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Abstract. This paper presents a calculation of the contribution of electrons to GAM damping.
It appears that this contribution is usually not negligible due to a resonance between barely
trapped/passing electrons bounce/transit frequency and the mode pulsation.

1. Introduction
Gyrokinetic codes are often verified by setting an initial flow zonal perturbation, characterizing
its subsequent time evolution, and comparing it with existing analytical calculations (see e.g.
[1]). This test provides the residual value of the flow, predicted by Rosenbluth and Hinton [2],
and also the pulsation and damping rate of the Geodesic Acoustic Mode (GAM). The GAM
frequency is well documented in the particular case of a single ion species with adiabatic electrons
[3, 4, 5, 6, 7]. It usually agrees well with simulations. However adding kinetic electrons change
somewhat the picture. While the residual flow and the GAM frequency are mostly unchanged
[8], the GAM damping rate increases significantly [9]. This is attributed to a resonance between
GAM and barely trapped/passing electron bounce/transit pulsations. The resonance amplifies
the exchange of energy between this class of particles and the mode, and thus enhances GAM
damping.

The objective of this work is to provide an analytical estimate of the kinetic electron
contribution to GAM damping, which does not seem to be available in the literature, except
one attempt for passing electrons [10]. A variational formulation is used, which is close to the
one used previously to study EGAMs [11]. A generalized dispersion relation is proposed, that is
shown to depend on a single dimensionless number, that measures the ratio of the GAM to the
bounce frequencies. An explicit expression, though simplified, is also derived. It appears that
indeed barely trapped/passing electrons enhance GAM damping, while affecting weakly the real
part of the GAM pulsation.

The paper is organised as follows. The derivation of a lagrangian form is given in section
2, while the calculation of GAM electron damping is calculated in section 3. A discussion and
conclusion follow.

2. Basic equations
2.1. Lagrangian formulation of electro-neutrality
We anticipate that diamagnetic effects are negligible for GAMs, i.e. we consider a plasma of
electrons and hydrogenoid ions with constant density Ne = Ni, and constant electron and ion



temperatures Te and Ti. The electric potential is noted Φ. It is most conveniently normalized
to the ion temperature, i.e. φ = eΦ

Ti
, where Ti is the ion temperature and e the proton charge.

We consider a potential perturbation that oscillates in time with a given complex pulsation ω,
i.e. φ (x, t) = φω (x) exp (−iωt)+c.c. , where ”c.c.” means ”complex conjugate”. The perturbed
distribution function of each species is normalized to the corresponding density N , and noted
f(x,p, t), where x and p are the position and momentum variables. To simplify the notations
we omit to indicate explicitly species labels in this section. The charge number is noted Z (i.e.
Z = 1 for ions and Z = −1 for electrons) and τ = T

Ti
denotes the ratio of a species temperature

to the ion temperature. The perturbed distribution function f (x,p, t) is written in the same
way as the potential. The electro-neutrality condition can be written in a variational form,
which states that the functional

Lω = −NiTi
∑

species

Z

∫
dςfω(x,p)φ?ω(x) (1)

is extremum with respect to any variation of the electric potential φ?ω. Here dς = d3xd3p is the
volume element in the phase space. The perturbed distribution function fω can be separated in
adiabatic and non adiabatic responses, i.e. fω = −FMZ/τφω+gω. The unperturbed distribution

function FM is a Maxwellian normalized to the density FM = (2πmT )−3/2 exp {−Heq/T}, where
Heq is the unperturbed Hamiltonian. The total distribution function F = FM + f is solution

of the Vlasov equation ∂F
∂t − [H,F ] = 0 where H = Heq + eΦ is the total Hamiltonian. In the

following we ignore the mean electric potential, which is irrelevant for the GAM dynamics. A set
of action-angle variables (α,J) can be constructed to describe the non perturbed trajectories of
particles. This is a consequence of the existence of 3 motion invariants of the unperturbed
system, namely the Hamiltonian Heq, the magnetic moment µ, and the canonical toroidal

momentum Pϕ = −eψ + mv‖
Bϕ
B R, where ψ is the poloidal flux normalized to 2π. The first

angle is the cyclotron angle, and the corresponding action is proportional to the magnetic
moment J1 = m

e µ. The second and third angles are related to the guiding center motion.
More precisely the third angle is equal to the toroidal angle up to an offset that is a periodic
function of the second angular variable α2. The corresponding action is the canonical toroidal
momentum Pϕ. The second angle describe the bounce (resp. transit) motion of trapped (resp.
passing) particles. The corresponding action can be derived explicitly, but is of little use here
as it can be replaced by the energy Heq at given µ and Pϕ. Thanks to its periodicity with
respect to the angle variables, the perturbed hamiltonian can be developed as a Fourier series
φω (x) =

