∂θ2X(θ1, θ2,Y(θ1, θ2, γx)) · fF→S(γx) dγx

 ∈ R2. (1.19)

The matrix Mθ1,θ2 in (1.16) is the Gram matrix of the family (∂θ1X(θ1, θ2), ∂θ2X(θ1, θ2)) with respect to
the scalar product (.,.)S . It is invertible due to Assumption (1.9) (if two C∞ functions are colinear in L2(Sref)
then they are colinear in L2(∂Sref)).

We also consider the following initial position and velocity for the structure{
θ1(0) = θ1,0, θ2(0) = θ2,0,

θ̇1(0) = ω1,0, θ̇2(0) = ω2,0.
(1.20)

1.2 Modelling of the full fluid–structure problem
We here present the full system of equations that are studied in the sequel.

1.2.1 Equations of the fluid

In our study, the global domain Ω = (0, L)× (0, 1) represents a wind tunnel of length L > 0, see Fig. 3. Hence
its boundary is composed of four regions: an inflow region Γi = {0}× (0, 1), a bottom region Γb = (0, L)×{0},
a top region Γt = (0, L) × {1} and an outflow region ΓN = {L} × (0, 1). We denote Γw = Γt ∪ Γb the part of
the boundary corresponding to walls and ΓD = Γi ∪Γw the part of the boundary where Dirichlet conditions are
imposed.

At time t, the structure occupies the volume S(θ1(t), θ2(t)), therefore the fluid fills the domain F (θ1(t), θ2(t)) =
Ω\S(θ1(t), θ2(t)).
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The velocity of the fluid is modelled by the incompressible Navier–Stokes equations

∂u

∂t
(t,x)+(u·∇)u(t,x)−divσF (u(t,x), p(t,x)) = fF (t,x), t ∈ (0, T ), x ∈ F (θ1(t), θ2(t)),

div u(t,x) = 0, t ∈ (0, T ), x ∈ F (θ1(t), θ2(t)),
u(t,x) = ui(t,x), t ∈ (0, T ), x ∈ Γi,
u(t,x) = 0, t ∈ (0, T ), x ∈ Γw,
σF (u(t,x), p(t,x))n(x) = 0, t ∈ (0, T ), x ∈ ΓN,
u(0,x) = u0(x), x ∈ F (θ1,0, θ2,0),

(1.21)

where u(t,x) and p(t,x) are velocity and pressure of the fluid at point x and time t, and

σF (u, p) = ν(∇u + (∇u)T )− pI,

is the stress tensor of the fluid, where ν > 0 is the kinematic viscosity of the fluid. The vector n denotes the
unit outward normal to Ω. The term fF (t,x) in (1.21)1 is a force per unit mass exerted on the fluid. Moreover,
a nonhomogeneous Dirichlet boundary condition with datum ui is imposed on the inflow region Γi and we
consider an initial datum u0 for the fluid velocity. Of course, these equations should be completed with suitable
boundary conditions on ∂S(θ1(t), θ2(t)) that are made precise in Section 1.2.2.

1.2.2 Interface conditions between the fluid and the structure

The velocity u of the fluid fulfils an adherence condition with the boundary of the structure whose velocity is
given in (1.13),

u(t,X(θ1(t), θ2(t),y)) =

2∑
j=1

θ̇j(t)∂θjX(θ1(t), θ2(t),y), t ∈ (0, T ), y ∈ ∂Sref .

Note that this no–slip boundary condition corresponds to the continuity of the velocity through the interface
between the fluid and the structure and can also be rewritten as

u(t,x) =

2∑
j=1

θ̇j(t)∂θjX(θ1(t), θ2(t),Y(θ1(t), θ2(t),x)), t ∈ (0, T ), x ∈ ∂S(θ1(t), θ2(t)). (1.22)

The forces exerted by the fluid on the structure are given by the stress tensor of the fluid

fF→S(t,x) = −σF (u, p)nθ1,θ2(t,x), t ∈ (0, T ), x ∈ ∂S(θ1(t), θ2(t)), (1.23)

where nθ1,θ2(x) is the outward unit normal to the fluid domain F (θ1(t), θ2(t)) on ∂S(θ1(t), θ2(t)).

1.2.3 The complete set of equations

The full set of equations is given by (1.15), (1.20), (1.21), (1.22) and (1.23). Note that the coupling between the
fluid and the structure appears in equations (1.21) (the fluid domain depends on θ1 and θ2), (1.22) and (1.23).

The considered system is given by the following set of equations

∂u

∂t
(t,x) + (u(t,x) · ∇)u(t,x)− div σF (u(t,x), p(t,x)) = fF (t,x), t∈(0, T ), x∈F (θ1(t), θ2(t)),

div u(t,x) = 0, t∈(0, T ), x∈F (θ1(t), θ2(t)),

u(t,x) =

2∑
j=1

θ̇j(t)∂θjX(θ1(t), θ2(t),Y(θ1(t), θ2(t),x)), t∈(0, T ), x∈∂S(θ1(t), θ2(t)),

u(t,x) = ui(t,x), t∈(0, T ), x∈Γi,
u(t,x) = 0, t∈(0, T ), x∈Γw,
σF (u(t,x), p(t,x))n(x) = 0, t∈(0, T ), x∈ΓN,
u(0,x) = u0(x), x∈F (θ1,0, θ2,0),

Mθ1,θ2

(
θ̈1

θ̈2

)
=MI(θ1, θ2, θ̇1, θ̇2)+MA(θ1, θ2,−σF (u, p)nθ1,θ2)+fs, t∈(0, T ),

θ1(0) = θ1,0, θ2(0) = θ2,0,

θ̇1(0) = ω1,0, θ̇2(0) = ω2,0.

(1.24)
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1.3 Functional framework
In this section, we present the functional framework of the study. In the sequel, F0 = F (θ1,0, θ2,0) denotes the
initial fluid domain and S0 = S(θ1,0, θ2,0) the initial configuration of the structure. For the sake of simplicity,
the initial parameters of the structure are taken equal to zero,

θ1,0 = θ2,0 = 0.

This can be done without loss of generality by the change of variables

(θ1, θ2) 7→ (θ1 − θ1,0, θ2 − θ2,0).

Moreover, the reference configuration for the structure Sref and for the fluid Fref are taken as the initial
configuration,

Sref = S0 = S(0, 0), Fref = F0 = F (0, 0).

Sobolev spaces. In the sequel, Hs(F0) is the usual Sobolev space of order s ≥ 0. We identify L2(F0) with
H0(F0). We denote L2(F0) = (L2(F0))2, Hs(F0) = (Hs(F0))2 and so on.

Corners issues. The domain considered for the fluid has four corners of angle π/2. The ones that are
located between Dirichlet and Neumann boundary conditions induce singularities, we denote them A = (L, 1)
and B = (L, 0) (see Fig. 3). We also denote Jd,n = {A,B} the set of these corners and we define the distance
of a point x from them,

for j ∈Jd,n, for x ∈ Ω, rj(x) = d(x, j). (1.25)

Note that corners between two Dirichlet boundary conditions do not induce singularities as soon as suitable
compatibility conditions are satisfied. We report to [22] for more details.

Weighted Sobolev spaces. The strong solution to the Stokes problem in the domain with corners A and
B and with a source term in L2(F0) belongs to a classical Sobolev space of lower order than what we usually
have with smooth domains. In order to get the usual gain of regularity between solutions and source terms, we
have to study the solution in adapted Sobolev spaces. As the loss of regularity is located around corners A and
B, we can recover the usual regularity if we consider norms that are suitably weighted near these corners. The
weighted Sobolev spaces are then defined for β > 0 as

H2
β(F0) = {u with ‖u‖H2

β(F0) < +∞},

H1
β(F0) = {p with ‖p‖H1

β(F0) < +∞},

where the norms ‖.‖H2
β(F0) and ‖.‖H1

β(F0) are given by

‖u‖2H2
β(F0) =

2∑
|α|=0

2∑
i=1

∫
F0

 ∏
j∈Jd,n

r2β
j (y)

 |∂αui(y)|2 dy, (1.26)

and

‖p‖2H1
β(F0) =

1∑
|α|=0

∫
F0

 ∏
j∈Jd,n

r2β
j (y)

 |∂αp(y)|2 dy. (1.27)

Here the sum is on all multi–index α of length |α| ≤ 2 for (1.26) and |α| ≤ 1 for (1.27) and rj is defined in
(1.25). The Sobolev embedding H2

β(F0) ↪→ H2−β(F0) links classical and weighted Sobolev spaces, see [22] for
more details.

Steady Stokes problem with corners. The following lemma from [24] explains how and why the spaces
H2
β and H1

β appear in the context of corners. It gives the result expected for the steady Stokes problem in F0

with weigthed Sobolev spaces and the regularity obtained in the classical Sobolev spaces.

Lemma 1.5. [24, Theorem 2.5.] Let us assume that fF ∈ L2(F0). The unique solution (u, p) to the Stokes
problem 

−div σF (u, p) = fF in F0,
div u = 0 in F0,
u = 0 on ΓD ∪ ∂S0,
σF (u, p)n = 0 on ΓN,

(1.28)

belongs to H2
β(F0)×H1

β(F0) for some β ∈ (0, 1/2) and to H3/2+ε0(F0)×H1/2+ε0(F0) for some ε0 ∈ (0, 1/2).
Moreover, we have the following estimate

‖u‖H2
β(F0)∩H3/2+ε0 (F0) + ‖p‖H1

β(F0)∩H1/2+ε0 (F0) ≤ C‖fF‖L2(F0). (1.29)
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Let us denote n0 the outward unit normal to F0 on ∂S0. The regularity proven in Lemma 1.5 gives a meaning
to all integrations by parts as p|∂F0

and ∂n0
u|∂F0

are well defined traces for (u, p) ∈ H3/2+ε0(F0)×H1/2+ε0(F0).
Also note that according to [15, Theorem 1.4.3.1], there exists a continuous extension operator from Hs(F0)

to Hs(R2) for every s > 0. This implies that all the classical Sobolev embeddings and interpolations are valid
despite the presence of corners as they can be led in R2.

Remark 1.6. Lemma 1.5 uses the geometry of the problem. Especially, we do not consider junctions between
two segments where Neumann boundary conditions are imposed and all junctions between segments are right
angles. To consider other angles, the reader can report to [22]. Note that the value of ε0 and β depends on
those angles.

Time–dependent spaces for the study in the fixed domain F0. In the sequel, we study the problem
in the fixed domain F0. Let T > 0 be the final time of the system. The following spaces are considered

UT = L2(0, T ; H2
β(F0)) ∩ C 0([0, T ]; H1(F0)) ∩H1(0, T ; L2(F0)),

PT = L2(0, T ;H1
β(F0)),

ΘT = H2(0, T ;R2),

FT = L2(0, T ; L2(F0)),

GT = H1(0, T ; H3/2(∂S0)),

ST = L2(0, T ;R2).

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

We endow ΘT with the following norm

‖(θ1, θ2)‖ΘT = ‖(θ1, θ2)‖H2(0,T ) + ‖(θ1, θ2)‖L∞(0,T ) + ‖(θ̇1, θ̇2)‖L∞(0,T ),

the other spaces are endowed with their natural norms. The norm ‖.‖ΘT has been chosen so that we have the
estimate ‖(θ1, θ2)‖L∞(0,T ) + ‖(θ̇1, θ̇2)‖L∞(0,T ) ≤ C‖(θ1, θ2)‖ΘT where C does not depend on T . Note that with
the natural norm of ΘT , C would depend on T .

1.4 Main result
The diffeomorphism Φ. A classical difficulty in fluid–structure problems is that the fluid domain changes
over time. The classical way to get rid of this difficulty is to use a change of variables on u and p in order to
bring the study back into a fixed domain. This procedure uses a diffeomorphism that we have to define properly.
When the state of the structure depends only on a finite number of parameters, it is convenient to construct
this diffeomorphism as an extension of the deformations of the structure into the fluid domain.

