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Abstract

The development of an improved new IBM method is proposed in the present

article. This method roots in efficient proposals developed for the simulation of

incompressible flows, and it is expanded for compressible configurations. The

main feature of this model is the integration of a pressure-based correction of

the IBM forcing which is analytically derived from the set of dynamic equa-

tions. The resulting IBM method has been integrated in various flow solvers

available in the CFD platform OpenFOAM. A rigorous validation has been per-

formed considering different test cases of increasing complexity. The results

have been compared with a large number of references available in the litera-

ture of experimental and numerical nature. This analysis highlights numerous

favorable characteristics of the IBM method, such as precision, flexibility and

computational cost efficiency.

Keywords: IBM, compressible flows, OpenFOAM

1. Introduction1

Recent technological progress for aerospace engineering but also ground2

transportation with magnetic levitation trains (Maglev) promises to reduce the3

travel time with always increasing speed of the vehicles. Under this perspective,4
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transport engineering advances are more and more related with compressible5

flow configurations.6

The accurate simulation of the flow evolution around immersed bodies is7

arguably one of the most challenging open issues in transport engineering ap-8

plications. Success in the flow state prediction allows for precise estimation of9

the aerodynamic forces acting on the vehicle, which provides fundamental in-10

sight for shape optimization. Gains in drag reduction of the order of percentage11

points will result in significantly reduced fuel consumption [1], and they will12

allow to remove barriers for consistent green energy usage in the coming years,13

in agreement with recent European laws for environment [2]. Additionally, a14

precise flow estimation is necessary to estimate other aspects such as the acous-15

tic field produced, which may result in improved features of comfort and safety16

for the passengers. However, the state-of-the-art in numerical simulation still17

needs important development to become an efficient tool for advanced transport18

engineering applications. Two main critical issues must be challenged:19

1. The mesh representation of complex geometric shapes. The rep-20

resentation of fine geometric features in classical body-fitted simulations21

may result in overly deformed / stretched elements, and unfavorable char-22

acteristics of the mesh quality. This problematic aspect may lead to poor23

predictive results.24

2. Moving immersed bodies. Even simple prescribed movement laws for25

the immersed body may require several computational mesh updates dur-26

ing the numerical simulation. These updates entail prohibitive computa-27

tional costs.28

Among the numerous strategies proposed in the literature to overcome these29

critical issues, the Immersed Boundary Method (IBM) [3, 4] is an established30

high-performance tool for the analysis of flow configurations around complex31

moving bodies. The characteristic feature of the IBM is the representation of32

the body surface via a volume source effect which is integrated in the chosen33

mathematical set of equations. Thus, the computational mesh does not need34
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any manipulation in the proximity of the body surface to conform to it. This35

implies that negative predictive effects such as mesh element deformation can36

be naturally excluded. In addition, body motion can be imposed or determined37

without any mesh recalculation. The way these effects are integrated within38

the numerical simulation may vary significantly, depending on the strategy em-39

ployed. The IBM methods include a large spectrum of tools which operate40

using completely different procedures such as fictitious domain approaches [3],41

level-set methods [5], Lagrangian multipliers [6] and volume penalization [7].42

Depending on the implementation strategy employed to determine the level of43

volume forcing representing the body surface, the IBM approaches reported in44

the literature are usually classified in two large families, namely the continuous45

methods and the discrete methods. The principal difference in the application46

depends on whether the IBM force is integrated in the continuous or discretized47

Navier–Stokes equations. The pioneering work proposed by Peskin [3, 8] is the48

first continuous forcing method reported in the literature. The flow evolution49

is investigated using an Eulerian system of coordinates whereas the immersed50

body is represented on a Lagrangian system. In these methods, markers define51

the immersed solid boundaries. Interpolation between the two grids is obtained52

via approximations of the δ delta distribution by smoother functions. Following53

this work, other strategies have been investigated. One notable example is the54

feedback forcing method, which relies on driving the boundary velocity to rest55

[9, 10]. Because of the integration of the IBM forcing in the continuous Navier–56

Stokes equations, the continuous methods are not sensitive to the numerical57

discretization. However, calibration of the free constants in their formulation is58

needed. In addition, they exhibit spurious oscillations and severe CFL restric-59

tions, which are associated with the choice of stiffness constants [4]. The direct60

forcing method, usually referred to as the discrete approach, provides solutions61

to the drawbacks of the continuous forcing approach. In fact, the introduction62

of the force term at the discretization stage provides more stable and efficient al-63

gorithms [4]. These strategies, which were first investigated by Mohd-Yusof [11],64

have been further developed in following original research works [12, 13, 14, 15].65
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The main drawback of these methods is that they exhibit a natural sensitivity to66

the numerical discretization, especially for the time derivative for unstationary67

flow configurations.68

In the present work, a discrete IBM method proposed for the analysis of69

incompressible flows on curvilinear grids [16, 17, 18] is extended for the anal-70

ysis of compressible configurations. As previously discussed, these flows are71

a timely subject of investigation because of their relevance in environmental72

[19] / industrial [20] studies. To this aim, a pressure-based correction of the73

method is introduced, which dramatically improves the numerical prediction74

of the flow features. The IBM method developed is assessed via analysis of75

test cases exhibiting increasing complexity. In particular, the flow around a76

sphere is extensively investigated. This test case represents a classical choice for77

studies in aerodynamics around 3D bluff bodies, because a number of realistic78

features observed in flows around complex geometries can be here investigated79

with reduced computational resources. In addition, moderate Reynolds number80

configurations exhibit the emergence of different regimes for subsonic Ma values,81

which are extremely sensitive to fine features of the numerical representation.82

The article is structured as follows. In Section 2 the mathematical and nu-83

merical background, including the analytic derivation of the new IBM method,84

is introduced and discussed. In Section 3 the practical implementation in the85

flow solvers considered is detailed. In Section 4 the IBM method is validated86

via analysis of classical two-dimensional test cases, encompassing a large range87

of Ma values. In Section 5 the flow around a sphere is analyzed. In Section 688

the analysis is extended to a sphere subjected to rotation. Finally, in Section 789

the concluding remarks are drawn.90

2. Numerical ingredients and Immersed Boundary Method91

In this section analytic and numerical details of the IBM algorithm are pro-92

vided.93
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2.1. Governing equations94

The general Navier–Stokes equations for a compressible fluid write:95

∂ρ

∂t
+ div(ρu) = 0 (1)

∂ρu

∂t
+ div(ρu⊗ u) = −gradp+ divτ + f (2)

∂ρet
∂t

+ div(ρ et u) = −div(pu) + div(τu) + div(λ(θ)gradθ) + f · u (3)

where ρ is the density, p is the pressure, u is the velocity, τ is the tensor of the96

viscous constraints, et is the total energy, λ is the thermal conductivity, θ is the97

temperature and f is a general volume force term. For Newtonian fluids, the98

tensor τ becomes :99

τ = µ(θ)

(
(gradu +t gradu)− 2

3
div(u)