∑
n=(n1,n2,n3) hnω (J) exp (in · α). Using the hamiltonian character of the dynamics, a

linear solution of the Vlasov equation is easily derived

gnω = FM
Z

τ

ω

ω − n ·Ω + i0+
hnω (2)

This yields the following expression of the Lagrangian

Lω = NiTi
∑

species

1

τ

∫
d3xφωφ

?
ω −NiTi

∑
species

1

τ

∑
n

∫
dςFM

ω

ω − n ·Ω + i0+
hnωh

?
nω (3)

The imaginary part of the resonant integral is most easily calculated in the action/angle space,
using the volume element dς = d3αd3J. Also the unperturbed Hamiltonian Heq(J) is a function

of the actions only and Ω is a set of resonant frequencies Ωi =
∂Heq
∂Ji

. Since the GAM frequency is
much lower than the cyclotron frequency, only n1 = 0 components are kept. Moreover, a GAM
has a toroidal wave number that is null, which implies n3 = 0 since α3 = ϕ up to a periodic
function of α2. Therefore the summation should be run on n2 indices only.



2.2. Trajectories and hamiltonian components
We use a simplified geometry of circular concentric magnetic surfaces, labeled by their minor
radius r. The angles (θ, ϕ) are the poloidal and toroidal angles. The radius and poloidal angle of

the guiding center position read rG = r+ r̂ and θG = εcα2 + θ̂ where εc = 1 (resp. 0) for passing

particles. The functions r̂ and θ̂ are functions of the actions J, or equivalently to the motion
invariants (Heq, µ, Pϕ), and periodic functions of α2. We will omit to mention explicitly the
dependencies on the motion invariants, to simplify the notations. The GAM electric potential
can be expanded in Fourier series with respect to the poloidal angle and minor radius

φω(r, θ) =
+∞∑

m=−∞

∫ ∞
−∞

dK

2π
φ̃mω(K)eiKr+imθ (4)

The Fourier components φ̃mω(K) are determined by initial conditions. In most theoretical
calculations, the radial structure is the same for all poloidal harmonics, and in fact just one
radial wave vector is chosen. Using the trajectory equations, the correspondence between Fourier
and Hamiltonian components is found to be

hnω (J) = eiKrJ0

+∞∑
m=−∞

∮
dα2

2π
φ̃mω(K)ei[Kr̂+mθ̂+(εcm−n2)α2] (5)

where n = (0, n2, 0) and
∮

means an integral over a period in α2.

3. GAM damping
The exchange of energy between particles and waves per volume and time unit is given by
the relation W = 2ω= (L), where L =

∫
d3xL. A positive value of W > 0 means particle

heating, i.e. damping. If = (L) � < (L), the real part of the GAM pulsation is given by the
dispersion relation < (L) = 0, and the damping rate is then calculated perturbatively. The
above methodology provides an expression of < (L) [6] that coincides with previous expressions
[3, 4], thus providing the classical expression of the GAM pulsation at second order in Kρi. The
additional damping due to electrons can be estimated by computing the particle Lagrangian of
electrons.

3.1. Electron Lagrangian
Deeply passing electrons contribute weakly to GAM damping because of their large velocities.
This is due to the mismatch between transit and GAM frequency. However barely
passing/trapped electrons do contribute to GAM damping because their bounce/transit
frequency becomes small near the passing/trapped domain and meets a resonance with the
GAM pulsation [8]. Using Eq.(3), the electron resonant Lagrangian (both trapped and passing)
reads

Lres,e = −NiTi
1

τe

+∞∑
n2=−∞

∫
dςFM

ω

ω − n2Ω2 + i0+
|hnω|2 (6)

where τe = Te/Ti.We introduce a normalized transit pulsation Ωb = Ω2qR0/vTe where
vTe =

√
Te/me is the electron thermal velocity. We will also make use of the scaling parameter

σ = qτ
−1/2
e (me/mi)

1/2, which is proportional to the square root of the electron to ion mass
ratio, hence a number that is small compared to one. The electron transit frequency normalized
to the ion transit frequency can then be written Ω2