The diffeomorphism used is defined as an extension of the diffeomorphism X given for the structure. Hence,
we need the extension operator defined below.

Lemma 1.7. There exists a linear extension operator E : W3,∞(S0)→W3,∞(Ω) ∩H1
0(Ω) such that for every

w ∈W3,∞(S0),

(i) E(w) = w in S0,
(ii) E(w) has support within Ωε = {x ∈ Ω | d(x, ∂Ω) > ε} for some ε > 0

such that d(S(θ1, θ2), ∂Ω) > 2ε for all (θ1, θ2) ∈ DΘ,
(iii) ‖w‖W3,∞(Ω) ≤ C‖w‖W3,∞(S0), for some C > 0.

Proof. Extension results are classical, we can for instance find an extension result for smooth domains in [19,
Lemma 12.2]. We can get the result by multiplying the extension function of [19, Lemma 12.2] by a cut–off
function in D(Ωε). Note that the existence of ε > 0 fulfilling (ii) is a consequence of Assumption (1.6).

Then we define the following function

Φ(θ1, θ2,y) = y + E
(
X(θ1, θ2, .)− Id

)
(y), ∀(θ1, θ2) ∈ DΘ, ∀y ∈ Ω, (1.36)

where Id denotes the identity function.
We have ∇Φ(0, 0,y) = I for every y ∈ Ω, hence det(∇Φ(0, 0,y)) = 1. Then for every (θ1, θ2) ∈ DΘ small

enough, the function Φ(θ1, θ2, .) is a diffeomorphism close to the identity function. We denote Ψ(θ1, θ2, .) the
inverse diffeomorphism of Φ(θ1, θ2, .), i.e.

∀(θ1, θ2) ∈ DΘ, ∀y ∈ Ω, Ψ(θ1, θ2,Φ(θ1, θ2,y)) = y. (1.37)

We can prove that Φ and Ψ belong to C∞(DΘ,W
3,∞(Ω)). These diffeomorphisms are represented in Fig. 2.
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The properties of E imply that

for every (θ1, θ2) ∈ DΘ, Φ(θ1, θ2, S0) = S(θ1, θ2) and ∀y ∈ Ω\Ωε, Φ(θ1, θ2,y) = y. (1.38)

The inflow boundary conditions. We use the following space to define the admissible boundary data on
the inflow part of the boundary Γi,

Ui =


ui ∈ H3/2(Γi) with ui|∂Γi

= 0,

∫ 1/4

0

|∂y2
ui2(y2)|2

y2
dy2 < +∞,∫ 1

3/4

|∂y2
ui2(y2)|2

1− y2
dy2 < +∞

 . (1.39)

The conditions with integrals in the definition of Ui are chosen to match the homogeneous boundary conditions
on Γw. We now state the following existence theorem.

Theorem 1.8 (Main result: Local existence in time of a solution). Let T0 > 0, let ui ∈ H1(0, T0; Ui),
u0 ∈ H1(F0) and (ω1,0, ω2,0) ∈ R2 satisfying the compatibility conditions

div u0 = 0 in F0,

u0(.) =

2∑
j=1

ωj,0∂θjX(0, 0, .) on ∂S0,

u0 = ui(0, .) on Γi,
u0 = 0 on Γw.

(1.40)

Let fF ∈ L2(0, T0; W1,∞(Ω)) and fs ∈ L2(0, T0;R2). Then there exists a time T ∈ (0, T0] such that problem
(1.24) admits a unique solution (u, p, θ1, θ2) with the following regularity

(θ1, θ2) ∈ H2(0, T ;DΘ),
u(t,Φ(θ1(t), θ2(t),y)) ∈ L2(0, T ; H2

β(F0)) ∩ C 0([0, T ]; H1(F0)) ∩H1(0, T ; L2(F0)),

p(t,Φ(θ1(t), θ2(t),y)) ∈ L2(0, T ;H1
β(F0)).

Moreover, we have the estimate

‖u(t,Φ(θ1(t), θ2(t),y))‖L2(0,T ;H2
β(F0))∩C 0([0,T ];H1(F0))∩H1(0,T ;L2(F0))

+‖p(t,Φ(θ1(t), θ2(t),y))‖L2(0,T ;H1
β(F0)) + ‖(θ1, θ2)‖H2(0,T ;DΘ)

≤ C(‖u0‖H1(F0) + |ω1,0|+ |ω2,0|+ ‖fF‖L2(0,T0;L2(F0)) + ‖ui‖H1(0,T0;H3/2(Γi)) + ‖fs‖L2(0,T0;R2)).

The proof of Theorem 1.8 mainly follows the one in [9] and is presented in the rest of the present article.
Remark 1.9. Note that we have the regularity H3/2+ε0 for the fluid velocity because of the embedding H2

β(F0) ↪→
H3/2+ε0(F0).
Remark 1.10. The study in dimension three would require to adapt the functional framework with more intricate
weighted Sobolev spaces (see [22]). An adaptation of Lemmas 1.5, 2.10 and estimate (B.32) would also be
required.
Remark 1.11. In the present work, we do not study the global in time existence of solutions to the problem.
This would be an interesting extension.

1.5 Scientific context
Fluid–structure interaction problems have been considered in several works. The structure is often rigid and
immersed in an incompressible fluid [10, 14, 16, 17, 29, 31, 32] or a compressible one [6, 20, 21]. More complex
structures have been studied for instance in [11, 27] where a plate immersed in an incompressible fluid has been
considered or in [3, 18] where the authors studied the interaction between a 1D beam and a 2D fluid.

The interaction of an elastic structure with a compressible fluid has been studied in [8, 7] and with an
incompressible fluid in [5].

Deforming structures that have a given deformation have been considered to model fish–like swimmers
[23, 28]. However, they do not fit our framework since, in the present study, the deformations of the structure
fulfill an ODE.

The case of a deformable structure depending on a finite numbers of degrees of freedom can be found in
[9]. The model of the structure approximates the linear elasticity equations and it depends only on a finite
number of degrees of freedom. However, to the best of our knowledge, besides the rigid solids, we have not
found any work dealing with a structure depending naturally on a finite number of degrees of freedom fulfilling
an equation. In that sense, the modelling proposed in the present article is original.

Moreover, additional difficulties are induced by the corners on ∂Ω, more information can be found in [22, 24].
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1.6 Outline of the paper
In the next sections, we give the proof of the main result. In Section 2, we study the linearized problem in
the fixed domain F0 and prove existence of strong solutions. We first discard the boundary terms to ease the
study. The full linearized problem is then treated by the use of liftings. In Section 3, we prove local existence of
strong solutions to the nonlinear system. The proof is first conducted in the fixed domain by using the results
on the linearized system and a fixed point argument. We then obtain the main result with a change of variables.
In Appendix A, we prove the fact that the proposed diffeomorphism Xb of Section 1.1.1 fulfils the modelling
assumptions. Finally, the proof of the estimates of the nonlinear terms can be found in Appendix B.

2 Existence of solution to the linearized problem
In this section we study the linearization of problem (1.24) around the null state, first with only source terms f
and s and then with all source terms and boundary data. These equations are written in the fixed domain F0

using a change of variables explained in Section 3.1. In the sequel, (ũ, p̃) denotes the velocity and the pressure
of the fluid in the fixed domain F0. We denote T > 0 the considered final time.

2.1 Linearized problem with nonhomogeneous source terms
Let us study the following problem

∂ũ

∂t
− ν∆ũ +∇p̃ = f in (0, T )×F0,

div ũ = 0 in (0, T )×F0,

ũ = θ̇1∂θ1Φ(0, 0, .) + θ̇2∂θ2Φ(0, 0, .) on (0, T )× ∂S0,
ũ = 0 on (0, T )× Γi,
ũ = 0 on (0, T )× Γw,
σF (ũ, p̃)n = 0 on (0, T )× ΓN,
ũ(0, .) = u0(.) in F0,

M0,0

(
θ̈1

θ̈2

)
=


∫
∂S0

[p̃I − ν(∇ũ + (∇ũ)T )]n0 · ∂θ1Φ(0, 0, γy) dγy∫
∂S0

[p̃I − ν(∇ũ + (∇ũ)T )]n0 · ∂θ2Φ(0, 0, γy) dγy

+ s on (0, T ),

θ1(0) = 0, θ2(0) = 0,

θ̇1(0) = ω1,0, θ̇2(0) = ω2,0,

(2.1)

where the unkwnows are (ũ, p̃, θ1, θ2) and the source terms are (f , s) ∈ L2(0, T ; L2(F0))×L2(0, T ;R2). We will
show later that this system corresponds to the linearization of the nonlinear problem (1.24) transported in the
fixed initial configuration F0.
Remark 2.1. The state (ũ, p̃, θ1, θ2) of problem (2.1) can be reduced to (ũ, p̃, θ̇1, θ̇2). Considering the velocity
of the structure instead of its position is sufficient to solve (2.1). However, we prefer to consider the full state
(ũ, p̃, θ1, θ2), as it is useful in the sequel to deal with the nonlinear problem.

Let us fix an arbitrary time T0 > 0, e.g. T0 = 1. We want to prove the following result.

Proposition 2.2. There exists a constant C > 0 such that for all T ∈ (0, T0), C does not depend on T , for
all u0 ∈ H1(F0) and (ω1,0, ω2,0) ∈ R2 satisfying the compatibility conditions (1.40) (with ui = 0) and every
(f , s) ∈ FT × ST , problem (2.1) admits a unique solution

(ũ, p̃, θ1, θ2) ∈ UT × PT ×ΘT .

Moreover, the following estimate holds

‖ũ‖UT + ‖p̃‖PT + ‖(θ1, θ2)‖ΘT ≤ C(‖u0‖H1(F0) + |ω1,0|+ |ω2,0|+ ‖f ‖FT + ‖s‖ST ). (2.2)

In order to prove Proposition 2.2, we will study problem (2.1) under its semigroup formulation. Let us define
the space

H =

{
(ũ, θ1, θ2, ω1, ω2) ∈ L2(F0)× R4, div ũ = 0 in F0, ũ · n = 0 on ΓD,

ũ · n0 =
∑
j

ωj∂θjΦ(0, 0, .) · n0 on ∂S0

}
, (2.3)

where n0 is the unit outward normal to the fluid domain F0. The space H is endowed with the scalar product(
.,.)

0
of L2(F0)× R4 defined by(
(ũa, θa1 , θ

a
2 , ω

a
1 , ω

a
2 ),(ũb, θb1, θb2, ωb1, ωb2)

)
0

=

∫
F0

ũa · ũb dy + (θa1 θa2)

(
θb1
θb2

)
+ (ωa1 ωa2 )M0,0

(
ωb1
ωb2

)
,
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whereM0,0 is the matrix defined in (1.16) with θ1 = θ2 = 0. We also define

V =

{
(ũ, θ1, θ2, ω1, ω2) ∈ H1(F0)× R4, div ũ = 0 in F0, ũ = 0 on ΓD,

ũ =
∑
j

ωj∂θjΦ(0, 0, .) on ∂S0

}
, (2.4)

endowed with the scalar product
(
.,.)

1
of H1(F0)× R4 defined by

(
(ũa, θa1 , θ

a
2 , ω

a
1 , ω

a
2 ),(ũb, θb1, θb2, ωb1, ωb2)

)
1

=

∫
F0

(ũa ·ũb+∇ũa :∇ũb) dy+(θa1 θa2)

(
θb1
θb2

)
+(ωa1 ωa2 )M0,0

(
ωb1
ωb2

)
.

In the sequel, we denote (fj)j=1,2 =

(
f1

f2

)
.

Lemma 2.3. The orthogonal space to H with respect to the scalar product
(
.,.)

0
is

(H)⊥ =

{(
∇p, 0, 0,−M−1

0,0

(∫
∂S0

pn0 · ∂θjΦ(0, 0, γy) dγy

)
j=1,2

)
with p ∈ H1(F0) , p = 0 on ΓN

}
.