)
(4)

where µ is the dynamic viscosity. It is here calculated using the Sutherland’s100

law as function of temperature θ. The total energy et is defined as:101

et = e+
1

2
ρu · u = Cvθ +

1

2
ρu · u (5)

where e is the internal energy and Cv is the heat capacity at constant volume.102

This system is closed by the perfect gas equation of state p = ρrθ where r is103

the specific gas constant.104

2.2. Immersed Boundary Method for compressible flows: numerical formulation105

The method here presented roots in previous works proposed by Uhlmann106

[16] and Pinelli et al. [17] which combine strengths of classical continuous forc-107

ing methods [3] and discrete forcing methods [21, 11]. In this framework, the108

numerical results obtained in the Eulerian mesh elements xs are modified via109

a body force, which is calculated in a Lagrangian frame of reference defined110

by markers Xs. These Lagrangian markers describe a discretized shape for the111

immersed body. We will refer to physical quantities in the Lagrangian space112

using capital letters (or via the subscript L for Greek letters), while low case113

letters will be used for the Eulerian description.114
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2.2.1. Communication between the Eulerian and Lagrangian systems115

Communication between the two frames of reference is performed via two116

steps, namely:117

• the interpolation, where physical quantities in the Eulerian mesh are in-118

terpolated on the Lagrangian markers, in order to estimate the volume119

force120

• the spreading, where the volume force previously calculated on the La-121

grangian markers is spread back on the Eulerian mesh elements122

Physical quantities in the two domains are communicated via interpolation,

using δ functions originally proposed by Peskin. The case is now exemplified

for the physical quantity ρu available on the Eulerian mesh. The corresponding

quantity ρLU on the sth Lagrangian marker is determined via the interpolation

operator I as:

I[ρu]Xs = [ρLU](Xs) =
∑
j∈Ds

(ρu)nj δh(xj −Xs)∆x (6)

where Ds represents the set of points of the Eulerian mesh. ∆x formally

refers to an Eulerian quadrature, i.e. ∆x = ∆x∆y∆z for the case of a Cartesian

uniform mesh. The interpolation kernel δh is the discretized delta function used

in [17] :

δh(r) =



1

3

(
1 +

√
−3r2 + 1

)
0 ≤ r ≤ 0.5

1

6

[
5− 3r −

√
−3(1− r)2 + 1

]
0.5 ≤ r ≤ 1.5

0 otherwise

(7)

It is centered on each Lagrangian marker Xs and takes non-zero values inside a123

finite domain Ds, called the support of the sth Lagrangian marker.124

The backward communication from the Lagrangian markers to the Eulerian

mesh is also performed using delta functions. This is done in the spreading step,

where the value of the forcing F is distributed over the surrounding mesh. The
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value of the forcing term evaluated on the Eulerian mesh, f(xj), is given by:

f(xj) =
∑
k∈Dj

Fkδh(xj −Xk)εk (8)

The k-index refers to a loop over the Lagrangian markers whose support contains

the Eulerian node j. εk is the Lagrangian quadrature, which is calculated by

solving a linear system to satisfy a partition of unity condition. As in [17] we

have:

Aε = 1 (9)

where the vectors ε = (ε1, . . . , εNs
)T and 1 = (1, . . . , 1)T have a dimension of

Ns, Ns being the number of Lagrangian markers. A is the matrix defined by

the product between the kth and the lth interpolation kernels such that:

Akl =
∑
j∈Dl

δh(xj −Xk)δh(xj −Xl) (10)

2.2.2. Analytic form of the IBM forcing125

The novelty of the present approach is represented by i) the extension to126

compressible flow configurations and ii) the addition of a numerical term which127

penalizes deviation from the expected behavior of the pressure gradient close to128

the surface of the body. In numerical simulation, the most classical choice of129

boundary condition for the pressure field is a homogeneous Neumann condition130

i.e. zero gradient in the wall normal direction [22]. The present investigation131

encompasses exclusively this basic condition, which is implemented in most of132

available open source CFD software. However, the proposed algorithm will allow133

for the implementation of more sophisticated and precise pressure boundary134

conditions [23] in future works. This could provide a significant improvement135

for the IBM, which is usually considered less precise in the resolution of near wall136

features when compared with body-fitted approaches. In this case, additional137

information in the form of a wall normal vector ~ens must be provided for each138

Lagrangian marker Xs.139

Let us consider a general discretized form of the momentum equation 2 in

the Eulerian frame of reference, represented by the mesh elements xs. The time
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advancement between the time steps n and n+ 1 is considered:

as (ρu)n+1 = φn+1/2 − gradpn+1/2 + fn+1/2 (11)

where as represents a discretization coefficient which is equal to as = 1/∆t if an140

Euler discretization scheme for the time derivative is employed. The three right141

hand terms are calculated at an intermediate time n+ 1/2 [16]. In particular,142

the discretized term φ includes the convective and viscous terms, as well as the143

part of the discretization of the time derivative related with (ρu)n. So, if we144

indicate with the affix (d) the expected value of the solution at the instant n+1,145

the optimal value of the forcing in the Eulerian system is:146

fn+1/2 = as (ρu)d − φn+1/2 + gradpn+1/2 (12)

In the frame of incompressible flows, Uhlmann [16] showed that the sum of147

the last two terms in the right part of equation 12 corresponds to the Eulerian148

solution −as (ρu)n+1 at the time n + 1 considering f = 0. Following the work149

by Uhlmann, we now shift to the Lagrangian system via interpolation. Details150

are going to be provided in Section 2.2.1. Assuming that as is unchanged in the151

interpolation step (which is exactly true if as is a function of the time t only)152

and indicating in capital letters the physical quantities in the Lagrangian space,153

equation 12 is transformed in:154

Fn+1/2 = as (ρLU)d −Φn+1/2 + gradPn+1/2 (13)

where ρL is the density field interpolated into the Lagrangian space. We now

project the term gradPn+1/2 in equation 13 in the direction of the Lagrangian

wall normal ~ens, obtaining

gradPn+1/2 = gradPn+1/2 · ~ens + gradPn+1/2 · ~ets

~ets represents the direction of the interpolated pressure gradient in the plane155

normal to ~ens. In addition, the term gradP d · ~ens = 0 is included to the right156

hand of equation 13. This term represents the expected behavior (superscript157
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d) of the pressure field, which supposedly exhibits a zero-gradient condition in158

proximity of a wall. Equation 13 is then recast as:159

Fn+1/2 = as (ρLU)d−Φn+1/2+gradPn+1/2 ·~ets−
(
gradP d − gradPn+1/2

)
·~ens
(14)

The term −Φn+1/2 + gradPn+1/2 ·~ets = −as (ρLU) is a realistic estimation160

of a first time advancement of the flow field from n to n+1 using the momentum161

equation only, where the pressure gradient is evaluated using data available at162

the instant n. On the other hand, the term
(
gradP d − gradPn+1/2

)
· ~ens163

measures the deviation from the expected behavior of the pressure gradient164

following this time advancement. Thus the total forcing in the Lagrangian165

system can be written as:166

Fn+1/2 = as

(
(ρLU)d − (ρLU)