R0
vTi

= Ωb
σ The resonance condition requires

Ωb ' σ � 1.
The volume integrated energy transfer from a GAM to electrons is We = 2ω= (Lres,e). We



Notations λ = µB0

H εb(λ) θ0(λ) κ

Passing 0 ≤ λ ≤ λmin = 1
1+ε 0 π 0 ≤ κ ≤ 1

Trapped λmin ≤ λ ≤ λmax = 1
1−ε 1 −π ≤ θ0 ≤ π 1 ≤ κ ≤ +∞

Table 1. Notations and conventions for passing and trapped particles.

introduce a normalized Lagrangian L̄res,e = Lres,eτe/
[
NiTiK

2ρ2
i |φ0|2

]
which is readily written

as

L̄res,e = −
+∞∑

n2=−∞

∫
dςFM

Ω

Ω− n2
Ωb
σ + i0+

∣∣∣h̃n2ω

∣∣∣2 (7)

where h̃ω(θ) = hnω (θ/ (Kρiφ0). To simplify the notations, we omit explicit dependencies of
the Hamiltonian on the actions and the first and third angle variables. Also from now on, the
second angle variable is noted α instead of α2. The perturbed Hamiltonian reads

h̃ω (α) =
+∞∑

n2=−∞
h̃n2ωe

in2α ↔ h̃n2ω =

∮
dα

2π
h̃ω (α) e−in2α (8)

An equivalent form of the Lagrangian Eq.(7) is

L̄res,e = 2iπσΩ

∫
dς
FM
|Ωb|

∫ π

−π

dα

2π

∫ ∞
−∞

dα′

2π
Θ
[
ε‖
(
α′ − α

)]
h̃ω (α) h̃∗ω

(
α′
)

exp

{
iσ

Ω

Ωb

(
α′ − α

)}
(9)

where α′ is an extended integration variable that spans the whole real axis [−∞,+∞], Θ is the
Heaviside function (Θ(x) = 1 for x > 0, 0 otherwise), ε‖ = sign (Ωb) is the sign of the parallel
velocity for passing particles, and we choose ε‖ = 1, Ωb > 0 for trapped particles. This expression
is obtained by solving the Vlasov equation in the angular variable α. The main advantage of
Eq.(9) is to better identify the parametric dependencies.

3.2. Phase space volume element
The phase space density FMdς in the Lagrangian Eq.(9) reads

FMdς = dV
∑
ε‖=±1

dλ

√
2

π
dvv3 1

|Ωb|
e−v

2
(10)

where dV = 4π2R0rdr is the volume element, λ = µB0/Heq is a pitch angle variable, ε‖ is
the sign of the parallel velocity (for passing particles only) , and v is a normalized velocity

v2 =
[

1
2mv

2
‖ + µB

]
/T . The bounce/transit pulsation reads

1

|Ωb|
=

√
2

v

1 + εb(λ)

2

∫ θ0

−θ0

dθ

2π

1

(1− λ+ ελ cos θ)1/2
(11)

Here θ0 is the poloidal angle at the turning point, i.e. the positive solution of v‖(E, λ, θ) = 0,
while θ0 = π for passing particles. The meaning of the notations for trapped and passing
particles is given in Table 1. The pitch-angle variable λ does not allow an easy handling of the
singularity at the passing/trapped boundary. It is therefore useful to introduce an alternative
variable κ defined as

κ2 =
2ελ

1− λ(1− ε)
→ dλ =

4ε

(1 + ε)2

κdκ

Λ2(κ)
(12)



It appears that

v‖
vTe

= ε‖

(
ε

1 + ε

)1/2 2v

Λ1/2(κ)

[
1− κ2 sin2

(
θ

2

)]1/2

;

∣∣∣∣ ∂θ∂α
∣∣∣∣ = 2τ(κ)

[
1− κ2 sin2

(
θ

2

)]1/2

(13)

where Λ(κ) = 2ε+(1−ε)κ2

1+ε is smooth near κ = 1, and Λ(1) = 1. The bounce/transit frequency
can be explicited in terms of the complete elliptical function of the first kind K, namely

1

Ωb
= ε‖

(
1 + ε

ε

)1/2

Λ1/2(κ)
τ(κ)

v
; τ(κ) =

1

π

{
K(κ2) 0 ≤ κ ≤ 1

2
κK

(
1
κ2

)
1 ≤ κ ≤ +∞ (14)

The relation between the angles θ and α involves the Jacobi elliptic function sn, i.e.