Proof. Let (ũa, θa1 , θ
a
2 , ω

a
1 , ω

a
2 ) ∈ L2(F0)× R4 such that for every (ũb, θb1, θ

b
2, ω

b
1, ω

b
2) ∈ H,(

(ũa, θa1 , θ
a
2 , ω

a
1 , ω

a
2 ),(ũb, θb1, θb2, ωb1, ωb2)

)
0

= 0.

By taking ũb = 0 and ωb1 = ωb2 = 0, we easily obtain θa1 = θa2 = 0. With ωb1 = ωb2 = 0, we also get∫
F0

ũa · ũb dy = 0, ∀ũb ∈ L2(F0) such that div ũb = 0 in F0 and ũb · n0 = 0 on ΓD ∪ ∂S0,

which implies, according to [24, Lemma 2.2], ũa = ∇p, where p ∈ H1(F0) and p = 0 on ΓN. Now,∫
F0

∇p · ũb dy +
∑
j,k

ωaj ω
b
k(∂θjX(0, 0, .),∂θkX(0, 0, .))S = 0,

becomes with the divergence formula and the compatibility condition in (2.3)∑
j

ωbj

∫
∂S0

pn0 · ∂θjΦ(0, 0, γy) dγy +
∑
j,k

ωaj ω
b
k(∂θjX(0, 0, .),∂θkX(0, 0, .))S = 0,

then ∫
∂S0

pn0 · ∂θjΦ(0, 0, γy) dγy +
∑
k

ωak(∂θjX(0, 0, .),∂θkX(0, 0, .))S = 0,

which yields a first inclusion. The converse inclusion is obtained via an integration by parts.

We define the operator (A,D(A)) on H as

D(A) =

{
(ũ, θ1, θ2, ω1, ω2) ∈ V, ũ ∈ H3/2+ε0(F0),∃p̃ ∈ H1/2+ε0(F0) such that

div σF (ũ, p̃) ∈ L2(F0) and σF (ũ, p̃)n = 0 on ΓN

}
, (2.5)

where ε0 is introduced in Lemma 1.5, and

A


ũ
θ1

θ2

ω1

ω2

 = ΠH


div σF (ũ, p̃)
ω1

ω2

M−1
0,0

(∫
∂S0

−σF (ũ, p̃)n0 · ∂θjΦ(0, 0, γy) dγy

)
j=1,2

 , (2.6)

where ΠH is the orthogonal projector from L2(F0)× R4 onto H with respect to
(
.,.)

0
.

Remark 2.4. The use of p̃ in the definition of (A,D(A)) is useful to guarantee that div σF (ũ, p̃) belongs to
L2(F0) and then that the application of ΠH in the right hand–side of (2.6) makes sense.

Lemma 2.5. The operator A is uniquely defined.
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Proof. Let (ũ, θ1, θ2, ω1, ω2) ∈ D(A) and consider two functions p, q ∈ H1/2+ε0(F0) satisfying the conditions
appearing into the definition of D(A). Then, div σF (0, p− q) = −∇(p− q) ∈ L2(F0) implies p− q ∈ H1(F0),
and σF (0, p− q)n = 0 on ΓN implies p− q = 0 on ΓN.

Now,
div σF (ũ, p)
ω1

ω2

M−1
0,0

(∫
∂S0

−σF (ũ, p)n0 · ∂θjΦ(0, 0, γy) dγy

)
j=1,2

−


div σF (ũ, q)
ω1

ω2

M−1
0,0

(∫
∂S0

−σF (ũ, q)n0 · ∂θjΦ(0, 0, γy) dγy

)
j=1,2



=


∇(p− q)
0
0

−M−1
0,0

(∫
∂S0

(p− q)n0 · ∂θjΦ(0, 0, γy) dγy

)
j=1,2

 ,

which belongs to H⊥ according to Lemma 2.3. Therefore A is uniquely defined.

Before going further, let us point out that D(A) can be characterized as follows.

Lemma 2.6. We have

D(A) =

{
(ũ, θ1, θ2, ω1, ω2) ∈ V, ũ ∈ H2

β(F0), ∃p̃ ∈ H1
β(F0) such that

div σF (ũ, p̃) ∈ L2(F0) and σF (ũ, p̃)n = 0 on ΓN

}
.

Proof. Assume that (ũ, θ1, θ2, ω1, ω2) belongs to D(A) given by (2.5). Then (ũ, p̃) satisfies

div σF (ũ, p̃) ∈ L2(F0),
div ũ = 0 in F0,
ũ =

∑
j

ωj∂θjΦ(0, 0, .) on ∂S0,

ũ = 0 on ΓD,
σF (ũ, p̃)n = 0 on ΓN.

According to [24, Theorem 2.16], there exists vs ∈ H2(F0) such that

div σF (vs, 0) = 0 in F0

div vs = 0 in F0,
vs =

∑
j

ωj∂θjΦ(0, 0, .) on ∂S0,

vs = 0 on ΓD,
σF (vs, 0)n = 0 on ΓN.

Let f = −div σF (ũ, p̃) ∈ L2(F0). Then (ũ − vs, p̃) satisfies
−div σF (ũ − vs, p̃) = f in F0,
div (ũ − vs) = 0 in F0,
ũ − vs = 0 on ΓD ∪ ∂S0,
σF (ũ − vs, p̃)n = 0 on ΓN.

According to Lemma 1.5, ũ−vs ∈ H2
β(F0)∩H3/2+ε0(F0), p̃ ∈ H1

β(F0)∩H1/2+ε0(F0). This ends the proof.

We define the bilinear form a1 on V ×V for every (ũa, θa1 , θ
a
2 , ω

a
1 , ω

a
2 ) and (ũb, θb1, θ

b
2, ω

b
1, ω

b
2) in V by

a1((ũa, θa1 , θ
a
2 , ω

a
1 , ω

a
2 ), (ũb, θb1, θ

b
2, ω

b
1, ω

b
2)) =

ν

2

∫
F0

(∇ũa + (∇ũa)T ) : (∇ũb + (∇ũb)T ) dy.

We define the operator (A1, D(A)) on H by

D(A1) = {z ∈ V with z̃ 7→ a1(z, z̃) is H− continuous },

and
∀z ∈ D(A1), ∀z̃ ∈ V,

(
A1z,z̃

)
0

= −a1(z, z̃).
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Lemma 2.7. We have
D(A1) = D(A),

and

A1


ũ
θ1

θ2

ω1

ω2

 = ΠH


div σF (ũ, p̃)
0
0

M−1
0,0

(∫
∂S0

−σF (ũ, p̃)n0 · ∂θjΦ(0, 0, γy) dγy

)
j=1,2

 .

Proof. The inclusion D(A) ⊂ D(A1) comes easily. Moreover, for every z = (ũ, θ1, θ2, ω1, ω2) ∈ D(A), an
integration by parts yields

∀z̃ ∈ V,
(
A1z,z̃

)
0

=




div σF (ũ, p̃)
0
0

M−1
0,0

(∫
∂S0

−σF (ũ, p̃)n0 · ∂θjΦ(0, 0, γy) dγy

)
j=1,2

 ,z̃


0

.

Let us now prove the reverse inclusion D(A1) ⊂ D(A). Let z = (ũ, θ1, θ2, ω1, ω2) ∈ D(A1). According to
Riesz representation theorem, there exists f ∈ H such that

∀z̃ ∈ V, a1(z, z̃) =
(
f,z̃)

0
.

We write f = (fu, fθ1 , fθ2 , fω1
, fω2

). For ṽ ∈ Ddiv = {u ∈ (C∞c (F0))2 with div u = 0}, we know that
(ṽ, 0, 0, 0, 0) belongs to V, and an integration by parts yields

a1(z, (ṽ, 0, 0, 0, 0)) =

∫
F0

(−div σF (ũ, 0)) · ṽ dy =

∫
F0

fu · ṽ dy.

Then, according to [30, Lemma 2.2.2], there exists q̂ ∈ L2(F0) such that

−div σF (ũ, q̂) = fu in F0, (2.7)

and thus div σF (ũ, q̂) belongs to L2(F0), which gives a meaning to σF (ũ, q̂)n0 on ∂F0.

Now, let us prove that σF (ũ, q̂)n is constant along ΓN. Let g ∈ (C∞c (ΓN))2 fulfilling
∫

ΓN

g · n dγy = 0.

According to [13, Theorem IV.1.1], there exists vg ∈ H1(F0) satisfying div vg = 0 in F0,
vg = 0 on ΓD ∪ ∂S0,
vg = g on ΓN.

We know that (vg, 0, 0, 0, 0) belongs to V. An integration by parts yields

a1(z, (vg, 0, 0, 0, 0)) =

∫
F0

(−div σF (ũ, q̂)) · vg dy +

∫
ΓN

σF (ũ, q̂)n · g dγy =

∫
F0

fu · vg dy,

and with (2.7) we get ∫
ΓN

σF (ũ, q̂)n · g dγy = 0.

The previous equality holds for every g ∈ (C∞c (ΓN))2 fulfilling
∫

ΓN

g · n dγy = 0, then there exists a constant c

such that σF (ũ, q̂)n = c n on ΓN.
Let q = q̂ − c ∈ L2(F0), we have div σF (ũ, q) = div σF (ũ, q̂) and σF (ũ, q)n = 0 on ΓN. Moreover, (ũ, q)

satisfies 

div σF (ũ, q) ∈ L2(F0),
div ũ = 0 in F0,
ũ = 0 on ΓD,
ũ =

∑
j

ωj∂θjΦ(0, 0, .) on ∂S0,

σF (ũ, q)n = 0 on ΓN.

We finish this proof with a lifting of the boundary datum on ∂S0 [24, Theorem 2.16] and Lemma 1.5. We get
D(A1) ⊂ D(A), thus concluding the proof of Lemma 2.7.
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The key point of this section is the following lemma.

Lemma 2.8. The operator A generates an analytic semigroup on H. Moreover, for λ ∈ R large enough, λI−A
is positive and D((λI −A)1/2) = V.

Proof. We first prove the properties of Lemma 2.8 on the self–adjoint operator A1 and then we extend it to A
with a perturbation argument.

The bilinear form a1 is symmetric and according to Korn’s inequality [12, p. 110], there exists c > 0 such
that

∀(ũ, θ1, θ2, ω1, ω2) ∈ V, a1((ũ, θ1, θ2, ω1, ω2), (ũ, θ1, θ2, ω1, ω2)) +
ν

2
‖ũ‖2L2(F0) ≥ c‖ũ‖

2
H1(F0),

so that,

∀(ũ, θ1, θ2, ω1, ω2) ∈ V,
a1((ũ, θ1, θ2, ω1, ω2), (ũ, θ1, θ2, ω1, ω2)) + max

(ν
2
, c
)
‖(ũ, θ1, θ2, ω1, ω2)‖2H ≥ c‖(ũ, θ1, θ2, ω1, ω2)‖2V.

Then we can easily conclude that D((−A1)1/2) = V. Moreover, according to [4, Theorem 2.12, p. 115], A1

generates an analytic semigroup on H.
Now, we use the fact that A − A1 ∈ L(H), then according to [25, Corollary 2.2.], A generates an analytic

semigroup on H.
A consequence of the previous result is that there exists λ > 0 such that λI − A is positive. Moreover,

D(λI −A) = D(A1), then by interpolation, D((λI −A)1/2) = D((−A1)1/2) = V.

We are now in position to prove Proposition 2.2.