)
−
(
gradP d − gradPn+1/2

)
· ~ens (15)

This more elaborated structure of the forcing F exhibits a number of inter-167

esting aspects:168

1. it naturally fits segregated solvers, where the flow variables are not simul-169

taneously resolved and they can be obtained via corrective loops. The170

new proposals exploits this feature via the separation of the pressure con-171

tribution and thus it is supposed to be efficient over a larger spectrum of172

CFD algorithms;173

2. the calculation of the terms (ρLU) and gradPn+1/2 is integrated within174

the classical formulation of the solver considered, and a full time step175

without the addition of the forcing is not required anymore [16]. This176

implies a significant reduction in the computational costs associated with177

the determination of the Lagrangian forcing F ;178

3. using this strategy, the behavior of the pressure field is guided towards an179

expected zero-gradient condition in the wall normal direction. This result180

is not granted by the classical integration of the forcing as in [16, 17] and181
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it is essential to capture important features of the flow, as shown in the182

following.183

3. IBM implementation in OpenFOAM numerical solvers184

The analytic development described in Section 2.2.2 suggests how the present185

formulation of the Lagrangian forcing F may be suitable for integration in a large186

spectrum of algorithmic architectures for fluid mechanics studies. This feature187

is extremely relevant for the simulation of compressible flows, where different188

resolution approaches must be employed depending on the values of the Ma189

number investigated. Thus, in order to validate this important feature of the190

proposed method, the implementation of the IBM model has been performed191

in the open source library OpenFOAM. With the target to be used further to192

investigate industrial configurations, this code provides an efficient coding and193

a suitable environment for the implementation of new algorithms. It has been194

identified as a convenient and efficient numerical platform because of the sim-195

plicity in implementation as well as the availability of numerous routines already196

integrated, including IBM for incompressible flows [18]. Two solvers available197

in the standard version of the code, which allow for the investigation over a very198

large range of Ma numbers, are considered in the present investigation:199

• the segregated pressure-based solver with PIMPLE loop for compressible200

flows for low Mach numbers (Ma ≤ 0.3) [24], namely sonicFoam.201

• the segregated density-based solver with Kurganov and Tadmor divergence202

scheme for compressible flows for high Mach numbers (Ma > 0.3)[24],203

namely rhoCentralFoam.204

Details about the algorithmic structure of sonicFoam and rhoCentralFoam205

are provided in the Appendix A. Core differences are observed in the practical206

resolution of the equations. These differences stem from ad-hoc strategies de-207

veloped with respect to the envisioned range of application of Ma values. It208

will be shown in the following how the IBM method here developed naturally209
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integrates within the structure of the two codes, exhibiting a very high level210

of flexibility. The integration of this new IBM strategy follows recent work by211

Constant et al. [18] dedicated to incompressible flows. The newly generated212

solvers will be referred to in the following as IBM versions of the initial solver213

modified and are now presented. A grid convergence analysis of the method is214

provided in the Appendix B.215

3.1. IBM-sonicFoam216

The structure of the code is very similar to the scheme presented in Appendix217

A. The algorithm goes through the following steps:218

1. The discretized continuity and momentum equations A.1 - A.2 are re-219

solved, providing a first time advancement of ρ?, u?.220

2. A first estimation of the updated pressure field p? is obtained via equation221

A.6.222

3. The fields calculated in steps 1 and 2 are interpolated on the Lagrangian223

markers in order to obtain the value of the forcing F. This value is spread224

over the Eulerian mesh, to estimate a forcing term f for each mesh cell.225

4. The whole system is resolved again, starting from stored quantities at226

the time step n and including the forcing term. Equations are resolved227

iteratively until convergence is reached:228

ρn+1 =
φρ(ρ

?,u?)

aρ
(16)

un+1 =
φu(ρn+1,u?)

au
− gradp?

au
+

f

au
(17)

en+1 =
φe(ρ

n+1,un+1, e?)

ae
− div(p?un+1)

ae
+
φfe(f ,u

n+1)

ae
(18)

pn+1 =
φp(p

?, ρn+1,un+1)

ap
+
φfp(f)

ap
(19)

229

In this case, the term f is not recalculated during the PISO loop and is230

determined only one time at the beginning of the time step.231
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3.2. IBM-rhoCentralFoam232

The integration of the IBM method in the solver rhoCentralFoam presented233

in the Appendix A is performed through the following steps :234

1. The first predictive step resolving equations A.8 , A.9 , A.10 , A.11 and235

A.13 is performed to obtain ρ? , e? and u? (and p? via state equation).236

The volume forcing is here f = 0.237

2. The physical quantities ρ? , p?, e? and u? are interpolated in the La-238

grangian space and F is calculated. This field is spread over to the Eu-239

lerian mesh, so that the value of the forcing term f for each mesh cell is240

determined.241

3. Equations A.9 , A.10 , A.11 and A.13 are resolved again including the242

IBM forcing:243

ρn+1 =
φρ(ρ

?,u?)

aρ
(20)

(ρu)
??

=
φ′u((ρu)?)

au
− gradp?

au
(21)

(u)
??

= (ρu)
??
/ρn+1 (22)

ρn+1un+1 = ρn+1u?? +
φu(ρ?,u?)

au
− φ′u((ρu)?)

au
+

f

au
(23)

(ρet)
?? =

φ′et((ρet)
?,u??)

aet
− div(p?u?)

aet
(24)

e?? = (ρet)
??/ρn+1 − 0.5((u)

??
.(u)

??
) (25)

θ?? = e??/cv (26)

ρn+1en+1 = ρn+1e?? +
φe(ρ

n+1,un+1, en)

ae
− div(λ(θ??)grad(θ??))

ae

−
φ′et((ρet)

?,u??)

aet
+
φfe(f ,u

n+1)

ae
(27)

4. Finally, the temperature θn+1 = en+1/Cv and the pressure pn+1 = ρn+1 ·244

(rθn+1) are updated.245

4. Numerical validation of the IBM based algorithms246

Validation of the new solvers is performed on the 2D flow around a circular247

cylinder. This classical test case has been extensively investigated in the litera-248
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ture for a large spectrum of values of Re and Ma, and numerous databases are249

available for comparison.250

4.1. Test case - numerical details251

The size of the computational domain is chosen to be [−16D, 48D] in the252

streamwise (x) direction and [−16D, 16D] in the vertical (y)-direction. D is253

the diameter of the cylinder. The physical domain has been determined from254

IBM results obtained for incompressible flows [18]. The center of the immersed255

circular cylinder is chosen to be in the origin of the frame of reference (Figure 1).256