Proof of Proposition 2.2. Let us denote F = ΠH(f , 0, 0,M−1
0,0s) and z0 = (u0, 0, 0, ω1,0, ω2,0). We have F ∈

L2(0, T ;H) and, according to the compatibility condtions (1.40) (with ui = 0), z0 ∈ D(A1/2) = V.
According to [4, Theorem 3.1, p. 143] and Lemma 2.8, the problem{

z′(t) = Az(t) + F(t), t ≥ 0,
z(0) = z0,

(2.8)

admits a unique solution z ∈ L2(0, T ;D(A)) ∩H1(0, T ;H) and there exists C > 0 such that

‖z‖L2(0,T ;D(A))∩H1(0,T ;H) ≤ C(‖F‖L2(0,T ;H) + ‖z0‖V). (2.9)

With the Sobolev embedding

L2(0, T ;D(A)) ∩H1(0, T ;H) ↪→ C 0([0, T ];V),

we have
‖z‖L2(0,T ;D(A))∩C 0([0,T ];V)∩H1(0,T ;H) ≤ C(‖F‖L2(0,T ;H) + ‖z0‖V). (2.10)

Moreover, C can be taken independent from T ∈ (0, T0). To prove this statement, we consider

∀t ∈ [0, T0], F̃(t) =

{
F(t) if t ∈ [0, T ],
0 if t ∈]T, T0].

If z̃ is the solution on [0, T0] of {
z̃′ = Az̃ + F̃,
z̃(0) = z0,

then for t ≤ T , z̃(t) = z(t). We have the inequality

‖z̃‖L2(0,T0;D(A))∩C 0([0,T0];V)∩H1(0,T0;H) ≤ C(‖F̃‖L2(0,T0;H) + ‖z0‖V),

where C does not depend on T . Moreover,

‖z‖L2(0,T ;D(A))∩C 0([0,T ];V)∩H1(0,T ;H) ≤ ‖z̃‖L2(0,T0;D(A))∩C 0([0,T0];V)∩H1(0,T0;H),

and
‖F̃‖L2(0,T0;H) = ‖F‖L2(0,T ;H).

By combining these arguments, we get (2.10) with C independent from T .
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Now, if we write z = (ũ, θ1, θ2, ω1, ω2), problem (2.8) becomes

d

dt


ũ
θ1

θ2

ω1

ω2

 = ΠH


div σF (ũ, p) + f
ω1

ω2

M−1
0,0

(
s +

(∫
∂S0

−σF (ũ, p)n0 · ∂θjΦ(0, 0, .) dγy

)
j=1..2

)
 ,

where p ∈ L2(0, T ;H1
β(F0)). Then, Lemma 2.3 implies that there exists q ∈ L2(0, T ;H1(F0)) such that

(ũ, p+q, θ1, θ2) satisfies the linear problem (2.1). Moreover, according to (2.10), we have (θ1, θ2) ∈ H2(0, T ;R2),
ũ ∈ H1(0, T ; L2(F0)) ∩ C 0([0, T ]; H1(F0)) ∩ L2(0, T ; H2

β(F0)), p̃ = p+ q ∈ L2(0, T ;H1
β(F0)) and

‖ũ‖L2(0,T ;H2
β(F0))∩C 0([0,T ];H1(F0))∩H1(0,T ;L2(F0)) + ‖p̃‖L2(0,T ;H1

β(F0)) + ‖(θ1, θ2)‖ΘT
≤ C(‖u0‖H1(F0) + |ω1,0|+ |ω2,0|+ ‖f ‖L2(0,T ;L2(F0)) + ‖s‖L2(0,T ;R2)).

This concludes the proof of Proposition 2.2.

2.2 Linearized problem with nonhomogeneous boundary data
Let us now consider two more nonhomogeneous data: one datum g on the boundary of the structure ∂S0 and
one datum ui on the inflow boundary region Γi. Let T0 > 0, we study

∂ũ

∂t
− ν∆ũ +∇p̃ = f in (0, T )×F0,

div ũ = 0 in (0, T )×F0,

ũ = θ̇1∂θ1Φ(0, 0, .) + θ̇2∂θ2Φ(0, 0, .) + g on (0, T )× ∂S0,
ũ = ui on (0, T )× Γi,
ũ = 0 on (0, T )× Γw,
σF (ũ, p̃)n = 0 on (0, T )× ΓN,
ũ(0,y) = u0(y) in F0,

M0,0

(
θ̈1

θ̈2

)
=


∫
∂S0

[p̃I − ν(∇ũ + (∇ũ)T )]n0 · ∂θ1Φ(0, 0, γy)dγy∫
∂S0

[p̃I − ν(∇ũ + (∇ũ)T )]n0 · ∂θ2Φ(0, 0, γy)dγy

+ s on (0, T ),

θ1(0) = 0, θ2(0) = 0,

θ̇1(0) = ω1,0, θ̇2(0) = ω2,0,

(2.11)

where the source terms and data are f ∈ L2(0, T ; L2(F0)) , g ∈ H1(0, T ; H3/2(∂S0)), ui ∈ H1(0, T0; Ui) and
s ∈ L2(0, T ;R2).

We prove in this section the following result.

Proposition 2.9. There exists a constant C > 0 such that for all T ∈ (0, T0), C does not depend on T , for all
ui ∈ H1(0, T0; Ui), u0 ∈ H1(F0) and (ω1,0, ω2,0) ∈ R2 satisfying the compatibility conditions (1.40) and every
(f ,g, s) ∈ FT ×GT × ST with g(0) = 0, problem (2.11) admits a unique solution

(ũ, p̃, θ1, θ2) ∈ UT × PT ×ΘT ,

with
‖ũ‖UT + ‖p̃‖PT + ‖(θ1, θ2)‖ΘT ≤ C(‖u0‖H1(F0) + |ω1,0|+ |ω2,0|

+‖f ‖FT + ‖g‖GT + ‖s‖ST + ‖ui‖H1(0,T0;Ui)).
(2.12)

Proposition 2.9 is proven at the end of the section. The proof uses the following lifting result for the terms
g and ui.

Lemma 2.10. For every g ∈ H3/2(∂S0) and every ui ∈ Ui, there exists u ∈ H2(F0) satisfying
div u = 0 in F0,
u = g on ∂S0,
u = ui on Γi,
u = 0 on Γw,
(∇u + (∇u)T )n = 0 on ΓN,

(2.13)

with
‖u‖H2(F0) ≤ C(‖ui‖Ui + ‖g‖H3/2(∂S0)). (2.14)
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Note that despite the presence of corners, we recover the expected regularity of the lifting for smooth
domains.
Remark 2.11. For the sake of readability, from this point onwards all terms dy and dγy are omitted in the
integrals.

Proof of Lemma 2.10. The lifting result has been established for ui = 0 on the inflow region in [24, Theorem
2.16]. We first lift the inflow boundary condition ui 6= 0 in Ω and then we use the aforementioned result.

Lifting of the inflow boundary condition. Let us look for a function v defined on the entire domain Ω and
satisfying 

div v = 0 in Ω,
v = ui on Γi,
v = 0 on Γw,
(∇v + (∇v)T )n = 0 on ΓN.

(2.15)

As v is divergence–free and Ω is simply connected, we look for it under the form v = ∇⊥ψ, where ψ is a
scalar–valued function. In the geometry considered, Γi, Γt, Γb and ΓN are straight lines, hence ∂n is written as
±∂y1 or ±∂y2 according on the considered part of the boundary.

We can prove that ψ has to satisfy the conditions

∂y2ψ = −ui1 and ∂y1ψ = ui2 on Γi,
∂y1ψ = 0 and ∂y2ψ = 0 on Γb,
∂y1

ψ = 0 and ∂y2
ψ = 0 on Γt,

∂y1
∂y2

ψ = 0 and ∂2
y1
ψ − ∂2

y2
ψ = 0 on ΓN.

We choose to meet these conditions in the following way:

ψ(y2) = −
y2∫

0

ui1 and ∂y1ψ = ui2 on Γi,

ψ = 0 and ∂y2
ψ = 0 on Γb,

ψ = −
∫

Γi

ui1 and ∂y2
ψ = 0 on Γt.

ψ(y2) = −η(y2)

∫
Γi

ui1, ∂y1
ψ = 0 and ∂2

y1
ψ = −d2

y2
η(y2)

∫
Γi

ui1 on ΓN,

(2.16)

where η is a C∞ function on [0, 1] satisfying

∀ y2 ∈ [0, 1], η(y2) =

 0 if y2 ∈ [0, 1/4],
∈ [0, 1] if y2 ∈]1/4, 3/4[,
1 if y2 ∈ [3/4, 1].

(2.17)

The theorem [15, Theorem 1.6.1.5, p.69] with m = 3 and d = 2 gives the existence of ψ ∈ H3(Ω) fulfilling
(2.16) under the compatibility conditions:

there exist α1 and α2 > 0 such that


∫ α1

0

|∂y2
ui2|2

y2
< +∞,∫ 1

1−α2

|∂y2
ui2|2

1− y2
< +∞.

(2.18)

These conditions are the ones in the definition of Ui in (1.39) with α1 = α2 = 1/4. Moreover we have the
estimate

‖v‖H2(Ω) ≤ c‖ψ‖H3(Ω) ≤ C‖ui‖H3/2(Γi). (2.19)

The divergence-free field v = ∇⊥ψ ∈ H2(Ω) satisfies (2.15).
Lifting of the structure velocity. Now, ṽ = u− v|F0

has to satisfy
div ṽ = 0 in F0,
ṽ = g − v on ∂S0,
ṽ = 0 on Γi,
ṽ = 0 on Γw,
(∇ṽ + (∇ṽ)T )n = 0 on ΓN.

According to [24, Theorem 2.16], such ṽ exists in H2(F0) as soon as g − v ∈ H3/2(∂S0). Moreover, we have
the estimate

‖ṽ‖H2(F0) ≤ C‖g − v‖H3/2(∂S0) ≤ C(‖g‖H3/2(∂S0) + ‖v‖H2(Ω)). (2.20)

This yields the expected result since u = ṽ + v|F0
, the estimate (2.14) comes from (2.19) and (2.20).
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We can now prove Proposition 2.9 in the following way.

Proof of Proposition 2.9. Let ui ∈ H1(0, T0; Ui), u0 ∈ H1(F0) and (ω1,0, ω2,0) ∈ R2 satisfying the compatibility
conditions (1.40). Let (f ,g, s) ∈ FT ×GT × ST with g(0) = 0.

Let u ∈ H1(0, T ; H2(F0)) be such that u(t) is the solution to (2.13), it fulfils

‖u‖H1(0,T ;H2(F0)) ≤ C(‖ui‖H1(0,T0;Ui) + ‖g‖H1(0,T ;H3/2(∂S0))). (2.21)

The lifting u also belongs to C 0([0, T ]; H2(F0)), and as g(0) = 0, we have

‖u‖C 0([0,T ];H2(F0)) ≤ C(‖ui‖H1(0,T0;Ui) + ‖g‖H1(0,T ;H3/2(∂S0))), (2.22)

where C does not depend on T .
Let (û, p̃, θ1, θ2) be the solution to

∂û

∂t
− ν∆û +∇p̃ = f − ∂u

∂t
+ ν∆u in (0, T )×F0,

div û = 0 in (0, T )×F0,

û = θ̇1∂θ1Φ(0, 0, .) + θ̇2∂θ2Φ(0, 0, .) on (0, T )× ∂S0,
û = 0 on (0, T )× Γi,
û = 0 on (0, T )× Γw,
σF (û, p̃)n = 0 on (0, T )× ΓN,
û(0, .) = u0(.)− u(0, .) in F0,

M0,0

(
θ̈1

θ̈2

)
=


∫
∂S0

[p̃I − ν(∇(û + u) + (∇(û + u))T )]n0 · ∂θ1Φ(0, 0, γy)∫
∂S0

[p̃I − ν(∇(û + u) + (∇(û + u))T )]n0 · ∂θ2Φ(0, 0, γy)

+ s on (0, T ),

θ1(0) = 0, θ2(0) = 0,

θ̇1(0) = ω1,0, θ̇2(0) = ω2,0.

We have
f − ∂u

∂t
+ ν∆u ∈ L2(0, T ; L2(F0)),

u0(.)− u(0, .) = 0 on Γi,

sj +

∫
∂S0

−ν(∇û + (∇û)T )n0 · ∂θjΦ(0, 0, γy) ∈ L2(0, T ).

Then, according to Proposition 2.2, (û, p̃, θ1, θ2) ∈ UT × PT ×ΘT and we have (2.2) with û instead of ũ.
Now, we consider ũ = û+u, then (ũ, p̃, θ1, θ2) ∈ UT ×PT ×ΘT and (2.12) is a consequence of (2.21)–(2.22)

and (2.2).

Remark 2.12. Note that a larger space than H1(0, T0; Ui) could be considered for ui. Indeed, we use a lifting
in space only, inducing the requirement ui ∈ H1(0, T0; Ui). Using a space-time lifting would be slightly more
complicated (see [26]), but would allow a larger space for the inflow boundary datum ui.

3 Local existence of solution to the full problem
In this section, we study the nonlinear problem. We recall that θ1,0 = θ2,0 = 0. At first, we rewrite the equations
(1.24) in the fixed domain F0, then we prove existence of a solution to this problem.

3.1 The equations in a fixed domain
Our goal is to write the equations (1.24) in the fixed domain F0. To do so, we use the diffeomorphism defined
in (1.36). We denote JΦ its Jacobian matrix and cof(JΦ) the cofactor matrix of JΦ. We use the change of
variables

∀t ∈ [0, T ], ∀y ∈ F0,

{
ũ(t,y) = cof(JΦ(θ1(t), θ2(t),y))Tu(t,Φ(θ1(t), θ2(t),y)),
p̃(t,y) = p(t,Φ(θ1(t), θ2(t),y)).

This choice is motivated by the fact that, according to [9, Lemma 3.1], we get div ũ = 0.
In the sequel, vi denotes the ith component of the vector v. We recall that Ψ(θ1, θ2, .) is the inverse

diffeomorphism of Φ(θ1, θ2, .). To compute the equations satisfied by (ũ, p̃, θ1, θ2), we use the following explicit
formula:

u(t,x) = cof(JΨ(θ1(t), θ2(t),x))T ũ(t,Ψ(θ1(t), θ2(t),x)),
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we have

∂tu(t,x) = cof

(
d

dt
JΨ(θ1(t), θ2(t),x)

)T
ũ(t,Ψ(θ1(t), θ2(t),x))

+cof(JΨ(θ1(t), θ2(t),x))T∂tũ(t,Ψ(θ1(t), θ2(t),x))

+cof(JΨ(θ1(t), θ2(t),x))T∇yũ(t,Ψ(θ1(t), θ2(t),x))
d

dt
Ψ(θ1(t), θ2(t),x),

∂xju(t,x) = cof(∂xjJΨ(θ1(t), θ2(t),x))T ũ(t,Ψ(θ1(t), θ2(t),x))
+cof(JΨ(θ1(t), θ2(t),x))T∇yũ(t,Ψ(θ1(t), θ2(t),x))∂xjΨ(θ1(t), θ2(t),x),

and

∂2
xju(t,x) = cof(∂2

xjJΨ(θ1(t), θ2(t),x))T ũ(t,Ψ(θ1(t), θ2(t),x))

+2cof(∂xjJΨ(θ1(t), θ2(t),x))T∇yũ(t,Ψ(θ1(t), θ2(t),x))∂xjΨ(θ1(t), θ2(t),x)

+cof(JΨ(θ1(t), θ2(t),x))T
∑
k

∂yk∇yũ(t,Ψ(θ1(t), θ2(t),x))∂xjΨ(θ1(t), θ2(t),x)∂xjΨk(θ1(t), θ2(t),x)

+cof(JΨ(θ1(t), θ2(t),x))T∇yũ(t,Ψ(θ1(t), θ2(t),x))∂2
xjΨ(θ1(t), θ2(t),x).

Problem (1.24) in the fixed domain reads (2.11) where f ,g, s are defined by
f = F(θ1, θ2, ũ, p̃) + fF (t,Φ(θ1(t), θ2(t),y)),

g = G(θ1, θ2, θ̇1, θ̇2),
s = S(θ1, θ2, ũ, p̃) + fs,

(3.1)

where F, G and S are nonlinear terms. We use the decomposition F(θ1, θ2, ũ, p̃) = F1 + F2 + F3 + F4 + F5.
We write Φ(θ1, θ2, .) under the simpler notation Φ. The nonlinear terms are given as follows:

F1(θ1, θ2, ũ) = (I − cof(JΨ(θ1, θ2,Φ))T )
∂ũ

∂t
,

F2(θ1, θ2, ũ) = −cof
(

(∂tJΨ(θ1, θ2, .)) ◦Φ
)T

ũ(t,y)− cof(JΨ(θ1, θ2,Φ))T(∇yũ)
(

(∂tΨ(θ1, θ2, .))◦Φ
)
,

F3(θ1, θ2, ũ)i = ν
∑

j,k,`,m

cof(JΨ(θ1, θ2,Φ))ki
∂2ũk
∂y`∂ym

∂Ψ`

∂xj
(θ1, θ2,Φ)

∂Ψm

∂xj
(θ1, θ2,Φ)

+2ν
∑
j,k,`

cof(∂xjJΨ(θ1, θ2,Φ))ki
∂ũk
∂y`

∂Ψ`

∂xj
(θ1, θ2,Φ)

+ν
∑
j,k,`

cof(JΨ(θ1, θ2,Φ))ki
∂ũk
∂y`

∂2Ψ`

∂x2
j

(θ1, θ2,Φ)

+ν
∑
j,k

cof(∂2
xjJΨ(θ1, θ2,Φ))kiũk − ν∆yũi(t,y),

F4(θ1, θ2, ũ)i = −
∑
j,k,r

cof(JΨ(θ1, θ2,Φ))kjcof(∂xjJΨ(θ1, θ2))riũkũr

−
∑
k,r

det(JΨ(θ1, θ2,Φ))2 ∂Φi
∂yr

∂ũr
∂yk

ũk,

F5(θ1, θ2, p̃) = (I − JΨ(θ1, θ2,Φ))T∇yp̃,

G(θ1, θ2, ω1, ω2) =

2∑
j=1

ωj

(
cof(JΦ(θ1, θ2,y))T∂θjΦ(θ1, θ2,y)− ∂θjΦ(0, 0,y)

)
,

S(θ1, θ2, ũ, p̃) =−(Mθ1,θ2
−M0,0)

(
θ̈1

θ̈2

)
+ MI(θ1, θ2, θ̇1, θ̇2)

+


∫
∂S0

|JΦt0| [p̃I − ν(G(θ1, θ2, ũ) + G(θ1, θ2, ũ)T )]nθ1,θ2(Φ) · ∂θ1Φ(θ1, θ2, γy)∫
∂S0

|JΦt0| [p̃I − ν(G(θ1, θ2, ũ) + G(θ1, θ2, ũ)T )]nθ1,θ2(Φ) · ∂θ2Φ(θ1, θ2, γy)


−


∫
∂S0

[p̃I − ν(∇ũ + (∇ũ)T )]n0 · ∂θ1Φ(0, 0, γy)∫
∂S0

[p̃I − ν(∇ũ + (∇ũ)T )]n0 · ∂θ2Φ(0, 0, γy)

 ,

(3.2)

where t0 is a unitary tangent vector to ∂S0, MI andMθ1,θ2 are defined in (1.16), (1.17) and

G(θ1, θ2, ũ)ij =
∑
k

cof
[
∂xjJΨ(θ1, θ2, .)) ◦Φ

]
ki
ũk +

∑
k,`

cof(JΨ(θ1, θ2,Φ))ki
∂ũk
∂y`

∂Ψ`

∂xj
(θ1, θ2,Φ). (3.3)
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For every T > 0, we define the space

NT = {(ũ, p̃, θ1, θ2) ∈ UT × PT ×ΘT with θ1(0) = θ2(0) = 0, and ∀t ∈ [0, T ], (θ1, θ2)(t) ∈ DΘ} ,

that we endow with the norm

‖(ũ, p̃, θ1, θ2)‖NT = ‖ũ‖UT + ‖p̃‖PT + ‖(θ1, θ2)‖ΘT . (3.4)

We can state the following theorem.

Theorem 3.1. Let T0 > 0. Let ui ∈ H1(0, T0; Ui) and (fF , fs) ∈ L2(0, T0; W1,∞(Ω))×L2(0, T0;R2). For every
(u0, ω1,0, ω2,0) ∈ H1(F0) × R2 satisfying the compatibility conditions (1.40), there exists T ∈ (0, T0] such that
problem (2.11) where the source terms are given by (3.1) admits a unique solution (ũ, p̃, θ1, θ2) ∈ NT satisfying
the following estimate

‖ũ, p̃, θ1, θ2‖NT ≤ C(‖u0‖H1(F0) + |ω1,0|+ |ω2,0|+ ‖fF‖L2(0,T0;L2(F0)) + ‖ui‖H1(0,T0;Ui) + ‖fs‖L2(0,T0)),

where C does not depend on T , fF , fs and ui.

This theorem is the rewriting of Theorem 1.8 in the fixed domain F0. To prove Theorem 3.1, we use the
results of Section 2 and a fixed point argument.

3.2 Proof of Theorem 3.1
Proof. We work in the fixed fluid domain F0. Let T0 > 0.
Let ui ∈ H1(0, T0; Ui) and (u0, ω1,0, ω2,0) ∈ H1(F0)× R2 satisfying the compatibility conditions (1.40).

We define an application ΛT on NT such that for every (u, p, θ1, θ2) ∈ NT , (ũ, p̃, θ1, θ2) = ΛT (u, p, θ1, θ2) ∈
UT × PT ×ΘT is the solution to problem (2.11), where the nonhomogeneous terms are given by

f = F(θ1, θ2,u, p) + fF (t,Φ(θ1, θ2,y)),

g = G(θ1, θ2, θ̇1, θ̇2),

s = S(θ1, θ2,u, p) + fs,

where F, G and S are given by (3.2). Note that ΛT is well defined, indeed if (u, p, θ1, θ2) ∈ NT , we have
G(θ1, θ2, θ̇1, θ̇2)(t = 0) = 0 and we prove below that (f ,g, s) belongs to FT × GT × ST (see Lemma 3.2 with
(ũa, p̃a, θa1 , θ

a
2) = (0, 0, 0, 0)). Then according to Proposition 2.9, ΛT (u, p, θ1, θ2) is uniquely defined. Note that

ΛT depends on the initial data (u0, ω1,0, ω2,0) and on the source term ui.
We take

R = 2C(‖ui‖H1(0,T0;Ui) + ‖u0‖H1(F0) + |ω1,0|+ |ω2,0|+ ‖fF‖L2(0,T0;L2(F0)) + ‖fs‖L2(0,T0)),

where C is the constant of Proposition 2.9, so that Proposition 2.9 gives

‖ΛT (0, 0, 0, 0)‖NT≤ C(‖ui‖H1(0,T0;Ui)+‖u0‖H1(F0)+|ω1,0|+|ω2,0|+‖fF‖L2(0,T0;L2(F0))+‖fs‖L2(0,T0)) = R/2. (3.5)

The strategy adopted is based on the existence of T > 0 such that ΛT is a contraction on

BR(T ) =
{

(ũ, p̃, θ1, θ2) ∈ NT with ‖(ũ, p̃, θ1, θ2)‖NT ≤ R
}
. (3.6)

The domain DΘ is an open subset of R2 and (0, 0) ∈ DΘ, then there exists r > 0 such that B((0, 0), r) ⊂ DΘ.
Then for T < r/R, if (., ., θ1, θ2) ∈ BR(T ), we have ‖θ̇j‖L∞(0,T ) ≤ R and θj(0) = 0, then

‖θj‖L∞(0,T ) ≤ T‖θ̇j‖L∞(0,T ) ≤ RT ≤ r,

and we have for all t ∈ (0, T ), (θ1(t), θ2(t)) ∈ DΘ. In the sequel we choose T0 > 0 such that T0 < r/R. Hence
∀T ∈ [0, T ],ΛT : BR(T )→ NT .

The solution to the nonlinear problem will be obtained as a fixed point of the application ΛT on BR(T ). We
use the estimates of the following lemma.