Hexahedral mesh elements have been chosen for the discretization. The physical257

domain in the region x× y ∈ [−D, D]× [−D, D] is discretized in homogeneous258

elements of size ∆x = ∆y = 0.01D. Outside this central region, a geometric259

coarsening of the elements is imposed (ratio between neighbor elements r = 1.05)260

in both x and y directions. The resulting total number of mesh elements is equal261

to 1.5× 105. In addition, the boundary conditions have been carefully selected262

for each case accounting for the Ma number investigated, so that their effect263

over the predicted results may be considered negligible. Generally speaking, a264

velocity inlet condition is imposed upstream (left side), a mass conserving outlet265

condition is imposed downstream and slip / non reflective conditions are chosen266

in the normal direction.267

For each case analyzed, the main physical quantities of interest are compared268

with available data of the literature. In particular the bulk flow coefficients are269

defined as:270

CD =
2Fx
ρ∞U2

∞
, CL =

2Fy
ρ∞U2

∞
(28)

where the forces Fx and Fy are directly calculated on the Lagrangian points271

and projected in the streamwise direction x and vertical direction y, respectively.272

ρ∞ and U∞ denote asymptotic physical quantities imposed at the inlet.273
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Figure 1: 2D computational domain used for IBM validation.

4.2. Nearly incompressible flow around a circular cylinder case (Ma = 0.05)274

Because of the almost negligible contribution of compressibility effects in this275

case, the pressure based solver IBM − sonicFoam is chosen for investigation.276

Two configurations are studied for Reynolds numbers Re = 40 and Re = 100.277

For Re = 40 the flow is characterized by a laminar steady recirculating re-278

gion (see Figure 2) as the critical point of Bénard - von Kármán instability279

is not reached. Qualitative comparison of the vorticity isocontours with data280

taken from the work of Al-Marouf et al. [29] indicate that the structural orga-281

nization of the flow is well captured. In addition, all characteristic geometrical282

parameters and bulk flow quantities (drag coefficient CD) compare very well283

with the data of literature reported in Table 1, assessing the present results.284

This includes the pressure coefficient Cp = 2×(p−p∞)
ρ∞×U2

∞
which is observed to be in285

good agreement with results by Al-Marouf et al. [29] as shown in Figure 3.286

For Re = 100 an unstationary behavior characterized by a periodic von287

Kármán wake is observed. Results include as well the Strouhal number St = fD
U∞

,288

where f is the shedding frequency computed using the time evolution of the lift289

coefficient CL. Comparison shows a very good agreement with results available290

in the literature, see Table 1. For reference, a comparison of the instantaneous291
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(a)

(b)

Figure 2: Axial vorticity contours and velocity streamlines for the flow past a circular cylinder

for Ma = 0.05 and Re = 40. A zoom around the recirculation region is shown. A qualitative

comparison between (a) present IBM simulations and (b) a visualization from the work by

Al-Marouf et al. [29] is shown.

axial vorticity isocontours obtained via IBM method with similar results re-292

ported in the literature [29] is shown in Figure 4. The time evolution of the293

lift coefficient is shown in Figure 5(a-d), where ta = D/U∞ is the characteristic294

advection time.295

15



Study CD xs a b αs Crmsl St

Present (Re=40) 1.58 2.35 0.7 0.6 53.7 - -

Tritton [32] (Exp.) 1.59 - - - - - -

Le et al. [33] (Num.) 1.56 2.22 - - 53.6 - -

Dennis & Chang [34] (Num.) 1.52 2.35 - - 53.8 - -

Coutanceau & Bouard [35] (Exp.) - 2.13 0.76 0.59 53.5 - -

Gautier et al. [30] (Exp.) 1.49 2.24 0.71 0.59 53.6 - -

Chiu et al. [36] (Num.) 1.52 2.27 0.73 0.6 53.6 - -

Taira & Colonius [15] (Num.) 1.54 2.30 0.73 0.60 53.7 - -

Brehm et al. [37] (Num.) 1.51 2.26 0.72 0.58 52.9 - -

Present (Re=100) 1.35 - - - - 0.237 0.164

Berger & Wille [38] (Exp.) - - - - - - 0.16-0.17

Le et al. [33] (Num.) 1.37 - - - - 0.228 0.160

White [39] (Theo.) 1.46 - - - - -

Stalberg et al. [31] (Num.) 1.32 - - - - 0.233 0.166

Russell & Wang. [40] (Num.) 1.38 - - - - 0.212 0.172

Chiu et al. [36] (Num.) 1.35 - - - - 0.214 0.167

Liu et al. [41] (Num.) 1.35 - - - - 0.240 0.165

Brehm et al. [37] (Num.) 1.32 - - - - 0.226 0.165

Table 1: Comparison of bulk flow quantities for the flow past a circular cylinder with available

data in the literature for Ma = 0.05. CD is the drag coefficient, Cl is the lift coefficient, St

the Strouhal number, xs the recirculation length, (a, b) are the characteristic lengths of the

vortex structural organization and αs is the separation angle. Data are provided for (top)

Re = 40 and (bottom) Re = 100, respectively.
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Figure 3: Pressure coefficient Cp along the cylinder surface, for the angle α ∈ [0, π]. IBM

results are compared with data available in the literature, steady solution for Ma = 0.05 and

Re = 40.
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(a)

(b)

Figure 4: Axial vorticity isocontours of the flow around a circular cylinder, unsteady solution

for Ma = 0.05 and Re = 100. A qualitative comparison between (a) present IBM simulations

and (b) a visualization from the work by Al-Marouf et al. [29] is shown.
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Figure 5: Time evolution of the lift coefficient Cl for the flow around a circular cylinder for

(top row) Ma = 0.05, Re = 100 and (bottom row) Ma = 0.05, Re = 300. Present IBM results

are shown (left column) over a number of shedding cycles and (right column) compared with

data in red markers sampled from the works reported in the literature for a single shedding

cycle.
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4.3. Subsonic flow around around a circular cylinder, Ma = 0.3 and Re = 300296

The IBM-sonicFoam solver is used to perform the present investigation.297

For this case compressibility effects are not negligible anymore, albeit they do298

not drive the flow evolution. One notable established observation is that the299

unstationary vortex shedding does not exhibit a three-dimensional behavior in300

this case, contrarily to what is obtained for incompressible flows at the same Re.301

The axial vorticity isocontours are plotted in Figure 6 and the time evolution302

of the lift coefficient is shown in Figure 5 (c-d).

Figure 6: Vorticity isocontours for the flow around a circular cylinder, Ma = 0.3 and

Re = 300.