Lemma 3.2. For every R′ > 0, there exists a constant C ′ = C ′(R′) > 0, such that for every T ∈ (0, T0), and
every (ũj , p̃j , θj1, θ

j
2) ∈ BR′(T ) , we have

‖F(θa1 , θ
a
2 , ũ

a, p̃a)− F(θb1, θ
b
2, ũ

b, p̃b)‖FT ≤ C ′T 1/4(‖ũa − ũb‖UT +‖p̃a − p̃b‖PT +‖θa − θb‖ΘT ), (3.7)
‖G(θa1 , θ

a
2 , θ̇

a
1 , θ̇

a
2)−G(θb1, θ

b
2, θ̇

b
1, θ̇

b
2)‖GT ≤ C ′T 1/2‖θa − θb‖ΘT , (3.8)

‖S(θa1 , θ
a
2 , ũ

a, p̃a)− S(θb1, θ
b
2, ũ

b, p̃b)‖ST ≤ C ′T 1/2(‖ũa − ũb‖UT +‖p̃a − p̃b‖PT +‖θa − θb‖ΘT ), (3.9)
‖fF (t,Φ(θa1 , θ

a
2 ,y))−fF (t,Φ(θb1, θ

b
2,y))‖FT ≤ C ′T‖θa − θb‖ΘT . (3.10)
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These estimates are proven in Appendix B.
For (ũj , p̃j , θj1, θ

j
2) ∈ BR(T ), Proposition 2.9 yields the estimate

‖ΛT (ũa, p̃a, θa1 , θ
a
2)− ΛT (ũb, p̃b, θb1, θ

b
2)‖NT

≤ C(‖F(θa1 , θ
a
2 , ũ

a, p̃a)− F(θb1, θ
b
2, ũ

b, p̃b)‖FT + ‖G(θa1 , θ
a
2 , θ̇

a
1 , θ̇

a
2)−G(θb1, θ

b
2, θ̇

b
1, θ̇

b
2)‖GT

+‖S(θa1 , θ
a
2 , ũ

a, p̃a)− S(θb1, θ
b
2, ũ

b, p̃b)‖ST + ‖fF (t,Φ(θa1 , θ
a
2 ,y))−fF (t,Φ(θb1, θ

b
2,y))‖FT ),

(3.11)

and with Lemma 3.2, we have

‖ΛT (ũa, p̃a, θa1 , θ
a
2)− ΛT (ũb, p̃b, θb1, θ

b
2)‖NT ≤ KT 1/4(‖ũa − ũb‖UT + ‖p̃a − p̃b‖PT + ‖θa − θb‖ΘT ), (3.12)

where K = 4CC ′(R) depends on R but not on T . For T ∈ (0, T0) such that

T < r/R and KT 1/4 ≤ 1/2,

estimates (3.12) and (3.5) yield

‖ΛT (ũ, p̃, θ1, θ2)‖NT ≤ ‖ΛT (0, 0, 0, 0)‖NT +KT 1/4(‖ũ‖UT + ‖p̃‖PT + ‖θ‖ΘT ) ≤ R/2 +KRT 1/4 ≤ R.

Then, ∀T ∈ [0, T ],ΛT : BR(T )→ BR(T ) and according to (3.12), the application ΛT is a contraction on BR(T ).
We have proven that ΛT : BR(T ) → BR(T ) is a contraction. Then, according to the Picard fixed point

theorem, there exists a unique fixed point to ΛT in BR(T ). This fixed point is the solution to problem (2.11)
where the source terms are given by (3.1). This proves Theorem 3.1.

3.3 Result in the moving domain, Theorem 1.8
We consider (ũ, p̃, θ1, θ2) in NT the solution to problem (2.11) with (3.1) given by Theorem 3.1. Let u(t,x) =
cof(JΨ(θ1(t), θ2(t),x))T ũ(t,Ψ(θ1(t), θ2(t),x)) and p(t,x) = p̃(t,Ψ(θ1(t), θ2(t),x)). Then the quadruplet (u, p, θ1, θ2)
is solution to the problem in the moving domain, i.e. problem (1.24). This proves Theorem 1.8.

Acknowledgement: The author would like to thank the anonymous referees who improved the pre-
sentation of the introduction.

Appendix
A Proof of Lemma 1.2
We have gθ1(y1) + gθ2(y1) = y1, Assumption (1.4) is then fulfilled. The reference domain Sref is chosen to
satisfy Assumption (1.5). Assumption (1.6) is fulfilled by restriction of DΘ. All terms composing Xb in (1.2)
are smooth, Assumption (1.8) is then easily fulfilled. For all y1 < yP,1, gθ2(y1) = 0. This implies that
∀y1 < yP,1, ∂θ2X

b(y1, θ1, θ2) = 0, which proves (1.9).
We still have to show that Xb is a bijection. Let us compute its jacobian matrix. We denote the jacobian

components as follows

JXb =

(
∂1X1 ∂2X1

∂1X2 ∂2X2

)
.

We have

det(JXb) = ∂1X1 × ∂2X2 − ∂2X1 × ∂1X2

=

(
g′θ1er1 + g′θ2er2 + y2

(
N′

‖N‖
− (‖N‖)′N
‖N‖2

))
1

×
(

N

‖N‖

)
2

−
(
g′θ1er1 + g′θ2er2 + y2

(
N′

‖N‖
− (‖N‖)′N
‖N‖2

))
2

×
(

N

‖N‖

)
1

=

(
g′θ1er1 + g′θ2er2 + y2

N′

‖N‖

)
1

×
(

N

‖N‖

)
2

−
(
g′θ1er1 + g′θ2er2 + y2

N′

‖N‖

)
2

×
(

N

‖N‖

)
1

=

(
g′θ1 cos(θ1) + g′θ2 cos(θ1 + θ2) + y2

−g′′θ1 sin(θ1)− g′′θ2 sin(θ1 + θ2)

‖N‖

)
×
g′θ1 cos(θ1) + g′θ2 cos(θ1 + θ2)

‖N‖

−
(
g′θ1 sin(θ1) + g′θ2 sin(θ1 + θ2) + y2

g′′θ1 cos(θ1) + g′′θ2 cos(θ1+θ2)

‖N‖

)
×
−g′θ1 sin(θ1)− g′θ2 sin(θ1+θ2)

‖N‖
=

1

‖N‖

(
(g′θ1)2 + (g′θ2)2 + 2g′θ1g

′
θ2

(
sin(θ1) sin(θ1 + θ2) + cos(θ1) cos(θ1 + θ2)

))
+

y2

‖N‖2
(
g′′θ1g

′
θ2

(
cos(θ1) sin(θ1 + θ2)− sin(θ1) cos(θ1 + θ2)

)
+g′θ1g

′′
θ2

(
cos(θ1 + θ2) sin(θ1)− cos(θ1) sin(θ1 + θ2)

))
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det(JXb) =
1

‖N‖

(
(g′θ1)2 + (g′θ2)2 + 2g′θ1g

′
θ2

cos(θ2)
)

+
y2

‖N‖2
(
g′′θ1g

′
θ2

sin(θ2) + g′′θ2g
′
θ1

sin(−θ2)
)

= ‖N‖+
y2

‖N‖2
(g′′θ1g

′
θ2
− g′′θ2g

′
θ1

) sin(θ2).

This implies that for a given reference configuration and for θ2 small enough, det(JXb(θ1, θ2,y)) > 0 for every
y ∈ Sref . Hence, according to the inverse function Theorem, the function Xb(θ1, θ2, .) is a bijection. We then
restrict DΘ to ensure that θ2 is small enough. The proof is complete.

B Proof of Lemma 3.2
This section is devoted to the proof of Lemma 3.2. We start with some intermediate lemmas that will be used
to decompose the intricate terms of Lemma 3.2 in smaller pieces.

B.1 Technical Lemmas
The following lemma contains Lipschitz estimates on several terms.

Lemma B.1. For R > 0, there exists a constant C = C(R) > 0 such that for every T ∈ (0, T0) and every
(., ., θj1, θ

j
2) ∈ BR(T ), the following estimates hold

‖Φ(θa1 , θ
a
2)−Φ(θb1, θ

b
2)‖L∞(0,T ;L∞(Ω)) ≤ CT‖θa − θb‖ΘT , (B.1)

‖JΦ(θa1 , θ
a
2)− JΦ(θb1, θ

b
2)‖L∞(0,T ;H2(Ω)) ≤ CT‖θa − θb‖ΘT , (B.2)

‖JΨ(θa1 , θ
a
2 ,Φ

a)− JΨ(θb1, θ
b
2,Φ

b)‖L∞(0,T ;H2(Ω)) ≤ CT‖θa − θb‖ΘT , (B.3)

‖(∂xjJΨ(θa1 , θ
a
2)) ◦Φ(θa1 , θ

a
2)− (∂xjJΨ(θb1, θ

b
2)) ◦Φ(θb1, θ

b
2)‖L∞(0,T ;H1(Ω)) ≤ CT‖θa − θb‖ΘT , (B.4)

‖(∂2
xjJΨ(θa1 , θ

a
2)) ◦Φ(θa1 , θ

a
2)− (∂2

xjJΨ(θb1, θ
b
2)) ◦Φ(θb1, θ

b
2)‖L∞(0,T ;L2(Ω)) ≤ CT‖θa − θb‖ΘT , (B.5)

‖Mθa1 ,θ
a
2
−Mθb1,θ

b
2
‖L∞(0,T ) ≤ CT‖θa − θb‖ΘT , (B.6)

‖nθa1 ,θa2 (Φ(θa1 , θ
a
2))− nθb1,θb2(Φ(θb1, θ

b
2))‖L∞(0,T ;L∞(∂S0)) ≤ CT‖θa − θb‖ΘT , (B.7)

‖ det(JΨ(θa1 , θ
a
2))− det(JΨ(θb1, θ

b
2))‖L∞(0,T ;L∞(Ω)) ≤ CT‖θa − θb‖ΘT , (B.8)

‖∂θjΦ(θa1 , θ
a
2 , .)− ∂θjΦ(θb1, θ

b
2, .)‖L∞(0,T ;H2(Ω)) ≤ CT‖θa − θb‖ΘT , (B.9)

‖∂θkθjΦ(θa1 , θ
a
2 , .)− ∂θkθjΦ(θb1, θ

b
2, .)‖L∞(0,T ;H2(Ω)) ≤ CT‖θa − θb‖ΘT , (B.10)

‖ |JΦ(θa1 , θ
a
2)t0| − |JΦ(θb1, θ

b
2)t0| ‖L∞(0,T ;L∞(∂S0)) ≤ CT‖θa − θb‖ΘT , (B.11)

and

‖∂tJΦ(θa1 , θ
a
2)− ∂tJΦ(θb1, θ

b
2)‖L∞(0,T ;H2(Ω)) ≤ C‖θa − θb‖ΘT , (B.12)

‖∂t(Ψ(θa1 , θ
a
2)) ◦Φ(θa1 , θ

a
2)− ∂t(Ψ(θb1, θ

b
2)) ◦Φ(θb1, θ

b
2)‖L∞(0,T ;L∞(Ω)) ≤ C‖θa − θb‖ΘT , (B.13)

‖∂t(JΨ(θa1 , θ
a
2)) ◦Φ(θa1 , θ

a
2)− ∂t(JΨ(θb1, θ

b
2)) ◦Φ(θb1, θ

b
2)‖L∞(0,T ;L∞(Ω)) ≤ C‖θa − θb‖ΘT , (B.14)

‖∂t(∂θjΦ(θa1 , θ
a
2 , .))− ∂t(∂θjΦ(θb1, θ

b
2, .))‖L∞(0,T ;H2(F0)) ≤ C‖θa − θb‖ΘT . (B.15)

Moreover, for every (ũj , ., θj1, θ
j
2) ∈ BR(T ), the following estimates hold on G defined in (3.3)

‖G(θa1 , θ
a
2 , ũ

a)− G(θb1, θ
b
2, ũ

b)‖L2(0,T ;L2(∂S0)) ≤ C(‖θa − θb‖ΘT + ‖ũa − ũb‖UT ), (B.16)

‖∇ũa − G(θa1 , θ
a
2 , ũ

a)−∇ũb + G(θb1, θ
b
2, ũ

b)‖L2(0,T ;L2(∂S0)) ≤ CT (‖θa − θb‖ΘT + ‖ũa − ũb‖UT ). (B.17)

In particular, as a direct application of Lemma B.1, using that (0, 0, 0, 0) ∈ BR(T ), we obtain the following
lemma.