303

Present results for the bulk flow quantities are compared with a classical304

body fitted simulation available in the literature [42] in Table 2. The bulk305

flow coefficients exhibit a good match with the available reference, assessing the306

precision of the IBM solver.307

4.4. Supersonic flow around cylinder, Ma = 2.0 and Re = 300308

The strong compressibility effects provide a regularization of the flow, which309

is known to be in this case stationary and two-dimensional. The density isocon-310

tours in the near field of the cylinder are shown in Figure 7(a) and compared311
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Case CD Crmsl 4shock
Present (Ma=0.3) 1.5 0.566 -

Takahashi et al. [42] (Num.) 1.444 0.573

Present (Ma=2) 1.51 - 0.69

Takahashi et al. [42] (Num.) 1.55 - -

Billig. [43] (Theo.) - - 0.62

Table 2: Drag coefficient CD, standard deviation of the lift coefficient Crms
l and standoff

distance 4shock, computed for the flow around a circular cylinder for Re = 300, Ma = 0.3

and Ma = 2. Present IBM results are compared with data available in the literature.

with a similar representation by Takahashi et al.[42] (Figure 7(b)). The IBM-312

rhoCentralFoam solver successfully captures the physical behavior of the flow,313

which exhibits a stationary and symmetric behavior. In addition, a bow shock314

before the circular cylinder is clearly obtained as shown in Figure 7 (c).315

The comparison of the drag coefficient CD and standoff distance4shock with316

available data in the literature [42, 43] reported in Table 2 again indicates that317

a successful prediction of the flow is obtained. The standoff distance 4shock is318

the minimum separation from the shock and the immersed body. Additionally,319

the pressure coefficient distribution is compared with data from Takahashi et320

al. [42] in Fig. 8, showing again, a very good match with available reference.321

4.5. Effects of the pressure gradient correction in the IBM forcing322

At last, the effects of the newly introduced term in the IBM formulation are323

assessed. To do so, three different numerical settings have been considered:324

• Complete IBM forcing as in equation 15325

• IBM forcing without pressure correction (i.e. first term of equation 15)326

• Body fitted327

The three strategies have been applied to the analysis of the flow around328

a circular cylinder for different values of Ma ∈ [0.05, 2] and Re ∈ [40, 300].329

21



(a) (b)

(c)

Figure 7: Density ρ isocontours for the flow around a circular cylinder for Ma = 2.0 and

Re = 300. (a) Present normalized IBM results are compared with (b) visualizations taken

from the work of Takahashi et al.[42]. The legend for ρ is the same for the two figures and

the size of the zoom in D units is almost identical, allowing for direct qualitative comparison.

(c) Visualization via the normalized Schlieren criterion of the bow shock.
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Figure 8: Pressure coefficient distributions for the case Ma = 2.0, Re = 300. Present IBM

results are compared with data available in the literature.

The mesh resolution around the cylinder and in the wake area is roughly the330

same for the three simulations and it was verified that convergence of the re-331

sults was reached. In addition, the time step for the simulations is the same332

and it has been set to comply with the relation max(Co) = 0.1, where Co is333

the Courant number. Results are shown in figure 9 for two different simulations334

for Re = 40, Ma = 0.05 and Ma = 2. The comparison of the surface distribu-335

tion of the pressure coefficient Cp is shown. The two configurations have been336

chosen to highlight the behavior of the IBM forcing over the parametric space337

investigated. Counter-intuitively, the configuration for Ma = 2 is the easiest338

to predict, because the presence of the bow shock regularizes the wall pressure339

behavior. In this case, as shown in figure 9(a), the three simulations obtain an340

almost identical behavior for Cp. For more complex configurations, such as the341

case for Ma = 0.05 in figure 9(b), one can observe that the IBM without pres-342

sure correction exhibits accuracy issues. On the other hand, the quality of the343

prediction using the IBM pressure corrected scheme systematically matches the344

body-fitted prediction for every configuration investigated. Thus, the inclusion345

of this term provides a beneficial effect in particular for complex configurations,346

preventing a degradation of the IBM performance for these applications. The347
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analysis of the database did not indicate that the pressure correction is more348

beneficial for low or high Ma configurations. It just prevents loss of accuracy for349

complex applications. Thus, the inclusion of the pressure correction term in the350

IBM formalism dramatically improves the robustness for the calculation of the351

pressure field in the near wall region. The precise calculation of the wall pres-352

sure distribution is an essential feature governing the emergence and evolution of353

different dynamic regimes, which are going to be studied for three-dimensional354

immersed bodies in the next sections.355

5. Compressible flow regimes around a sphere356

The three-dimensional flow around a sphere is now investigated. As previ-357

ously mentioned, this investigation encompasses a large range of Ma and Re358

values, representing a challenging test case for validation.359

5.1. Computational grids360

The computational domain is here set to x × y × z = [−16D, 48D] ×361

[−16D, 16D] × [−16D, 16D] where D is the diameter of the sphere. Again,362

the center of the body is set in the origin of the system. Two computa-363

tional meshes have been employed to investigate this test case. A first coarser364

mesh, which will be referred to as sphereA, is made by hexahedral uniform365

elements which are progressively refined approaching the sphere region (see fig-366

ure 10). The size of the elements is refined by a factor two in each space367

direction when crossing the prescribed interfaces between regions at differ-368

ent resolution. The central most refined region is defined by the coordinates369

x×y×z = [−1.25D, 1.25D]× [−1.25D, 1.25D]× [−1.25D, 1.25D]. Within this370

region, the mesh resolution is ∆x = ∆y = ∆z = 1/64D. This mesh is composed371

by a total of 5× 106 elements.372

A second more refined mesh, which will be referred to as sphereB , has been373

employed to perform a more accurate analysis of the near wall features for a374

limited number of targeted values of Ma, Re. The mesh is almost identical to375
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sphereA, but a higher resolution region is included for x× y × z = [−D, D]×376

[−D, D]× [−D, D]. Within this region, a resolution ∆x = ∆y = ∆z = 1/128D377

has been imposed. The total number of mesh elements is in this case 16× 106.378

The size of the mesh elements in the near wall region has been selected

accordingly to the recommendations of Johnson and Patel [46]:

∆xmin = ∆ymin = ∆zmin ≈
1.13√

Re× 10.0
(29)

In order to provide a suitable representation of the physical features of the379

flow, the IBM-sonicFoam solver is used for Ma ≤ 0.3 and conversely the IBM-380

rhoCentralFoam solver is employed for Ma > 0.3.381

The numerical simulations have been performed using the native mpi paral-382

lelization software available in OpenFOAM and the physical domain has been383

partitioned in 40 and 64 sub-domains for SphereA and SphereB, respectively.384

For the simulation of steady cases, flow convergence is obtained after approx-385

imately 90 scalar hours for simulations using mesh sphereA and 150 hours for386

simulations using mesh sphereB. For unsteady simulations, the CFL number387

has been fixed to 0.1. The computational resources demanded to perform a full388

shedding cycle in an established regime is on average equal to 48 - 84 scalar389

hours for the mesh sphereA and for the mesh sphereB, respectively.390

5.2. Physical regimes observed for moderate Re391

This test case has been chosen because of the emergence of different regimes392

which exhibit a very high sensitivity to the asymptotic values of Ma and Re393

prescribed at the inlet, representing a challenging test case of validation. In394

particular, if very low Ma configurations are considered, the flow undergoes a395

transition from a steady axisymmetric state to a steady planar-symmetric con-396

figuration and finally an unsteady regime with progressively higher Reynolds397

numbers. The two transitions are observed for Re ≈ 210 and Re ≈ 280, respec-398

tively. For Ma progressively higher, the two threshold Re values increase but399

they get progressively closer, finally superposing for Ma ≈ 1. For higher Ma400
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values, a steady planar-symmetric regime is not observed anymore. A represen-401

tation of the qualitative features of these three regimes (Ma = 0.4) is shown in402