Lemma B.2. For R > 0, there exists a constant C = C(R) > 0, such that for every T ∈ (0, T0) and every
(., ., θ1, θ2) ∈ BR(T ), the following estimates hold

‖JΦ(θ1, θ2)− I‖L∞(0,T ;H2(Ω)) ≤ CT, (B.18)
‖JΨ(θ1, θ2,Φ(θ1, θ2))− I‖L∞(0,T ;H2(Ω)) ≤ CT, (B.19)
‖∂xjJΨ(θ1, θ2) ◦Φ(θ1, θ2)‖L∞(0,T ;H1(Ω)) ≤ CT, (B.20)

‖∂2
xjJΨ(θ1, θ2) ◦Φ(θ1, θ2)‖L∞(0,T ;L2(Ω)) ≤ CT, (B.21)

‖Mθ1,θ2
−M0,0‖L∞(0,T ) ≤ CT, (B.22)

‖nθ1,θ2(Φ(θ1, θ2))− n0‖L∞(0,T ;L∞(∂S0)) ≤ CT, (B.23)
‖ |JΦt0| − 1‖L∞(0,T ;L∞(∂S0)) ≤ CT, (B.24)
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and

‖∂t(JΦ(θ1, θ2))‖L∞(0,T ;H2(Ω)) ≤ C, (B.25)∥∥∥∥ ∂∂t (Ψ(θ1, θ2)) ◦Φ(θ1, θ2)

∥∥∥∥
L∞(0,T ;L∞(Ω))

≤ C, (B.26)∥∥∥∥ ∂∂t (JΨ(θ1, θ2)) ◦Φ(θ1, θ2)

∥∥∥∥
L∞(0,T ;L∞(Ω))

≤ C. (B.27)

Moreover, for every (ũ, ., θ1, θ2) ∈ BR(T ), we have the following estimate on G

‖∇ũ − G(θ1, θ2, ũ)‖L2(0,T ;L2(∂S0)) ≤ CT. (B.28)

Proof of Lemma B.1. Three kinds of estimates have to be proven. First estimates (B.1)–(B.10) are of the type

‖α(θa1 , θ
a
2)− α(θb1, θ

b
2)‖L∞(0,T ;X) ≤ CT‖(θa1 , θa2)− (θb1, θ

b
2)‖ΘT ,

where α is a differentiable function defined on DΘ and valued in X. We thus use Taylor series and get

‖α(θa1 , θ
a
2)− α(θb1, θ

b
2)‖L∞(0,T ;X) ≤ sup

(θ1,θ2)∈DΘ

‖∇θα(θ1, θ2)‖L∞(0,T ;X)‖θa − θb‖L∞(0,T ).

According to the definition of BR(T ) in (3.6), θa(0) = θb(0) = (0, 0), we finish with

‖θa − θb‖L∞(0,T ) ≤ T‖θa − θb‖ΘT .

The second type of estimates (B.12)–(B.15) is of the form

‖α(θa1 , θ
a
2 , θ̇

a
1 , θ̇

a
2)− α(θb1, θ

b
2, θ̇

b
1, θ̇

b
2)‖L∞(0,T ;X) ≤ C‖(θa1 , θa2)− (θb1, θ

b
2)‖ΘT ,

where α is now a function defined on DΘ × R2 with values in X. We use the same strategy and get

‖α(θa1 , θ
a
2 , θ̇

a
1 , θ̇

a
2)− α(θb1, θ

b
2, θ̇

b
1, θ̇

b
2)‖L∞(0,T ;X)

≤ sup
(θ1,θ2)∈DΘ

|ω1|+|ω2|≤R

‖∇θ,ωα(θ1, θ2, ω1, ω2)‖L∞(0,T ;X)(‖θa − θb‖L∞(0,T ) + ‖θ̇a − θ̇b‖L∞(0,T )).

Note that contrary to the first type of estimates, we do not have the decay in T because we did not enforce
θ̇a(0) = θ̇b(0).

Estimate (B.16) is a direct consequence of (B.17). The last estimate to prove is (B.17). We do it via the
computation

(G(θa1 , θ
a
2 , ũ

a)−G(θb1, θ
b
2, ũ

b)−∇ũa +∇ũb)ij

=
∑
k

(
cof(∂xjJΨ(θa1 , θ

a
2 , .) ◦Φa)ki − cof(∂xjJΨ(θb1, θ

b
2, .) ◦Φb)ki

)
ũak

+
∑
k

cof(∂xjJΨ(θb1, θ
b
2, .) ◦Φb)ki(ũ

a
k − ũbk)

+
∑
k,`

cof(JΨ(θa1 , θ
a
2 ,Φ

a)− JΨ(θb1, θ
b
2,Φ

b))ki
∂ũak
∂y`

∂Ψ`

∂xj
(θa1 , θ

a
2 ,Φ

a)

+
∑
k,`

(
cof(JΨ(θb1, θ

b
2,Φ

b))ki
∂Ψ`

∂xj
(θa1 , θ

a
2 ,Φ

a)− δkiδ`j
)(

∂ũak
∂y`
− ∂ũbk
∂y`

)
+
∑
k,`

cof(JΨ(θb1, θ
b
2,Φ

b))ki
∂ũbk
∂y`

(
∂Ψ`

∂xj
(θa1 , θ

a
2 ,Φ

a)− ∂Ψ`

∂xj
(θb1, θ

b
2,Φ

b)

)
,

and with the use of estimates (B.3), (B.4), (B.19) and (B.20) we get estimate (B.17).

B.2 Detailed proof of Lemma 3.2
Proof. In all the following estimates we use Lemmas B.1 and B.2.
• Estimate (3.7) is a consequence of the following estimates

‖F1(θa1 , θ
a
2 , ũ

a)− F1(θb1, θ
b
2, ũ

b)‖FT ≤ CT (‖θa − θb‖ΘT + ‖ũa − ũb‖UT ), (B.29)

‖F2(θa1 , θ
a
2 , ũ

a)− F2(θb1, θ
b
2, ũ

b)‖FT ≤ CT 1/2(‖θa − θb‖ΘT + ‖ũa − ũb‖UT ), (B.30)

‖F3(θa1 , θ
a
2 , ũ

a)− F3(θb1, θ
b
2, ũ

b)‖FT ≤ CT (‖θa − θb‖ΘT + ‖ũa − ũb‖UT ), (B.31)

‖F4(θa1 , θ
a
2 , ũ

a)− F4(θb1, θ
b
2, ũ

b)‖FT ≤ CT 1/4(‖θa − θb‖ΘT + ‖ũa − ũb‖UT ), (B.32)

‖F5(θa1 , θ
a
2 , p̃

a)− F5(θb1, θ
b
2, p̃

b)‖FT ≤ CT (‖θa − θb‖ΘT + ‖p̃a − p̃b‖PT ), (B.33)

where C does not depend on T . We now prove all of them.
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• Estimate (B.29): We use the decomposition

F1(θa1 , θ
a
2 , ũ

a)−F1(θb1, θ
b
2, ũ

b)=(I−cof(JΨ(θa1 , θ
a
2 ,Φ

a))T )

(
∂ũa

∂t
− ∂ũb

∂t

)
+cof

(
JΨ(θb1, θ

b
2,Φ

b)−JΨ(θa1 , θ
a
2 ,Φ

a)
)T∂ũb

∂t
,

and we use estimates (B.19) and (B.3).
• Estimate (B.30): We use the decomposition

F2(θa1 , θ
a
2 , ũ

a)− F2(θb1, θ
b
2, ũ

b) = − cof

(
∂

∂t
(JΨ(θa1 , θ

a
2 , .)) ◦Φa

)T
ũa + cof

(
∂

∂t
(JΨ(θb1, θ

b
2, .)) ◦Φb

)T
ũb

+ cof
(
JΨ(θb1, θ

b
2,Φ

b)− JΨ(θa1 , θ
a
2 ,Φ

a)
)T
∇yũa

(
∂

∂t
Ψ(θa1 , θ

a
2 , .)

)
◦Φa

+ cof(JΨ(θb1, θ
b
2,Φ

b))T∇y(ũb − ũa)

(
∂

∂t
Ψ(θa1 , θ

a
2 , .)

)
◦Φa

+ cof(JΨ(θb1, θ
b
2,Φ

b))T∇yũb
((

∂

∂t
Ψ(θb1, θ

b
2, .)

)
◦Φb −

(
∂

∂t
Ψ(θa1 , θ

a
2 , .)

)
◦Φa

)
,

where, for j ∈ {a, b}, we denote Φj = Φ(θj1, θ
j
2). We use estimates (B.27), (B.26), (B.14), (B.13), (B.3) and the

estimate ‖ũ‖L2(0,T ;H1(F0)) ≤ T 1/2‖ũ‖L∞(0,T ;H1(F0)).
• Estimate (B.31): Since ũ has a space regularity of H2

β(F0) and not H2(F0), we need the following estimate
in the sequel: for f ∈ L∞(0, T ;L∞(F0)) with support within F0 ∩ Ωε (defined in Lemma 1.7), we have∥∥∥∥f × ∂2ũk

∂y`∂ym

∥∥∥∥
L2(0,T ;L2(F0))

≤ C‖f‖L∞(0,T ;L∞(F0))‖ũ‖L2(0,T ;H2
β(F0)), (B.34)

where C does not depend on T . It is a consequence of

∥∥∥∥f × ∂2ũk
∂y`∂ym

∥∥∥∥
L2(0,T ;L2(F0))

≤

∥∥∥∥∥∥∥
f∏

n∈Jd,n

rβn

∥∥∥∥∥∥∥
L∞(0,T ;L∞(Ωε∩F0))

∥∥∥∥∥∥
∏

n∈Jd,n

rβn
∂2ũk
∂y`∂ym

∥∥∥∥∥∥
L2(0,T ;L2(F0))

.

We now use the decomposition(
F3(θa1 , θ

a
2 , ũ

a)− F3(θb1, θ
b
2, ũ

b)
)
i

= A1,i +A2,i +A3,i +A4,i,

where

A1,i = ν
∑

j,k,`,m

(
cof(JΨ(θa1 , θ

a
2 ,Φ

a))ki
∂Ψ`

∂xj
(θa1 , θ

a
2 ,Φ

a)
∂Ψm

∂xj
(θa1 , θ

a
2 ,Φ

a)

− cof(JΨ(θb1, θ
b
2,Φ

b))ki
∂Ψ`

∂xj
(θb1, θ

b
2,Φ

b)
∂Ψm

∂xj
(θb1, θ

b
2,Φ

b)
) ∂2ũak
∂y`∂ym

+ ν
∑

j,k,`,m

(
cof(JΨ(θb1, θ

b
2,Φ

b))ki
∂Ψ`

∂xj
(θb1, θ

b
2,Φ

b)
∂Ψm

∂xj
(θb1, θ

b
2,Φ

b)− δkiδj`δmj
)( ∂2ũak

∂y`∂ym
− ∂2ũbk
∂y`∂ym

)
,

A2,i = 2ν
∑
j,k,`

(
cof(∂xjJΨ(θa1 , θ

a
2 ,Φ

a))ki
∂Ψ`

∂xj
(θa1 , θ

a
2 ,Φ

a)− cof(∂xjJΨ(θb1, θ
b
2,Φ

b))ki
∂Ψ`

∂xj
(θb1, θ

b
2,Φ

b)
)∂ũak
∂y`

+ 2ν
∑
j,k,`

cof(∂xjJΨ(θb1, θ
b
2,Φ

b))ki
∂Ψ`

∂xj
(θb1, θ

b
2,Φ

b)

(
∂ũak
∂y`
− ∂ũbk
∂y`

)
,

A3,i = ν
∑
j,k,`

(
cof(JΨ(θa1 , θ

a
2 ,Φ

a))ki
∂2Ψ`

∂x2
j

(θa1 , θ
a
2 ,Φ

a)− cof(JΨ(θb1, θ
b
2,Φ

b))ki
∂2Ψ`

∂x2
j

(θb1, θ
b
2,Φ

b)
)∂ũak
∂y`

+ ν
∑
j,k,`

cof(JΨ(θb1, θ
b
2,Φ

b))ki
∂2Ψ`

∂x2
j

(θb1, θ
b
2,Φ

b)

(
∂ũak
∂y`
− ∂ũak
∂y`

)
,

and

A4,i = ν
∑
j,k

(
cof
(
∂2
xjJΨ(θa1 , θ

a
2 ,Φ

a)− ∂2
xjJΨ(θb1, θ

b
2,Φ

b)
)
ki
ũak + cof

(
∂2
xjJΨ(θb1, θ

b
2,Φ

b)
)
ki

(ũak − ũak)
)
.