Figure 11 using vorticity isocontours.403

In order to perform a rigorous investigation of this test case, a database of 120404

numerical simulations has been performed in the parametric space [Ma]×[Re] =405

[0.3, 2]× [50, 600] using the coarser mesh sphereA. Results are compared with406

recent data reported in the literature for body-fitted numerical simulations using407

high order discretization schemes [44, 45].408

5.3. Emergence of different characteristic regimes: a parametric study409

The emergence of different flow regimes with variations in the prescribed410

values of (Ma, Re) is here investigated. The resulting regimes observed via411

analysis of the database of 120 simulations performed using the mesh sphereA412

are summarized in Figure 12. The comparison with high precision data by San-413

sica et al. [45] indicates that very similar thresholds for the transition between414

dynamic regimes are obtained as shown in Figure 13. Maximum differences415

observed are of the order of ≈ 8% of the Reynolds number. These maximum416

differences are observed for Ma ≈ 0.8, Re ≈ 250 where Sansica et al. [45] hy-417

pothetised a linear evolution of the threshold value which was determined via418

stability analysis from a limited number of simulations. Thus, it is arguable that419

this relatively small difference in the results could simply be associated with the420

strategy of investigation. In particular, the very larger number of IBM numer-421

ical simulations here performed around the parameter value Ma ≈ 1 suggests422

that the disappearence of the steady planar-symmetric regime is rather abrupt423

and not linearly progressive.424

The database results have been employed to perform as well quantitative425

analyses of the main bulk quantities characterizing the flow regimes. A map of426

the drag coefficient Cd, the separation angle αs and the recirculation length xs427

as a function of Re and Ma are shown in Figures 14. The comparison of the428

present results with data by Nagata et al. [44] further assesses the precision of429

the proposed IBM method.430
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Studies CD xs St ∆shock

Ma=0.3 Present (Re=300) sphereA 0.72 2.15 0.118 -

Present (Re=300) 0.703 2.05 0.123 -

Nagata [44] (Num.) 0.68 2 0.128 -

Present (Re=600) sphereA 0.605 2.2 0.135 -

Present (Re=600) 0.58 2.1 0.143 -

Krumins [47] (Exp.) 0.54 - - -

Ma=0.95 Present. (Re=50) 2.116 1.15 - -

Present (Re=600) 0.91 4.1 0.138 -

Krumins [47] (Exp.) 0.9 - - -

Ma=2 Present (Re=300) 1.39 1 - 0.2

Nagata [44] (Num.) 1.41 1 - 0.2

Present (Re=600) 1.27 1.1 - 0.18

Krumins [47] (Exp.) 1.17 - - -

Table 3: Bulk flow quantities for the flow past a sphere, obtained via IBM simulation. The

refined grid sphereB is used for all but two cases, where sphereA has been chosen. Present

results are compared with available data in the literature. CD is the time-averaged drag

coefficient, xs is the recirculation length, St is the Strouhal number and ∆shock is the shock

distance.

5.4. Investigation of the subsonic flow around a sphere431

The unsteady flow configurations are analysed using the mesh sphereB for432

the two sets of parameters (Ma, Re)=(0.3, 300) and (0.3, 600). For these two433

cases, an unsteady behavior is obtained as shown by the time evolution of the434

lift coefficient Cl shown in Figure 15. The drag coefficient Cd and the Strouhal435

number St are reported in Table 3. The comparison of these quantities with436

data from the literature [44, 47] assesses the high level of performance of the437

proposed IBM-solver. In addition, the comparison with results using the coarse438

grid sphereA highlights very limited differences, which assesses the robustness439

of the criteria employed to determine the mesh refinement.440
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5.5. Finer analysis of transonic regimes441

A limited number of numerical simulations have been performed using the442

mesh sphereB to further investigate the emergence of different dynamic regimes443

for Ma = 0.95. We remind that this threshold value for the Ma number cor-444

responds to an abrupt transition from the steady axisymmetric state to the445

unsteady regime. Two higher-resolution numerical simulation are performed446

for Re = 50 and Re = 600. Isocontours of Ma are shown in Figure 16 (a-b)447

for the two cases. For the latter, a detached shock can be clearly observed via448

Q-criterion and Schlieren criterion, which is reported in Figure 16 (c-d). In449

addition, the comparison of the bulk flow quantities with data from the litera-450

ture [44, 47], which are reported in table 3, again assesses the precision of the451

proposed IBM method.452

5.6. Investigation of the supersonic flow around a sphere453

The supersonic flows for Ma = 2 are investigated using the refined mesh. In454

this case, the numerical simulations are performed for Re = 300 and Re = 600.455

In this case compressibility effects are very strong and a steady axisymmetric456

configuration is observed in both cases. The analysis of the main bulk flow457

quantities, which is reported in table 3, indicates that all the physical features458

are accurately captured, when compared with data in the literature [47, 44].459

Qualitative representations via isocontours of the Ma number and the Schlieren460

criterion are shown in Figure 17(a) and in Figure 17(b), respectively. These461

results assess the correct representation of the physical features of the flow via462

IBM.463

6. Flow around a sphere under rotation464

In this section, a flow configuration including an immersed moving body is465

studied. In order to consistently advance with respect to the analyses in the466

previous sections, the flow around a rotating sphere is investigated. The sphere467

rotates with constant angular velocity ω around the z axis. The asymptotic inlet468
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Mach number Ma∞ of the flow in the streamwise x direction and the rotational469

Mach number Maω = ωD/2 characterizing rotation are:470

Ma∞ = 0.5 (30)

Maω = 0.5 (31)

Two simulations are performed for Re = 200 and Re = 300, respectively.471

They are compared with correspondent IBM simulations of the flow around a472

fixed sphere i.e. Maω = 0. The comparison between the four simulations is re-473

ported in Figures 18 , 19 and 20 using the Q criterion, velocity streamlines and474

Ma isocontours. For the case Re = 200, the flow without imposed rotation is475

stationary. However, the sphere rotation triggers the emergence of an unsteady476

regime, where coherent structures are periodically advected downstream. Addi-477

tionally, the streamlines behind the sphere lose their symmetric behavior. For478

Re = 300, both flow configurations are unstationary. However, the effect of479

the rotation is clearly visible in the evolution of the flow quantities. In partic-480

ular, the recirculation bubble is not symmetrical anymore, and a lift effect is481

obtained. More interesting features can be deduced by the analysis of the bulk482

flow coefficients reported in table 4. Generally speaking, the rotation is respon-483

sible for an increased value of the drag coefficient CD and the Strouhal number484

St. However, the generation of a lift force is as well observed, which is usually485

referred to as Magnus effect. The analysis of the present results indicates that486

the IBM model successfully captures this physical feature.487
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Studies CD Cl Crmsl St

Re = 200

Maω = 0 0.87 0 - -

Maω = 0.5 1.02 0.5 0.46 0.17

Re = 300

Maω= 0 0.77 0.08 0.068 0.12

Maω= 0.5 0.92 0.47 0.45 0.22

Table 4: Bulk flow quantities for the flow around a sphere under rotation.
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Figure 9: Distribution of the pressure coefficient Cp obtained via body-fitted and IBM

numerical simulations. Data are visualized with respect to the angle α ∈ [0, π]. The case of

the stationary flow around a circular cylinder for Re = 40 is investigated. Configurations for

(a) Ma = 2 and (b) Ma = 0.05 are shown, respectively.
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Figure 10: Visualization of cutting planes inside the 3D mesh used for the calculation of the

flow around a sphere.

(a) (b)

(c)

Figure 11: Vorticity contours for the flow around a sphere for Ma = 0.4, (a) Re = 205

(steady axisymmetric state), (b) Re = 250 (steady planar-symmetric configuration) and (c)

Re = 300 (unsteady regime). The vorticity component around the y axis is shown.
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Figure 12: Emergence of different characteristic regimes for the flow around a sphere, as a

function of Re and Ma: (+) steady axisymmetric flow, (•) steady planar-symmetric flow, (×)

unsteady periodic flow.

200 250 300 350

0.3

0.6

0.9

Figure 13: Type of flow field for subsonic regime: (+) Steady axisymmetric flow, (•) Steady

planar-symmetric flow, (×) Unsteady periodic flow. Dashed lines represent threshold values

for the change in dynamic regime, as calculated via stability analysis by Sansica et al. [45].
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Figure 14: (a) Drag coefficient Cd, (b) separation angle αs and (c) recirculation length xs

as a function of Re and Ma. Data are sampled from a database of 120 simulations.
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Figure 15: Time evolution of the lift coefficient Cl for the flow around a sphere for Ma = 0.3

and Re = 300.
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(a) (b)

(c) (d)

Figure 16: Numerical simulation of the transonic flow around a sphere for Ma = 0.95, using

the high resolution mesh sphereB. Isocontours of the Ma number are shown for (a) Re = 50

and (b) Re = 600, respectively. For the latter case, a detached shock is observed via (c)

Q-criterion and (d) normalized Schlieren criterion is shown.

(a) (b)

Figure 17: Numerical simulation of the supersonic flow around a sphere for Ma = 2, using

the high resolution mesh sphereB. (a) Isocontours of the Ma number are shown for Re = 300

and (b) the normalized Schlieren criterion is presented for Re = 600.
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(a) (b)

(c) (d)

Figure 18: Vortex structures for the flow around a sphere under rotation for Ma∞ = 0.5. The

configurations (a) Maω = 0, Re = 200, (b) Maω = 0, Re = 300, (c) Maω = 0.5, Re = 200

and (d) Maω = 0.5, Re = 300 are investigated, respectively.
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(a) (b)

(c) (d)

Figure 19: Streamlines for the flow around a sphere under rotation for Ma∞ = 0.5. The

configurations (a) Maω = 0, Re = 200, (b) Maω = 0, Re = 300, (c) Maω = 0.5, Re = 200

and (d) Maω = 0.5, Re = 300 are investigated, respectively.

37



(a) (b)

(c) (d)

Figure 20: Isocontours of the Mach number for the flow around a sphere under rotation

for Ma∞ = 0.5. The configurations (a) Maω = 0, Re = 200, (b) Maω = 0, Re = 300, (c)

Maω = 0.5, Re = 200 and (d) Maω = 0.5, Re = 300 are investigated, respectively.
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7. Conclusions488

The development of an improved IBM method is proposed in the present489

article. This method is based on previous works for incompressible flows and490

it is expanded towards the analysis of compressible configurations. The most491

essential feature of this model is the integration of a pressure-based correction492

of the IBM forcing which is analytically derived from the dynamic set of equa-493

tions. The resulting IBM method has been integrated in different flow solvers494

available in the CFD platform OpenFOAM. A rigorous validation has been per-495

formed considering different test cases of increasing complexity. The results496

have been compared with a large number of references available in the litera-497

ture of experimental and numerical nature. The analysis highlights numerous498

favorable characteristics of the IBM method:499

• precision. The validation process has encompassed different test cases500

over a large spectrum of dynamic regimes in the range of investigation501

Ma ∈ [0.05, 2], Re ∈ [40, 600]. For each case investigated, the IBM502

simulation successfully predicted the physical quantities investigated. This503

level of precision is intimately tied with the pressure correction term, which504

allows for prescribing more sophisticated condition in the near wall region.505

Even if classical choices have been employed in the present research work,506

this observation open new research paths for IBM advancement.507

• flexibility. The IBM method proved to work remarkably well when im-508

plemented in two completely different flow solvers. This aspect indicates509

that an efficient performance should be granted even with implementation510

to other codes available for CFD investigation.511

• computational costs. The determination of the IBM forcing exploits512

the recursive calculation features of the numerical algorithms, so that a513

whole time advancement without IBM forcing is not needed anymore.514

This aspect provides a computational advancement with respect to early515

development of similar IBM strategies.516
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The application of the proposed IBM method to the analysis of three-517

dimensional flows confirmed its capabilities to capture fine physical features518

of the emerging wake dynamic regimes. Comparison of the present results519

with body-fitted DNS using high order schemes highlighted minimal differences,520

which is a signature of the precision of the proposed method in the represen-521

tation of flow configurations exhibiting flow separation. This class of flow is522

observed in a large number of industrial flows and transport engineering appli-523

cations.524

The research work has been developed employing computational resources525

within the framework of the project gen7590-A0012A07590 DARI-GENCI and526

Mesocentre of Poitiers.527
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Appendix A. Native OpenFOAM solvers - algorithmic structure658

The solver sonicFoam is described first. As previously mentioned, this tool is659

a segregated, pressure-based solver relying on implicit discretization of the time660

derivative and a pressure implicit step using a splitting of operators (PISO) and661

an iterative resolution [25, 26]. The different steps of the algorithm are now662

described for the time evolution from the time step n to n+1. First estimations663

of the quantities ρ?, U? and e? are derived via finite volume discretization of664

equations 1 , 2 and 3 , respectively:665

ρ? =
φρ(ρ

n,un)

aρ
(A.1)

u? =
φu(ρ?,un)

au
− gradpn

au
(A.2)

e?t =
φet(ρ

?,u?, ent )

aet
− div(pnu?)

aet
(A.3)