Now,

23



• to estimate A1,i, we use estimates (B.3), (B.19) and (B.34), also note that JΨ(θa1 , θ
a
2 ,Φ

a)−JΨ(θb1, θ
b
2,Φ

b)
has support within Ωε.

• To estimate A2,i, we use estimates (B.3), (B.4), (B.19) and (B.20).

• To estimate A3,i, we use estimates (B.3), (B.4), (B.19) and (B.20).

• To estimate A4,i, we use (B.5) and (B.21).

•Estimate (B.32): Let us first prove, for f ∈ L∞(0, T ;H1(F0)) and g ∈ L∞(0, T ;L2(F0))∩L2(0, T ;H1/2(F0)),
the following estimate

‖fg‖L2(0,T ;L2(F0)) ≤ CT 1/4‖f‖L∞(0,T ;H1(F0))‖g‖
1/2
L∞(0,T ;L2(F0))‖g‖

1/2

L2(0,T ;H1/2(F0))
, (B.35)

where C does not depend on T .

• Hölder inequality with respect to time applied to fg × 1 gives

‖fg‖L2(0,T ;L2(F0)) ≤ T 1/4‖fg‖L4(0,T ;L2(F0)).

• We have the relation 1/10 + 2/5 = 1/2, then Hölder inequality yields

‖fg‖L4(0,T ;L2(F0)) ≤ ‖f‖L∞(0,T ;L10(F0))‖g‖L4(0,T ;L5/2(F0)).

• We have the Sobolev embedding H1(F0) ↪→ L10(F0) : ‖f‖L∞(0,T ;L10(F0)) ≤ C‖f‖L∞(0,T ;H1(F0)).

• We have the Sobolev embedding H1/4(F0) ↪→ L5/2(F0) (see [1, Theorem 7.58]) and the Sobolev interpo-
lation [L2(F0), H1/2(F0)]1/2 = H1/4(F0) : ‖g‖L5/2(F0) ≤ C‖g‖H1/4(F0) ≤ C‖g‖

1/2
L2(F0)‖g‖

1/2

H1/2(F0)
.

• We end the proof of (B.35) with

‖g‖4L4(0,T ;L5/2(F0)) =

∫ T

0

‖g‖4L5/2(F0) ≤ C
∫ T

0

‖g‖2L2(F0)‖g‖
2
H1/2(F0),

which implies
‖g‖L4(0,T ;L5/2(F0)) ≤ C‖g‖

1/2
L∞(0,T ;L2(F0))‖g‖

1/2

L2(0,T ;H1/2(F0))
.

We then use the decomposition(
F4(θa1 , θ

a
2 , ũ

a)− F4(θb1, θ
b
2, ũ

b)
)
i

= B1,i +B2,i +B3,i +B4,i,

where

B1,i =−
∑
j,k,r

(
cof(JΨ(θa1 , θ

a
2 ,Φ

a))kjcof(∂xjJΨ(θa1 , θ
a
2 ,Φ

a))ri−cof(JΨ(θb1, θ
b
2,Φ

b))kjcof(∂xjJΨ(θb1, θ
b
2,Φ

b))ri

)
ũakũ

a
r ,

B2,i = −
∑
j,k,r

cof(JΨ(θb1, θ
b
2,Φ

b))kjcof(∂xjJΨ(θb1, θ
b
2,Φ

b))ri

(
ũakũ

a
r − ũbkũbr

)
,

B3,i = −
∑
k,r

(
det(JΨ(θa1 , θ

a
2 ,Φ

a))2 ∂Φai
∂yr
− det(JΨ(θb1, θ

b
2,Φ

b))2 ∂Φbi
∂yr

)
ũak
∂ũar
∂yk

,

B4,i = −
∑
k,r

det(JΨ(θb1, θ
b
2,Φ

b))2 ∂Φbi
∂yr

(
ũak
∂ũar
∂yk
− ũbk

∂ũbr
∂yk

)
.

We use

• estimates (B.3), (B.4), (B.19), (B.20) and (B.35) with f = ũak, g = ũar for B1,i,

• estimates (B.19), (B.20), (B.35) with f = ũak, g = ũar − ũbr and (B.35) with f = ũak − ũbk, g = ũbr for B2,i,

• estimates (B.3), (B.2), (B.18), (B.19) and (B.35) with f = ũak, g =
∂ũar
∂yk

for B3,i,

• estimates (B.18), (B.19) (B.35) with f = ũak, g =
∂ũar
∂yk
− ∂ũbr
∂yk

and (B.35) with f = ũak − ũbk, g =
∂ũbr
∂yk

for

B4,i.
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• Estimate (B.33): We have

F5(θa1 , θ
a
2 , p̃

a)− F5(θb1, θ
b
2, p̃

b) =
(
I − JΨ(θa1 , θ

a
2 ,Φ

a)
)T
∇y(p̃a − p̃b) +

(
JΨ(θb1, θ

b
2,Φ

b)− JΨ(θa1 , θ
a
2 ,Φ

a)
)T
∇yp̃

b,

we use estimates (B.3), (B.19) and we adapt estimate (B.34) to obtain a H1
β(F0) norm for p̃.

• Estimate (3.8): We use, for f ∈ L2(0, T ), the Hölder inequality

‖f‖L2(0,T ) ≤ T 1/2‖f‖L∞(0,T ). (B.36)

We have

∂

∂t

(
G(θa1 , θ

a
2 , θ̇

a
1 , θ̇

a
2)−G(θb1, θ

b
2, θ̇

b
1, θ̇

b
2)
)

= D1 + D2 + D3 + D4,

where

D1 =
∑
j

(θ̈aj − θ̈bj)
(

cof(JΦ(θa1 , θ
a
2 ,y))T∂θjΦ(θa1 , θ

a
2 ,y)− ∂θjΦ(0, 0,y)

)
,

D2 =
∑
j

θ̈bj

(
cof(JΦ(θa1 , θ

a
2 ,y)T∂θjΦ(θa1 , θ

a
2 ,y))− cof(JΦ(θb1, θ

b
2,y)T∂θjΦ(θb1, θ

b
2,y))

)
,

D3 =
∑
j

(θ̇aj − θ̇bj)
(

cof(∂t(JΦ(θa1 , θ
a
2 ,y)))T∂θjΦ(θa1 , θ

a
2 ,y) + cof(JΦ(θa1 , θ

a
2 ,y))T∂t(∂θjΦ(θa1 , θ

a
2 ,y))

)
,

D4 =
∑
j

θ̇bj

(
cof(∂t(JΦ(θa1 , θ

a
2 ,y)))T∂θjΦ(θa1 , θ

a
2 ,y) + cof(JΦ(θa1 , θ

a
2 ,y))T∂t(∂θjΦ(θa1 , θ

a
2 ,y))

− cof(∂t(JΦ(θb1, θ
b
2,y)))T∂θjΦ(θb1, θ

b
2,y) + cof(JΦ(θb1, θ

b
2,y))T∂t(∂θjΦ(θb1, θ

b
2,y))

)
.

We use

• (B.18) and (B.9) for D1,

• (B.2), (B.18) and (B.9) for D2,

• (B.36), (B.25), (B.9), (B.18) and (B.15) for D3,

• (B.36), (B.12), (B.9), (B.2), (B.15), (B.18) and (B.25) for D4,

this gives us the estimate on
∂

∂t
(G(θa1 , θ

a
2 , θ̇

a
1 , θ̇

a
2) −G(θb1, θ

b
2, θ̇

b
1, θ̇

b
2)). Similar arguments give the estimate on

G(θa1 , θ
a
2 , θ̇

a
1 , θ̇

a
2)−G(θb1, θ

b
2, θ̇

b
1, θ̇

b
2).

• Estimate (3.9): we use the following decomposition(
S(θa1 , θ

a
2 , ũ

a, p̃a)− S(θb1, θ
b
2, ũ

b, p̃b)
)
i

= E1,i + E2,i + E3,i + E4,i + E5,i + E6,i,

where

E1,i = −
((
Mθa1 ,θ

a
2
−Mθb1,θ

b
2

)( θ̈a1
θ̈a2

)
−
(
Mθb1,θ

b
2
−M0,0

)( θ̈a1 − θ̈b1
θ̈a2 − θ̈b2

))
i

,

E2,i =
(
MI(θ

a
1 , θ

a
2 , θ̇

a
1 , θ̇

a
2)−MI(θ

b
1, θ

b
2, θ̇

b
1, θ̇

b
2)
)
i
,

E3,i =

∫
∂S0

(|J aΦt0| − |J bΦt0|)
(
p̃aI − ν(G(θa1 , θ

a
2 , ũ

a) + G(θa1 , θ
a
2 , ũ

a)T )
)
nθa1 ,θa2 (Φa) · ∂θiΦa,

E4,i =

∫
∂S0

|J bΦt0|
(
p̃aI − ν(G(θa1 , θ

a
2 , ũ

a) + G(θa1 , θ
a
2 , ũ

a)T )
)
nθa1 ,θa2 (Φa) · (∂θiΦa − ∂θiΦb),

E5,i =

∫
∂S0

|J bΦt0|
(
p̃aI − ν(G(θa1 , θ

a
2 , ũ

a) + G(θa1 , θ
a
2 , ũ

a)T )
)

(nθa1 ,θa2 (Φa)− nθb1,θb2(Φb)) · ∂θiΦb,

E6,i =

∫
∂S0

|J bΦt0|
(

(p̃a − p̃b)I − ν(G(θa1 , θ
a
2 , ũ

a) + G(θa1 , θ
a
2 , ũ

a)T − G(θb1, θ
b
2, ũ

b)− G(θb1, θ
b
2, ũ

b)T )
)
nθb1,θb2 · ∂θiΦ

b

−
∫
∂S0

(
(p̃a − p̃b)I − ν(∇ũa −∇ũb + (∇ũa −∇ũb)T )

)
n0 · ∂θiΦ(0, 0, γy).

Then we use
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• (B.9) for E1,i,

• (B.9), (B.10) and (B.36) for E2,i,

• (B.11), (B.28), (B.23) and (B.9) for E3,i,

• (B.24), (B.28), (B.23) and (B.9) for E4,i,

• (B.24), (B.28), (B.7) and (B.9) for E5,i,

• (B.24), (B.17), (B.23) and (B.9) for E6,i .

• Estimate (3.10): we use the Lipschitz regularity of fF and estimate (B.1),

‖fF (t,Φ(θa1 , θ
a
2 ,y))−fF (t,Φ(θb1, θ

b
2,y))‖L2(0,T ;L2(F0))

≤ C‖fF‖L2(0,T ;W1,∞(Ω))‖Φ(θa1 , θ
a
2 ,y)−Φ(θa1 , θ

a
2 ,y)‖L∞(0,T ;L∞(F0))

≤ CT‖θa − θb‖ΘT .
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