Here, the terms φρ, φu and φe represent the results of the finite volume666

discretization for every term with the exception of the pressure related terms667

and the volume forcing term (which is for the moment considered to be zero668

for sake of clarity). The terms aρ, au and ae include coefficients resulting from669

the time discretization and possibly turbulence / subgridscale modeling. Two670

important aspects must be highlighted:671
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• equations A.1, A.2 and A.3 are not solved simultaneously, but they are672

strictly resolved in the presented order because of their nested structure;673

• the equations are solved using the pressure field calculated at the previous674

time step n. This feature will be exploited for IBM implementation, as675

already indicated in the decomposition presented in equations 13 - 15.676

The prediction of the new pressure field is obtain via manipulation of the677

vectorial momentum equation 2 via application of divergence operator. The678

resulting Poisson equation for the pressure field is:679

div(gradp) = − ∂

∂t
div(ρu)− div(div(ρu⊗ u)) (A.4)

The term ∂div(ρu)/∂t, which is equal to zero in incompressible flows, can680

be manipulated using equation 1:681

∂

∂t
div(ρu) = −∂ρ

∂t
= −∂ρ

∂p

∂p

∂t
= −Ψ

∂p

∂t
(A.5)

where the normalized compressibility coefficient Ψ = ∂ρ/∂p is included.682

Combining equations A.4 and A.5 provides an evolution equation for p, which683

can be discretized in the following form:684

p? =
φp(p

n, ρ?,u?)

ap
(A.6)

Equation A.6 provides a time advancement for p. The PISO loop consists685

of:686

1. a resolution of equation A.6, which allows to update the pressure field to687

a state p?688

2. equations A.1, A.2 and A.3 are solved using the updated value p?. The689

new flow quantities are used to provide a new estimation for the pressure690

field691

This loop continues until a suitable convergence criterion set by the user is692

satisfied. Because of the use of a quasi-Poisson equation to determine the pres-693
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sure p, this algorithm works best for lower Ma numbers, where compressibility694

effects are not dominant.695

The solver rhoCentralFoam is now described. Here KT [27] and KNP [28]

numerical schemes are employed, which allow for capturing discontinuity / shock

features while conserving a general second order central scheme formulation.

The numerical scheme allows the transport of fluid properties by both the flow

and the acoustic waves. The integration of the convective term on a control

volume V is written:∑
f

πfσf =
∑
f

βπf+σf+ + (1− β)πf−σf− + ωf (σf− − σf+) (A.7)

with:696

1. the mass flux πf697

2. the volumetric unknown σ = (ρu); (u(ρu)); (u(ρet))698

3. f+ and f− indicate the two directions of incoming flux and outgoing flux,699

respectively700

4. β the weighted coefficient of f+ and f−701

5. the diffusive mass flux of the maximum speed of propagation of any dis-702

continuity ωf703

The numerical resolution is here performed following a nested cycle. Initially,704

weak terms of the evolution equations are neglected. Following this first pre-705

diction, progressively more complete evolution equations are considered. With706

respect to this point, the matrices φ′u, φu, φ′et and φe used below represent the707

finite volume discretization for:708

1. the momentum equation excluding the viscous term, the pressure term709

and the volume forcing term710

2. the momentum equation excluding the pressure term and the volume forc-711

ing term712

3. the total energy equation excluding the heat flux term, the pressure-713

velocity term and the volume forcing-velocity term714
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4. the internal energy equation excluding the pressure-velocity term and the715

volume forcing-velocity term716

As previously explained, the coefficient au, aet and ae result from the numerical717

discretization. The governing equations are solved from the time step n to the718

time step n+ 1 in the following order:719

1. The continuity equation 1 for the density ρn+1:

ρn+1 =
φρ(ρ

n,un)

aρ
(A.8)

2. The momentum equation 2 for an intermediate estimate of the momentum

(ρu)
?
. In this step, viscous stresses are excluded:

(ρu)
?

=
φ′u((ρu)n)

au
− gradpn

au
(A.9)

3. The velocity field is calculated as u? = (ρu)?/ρn+1
720

4. The momentum equation, including the viscous stresses, is solved again

by combining with equation A.9 :

ρn+1un+1 = ρn+1u? +
φu(ρn,un)

au
− φ′u((ρu)n)

au
(A.10)

5. Update momentum : (ρu)n+1 = ρn+1un+1
721

6. The energy equation 3 for the total energy (ρet)
? is resolved excluding the

heat flux term.

(ρet)
? =

φ′et(u
n+1, (ρet)

n)

aet
− div(pnun)

aet
(A.11)

7. Update of an intermediate estimate of internal energy e? associated with

(ρet)
?:

e? =
(ρet)

?

ρn+1
− 0.5(un+1 · un+1) (A.12)

and an intermediate estimation of the temperature θ? = e?/cv722

8. Resolution of the energy equation for the internal energy en+1 including

the heat flux term:

ρn+1en+1 = ρn+1e?+
φe(ρ

n+1,un+1, en)

ae
−div(λ(θ?)grad(θ?))

ae
−
φ′et(u

n+1, (ρet)
n)

aet
(A.13)

9. Then final update of the temperature θn+1 = en+1/cv and the pressure723

pn+1 = ρn+1 · (rθn+1).724
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Appendix B. Grid convergence analysis725

The accuracy of the proposed IBM method is assessed via the analysis of726

the flow around a circular cylinder for Ma = 0.05 and Re = 300. Details of the727

test case investigated are reported in section 4. Data from the work of Gautier728

et al. [30] is used as a reference solution. The precision of the IBM method729

is investigated using L2 and L∞ norms so that, for a physical quantity φ, the730

error is estimated as:731

eφL2
=‖ φref − φG ‖2 (B.1)

eφL∞
=‖ φref − φG ‖∞ (B.2)

where φG is the reference solution [30]. The grid convergence analysis is732

performed evaluating results from four different grids. The mesh resolution in733

the near cylinder region is imposed to be ∆x = ∆y = {D
80

;
D

96
;
D

112
;
D

128
} where734

D is the diameter of the cylinder. The corresponding number of Lagrangian735

markers employed is {252; 302; 352; 402}, respectively.736

Results for the streamwise velocity u are shown in Figure B.21. The error is737

calculated selecting points at a distance of 0.52D from the center of the cylinder.738

One can observe that order of the grid convergence is almost 2 for the L2 norm739

and 1 for the L∞ norm. These results indicate that the precision of the original740

method [17] is conserved via the current implementation and it is perhaps even741

improved when compared with previous analyses using the initial OpenFOAM742

formulation [18].743

The behavior of error in the prediction of the drag coefficient CD is shown744

in Figure B.22. In the framework of this IBM method, the drag coefficient is745

directly calculated using information available on the Lagrangian markers. For746

this quantity, the rate of convergence is slightly faster than first order.747
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Figure B.21: Convergence rate in the prediction of the streamwise velocity u via the pressure-

corrected IBM method. The error is calculated using (a) a L2 norm and (b) a L∞ norm,

respectively. Dashed lines (first order accuracy) and dotted lines (second order accuracy) are

included to highlight the error behavior.
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Figure B.22: Convergence rate in the prediction of the drag coefficient CD via the pressure-

corrected IBM method.
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