sin

(
θ

2

)
=

{
sn
(
τα, κ2

)
0 ≤ κ < 1

1
κsn

(
κτα, 1

κ2

)
1 < κ < +∞ (15)

Using this set of variables, the integrand of the Lagrangian Eq.(9) is recast as

FM
|Ωb|

dς = 4

√
2

π

1

1 + ε
dV

∑
ε‖=±1

κdκ

Λ(κ)
τ2(κ)vdve−v

2
(16)

3.3. Electron contribution to the GAM dispersion relation
An important quantity that appears in the Lagrangian Eq.(9) is the ratio σΩ/ |Ωb|, which reduces
to σΩ/ |Ωb| = σ∗τ(κ)Λ1/2(κ)/v in the limit of small inverse aspect ratio ε → 0. The parameter
σ∗, defined as

σ∗ =
σ

ε1/2
Ω =

(
me

miτe

)1/2 q

ε1/2
Ω (17)

is the key dimensionless parameter that characterises the resonance of a GAM with barely
trapped/passing electrons. Indeed the condition σ∗ ' 1 corresponds to the condition ω ' ωb,
where the bounce frequency ωb scales as vTeε

1/2/(qR0). Introducing L̄res,e the Lagrangian per
volume unit defined as L̄res,e = ∂L̄res,e/∂V, the imaginary part of the Lagrangian Eq.(9) reads

=
(
L̄res,e

)
= 8

√
2πε1/2σ∗

∑
ε‖=±1

∫ +∞

0

κdκ

Λ(κ)
τ2(κ)

∫ +∞

0
dvv exp

(
−v2

)
∫ π

−π

dα

2π

∫ ∞
−∞

dα′

2π
Θ
[
ε‖
(
α′ − α

)]
h̃ω (α) h̃∗ω

(
α′
)

cos

{
σ∗
τ

v
Λ1/2ε‖

(
α′ − α

)}
(18)

or equivalently

=
(
L̄res,e

)
= 4

√
2πε1/2σ∗

∑
ε‖=±1

+∞∑
n2=1

∫ +∞

0

κdκ

Λ(κ)
τ2(κ)

∫ +∞

0
dvv exp

(
−v2

)

δ

(
n2 − σ∗

τ

v
Λ1/2

)∫ π

−π

dα

2π

∫ π

−π

dα′

2π
h̃ω (α) h̃∗ω

(
α′
)

exp
{
in2

(
α′ − α

)}
(19)

when using Eq.(6) where resonances are explicit. The resonance match parameter σ∗ is
smaller than 1 for usual plasma parameters. An estimate of the integral Eq.(18) appears
to be quite difficult. Nevertheless some exact results can be derived. It is reminded that
the main GAM poloidal dependence is of the form h̃ω (α) ∼ sin [θ(α)]. Using the relation



∂2θ/∂α2 = −τ2(κ)κ2 sin θ, a Taylor expansion in powers of σ∗ of the cosine function in Eq.(18)
shows that the o([σ∗]) term cancels exactly so that the next order is o([σ∗]3). Hence it
appears that most particles contribute to an imaginary part of the Lagrangian Eq.(18) that
scales as o([σ∗]3) when σ∗ → 0. This yields a very small contribution to damping and can
be neglected against ion damping in most conditions. However this expansion breaks down
whenever σ∗τ(κ)Λ1/2(κ) > v, i.e. near resonant curves σ∗τ(κ)Λ1/2(κ) = n2v in the phase space
(v, κ). Since σ∗ is small, this requires large values of the period τ(κ) or small values of the
velocity modulus v. This situation occurs near the trapped/passing boundary κ ∼ 1, where
τ ∼ ln |κ− 1|, or at low velocities v ' σ∗. However because of the integrand in velocity that
behaves as v, the contribution from low velocities is quite small (typically [σ∗]3). This means
that most of the integral comes from a boundary layer near the rapped/passing boundary κ ∼ 1,
as expected. The exact calculation of Eq.(19) (or equivalently Eq.(18)) in the region κ ∼ 1 is
difficult. Hence we have to resort to some approximations. One expect the bounce integrals in
(α, α′) to be dominated by locations where particles slow down or bounce back (turning points).
Turning point are hidden when using angle variables, but appear more clearly when noting that
for any function h [θ(α)] , even in α, one has the identity

∫ π

−π

dα

2π
h [θ(α)] =

∫ θ0
−θ0

dθ√
1−κ2 sin2 θ

2

h(θ)∫ θ0
−θ0

dθ√
1−κ2 sin2 θ

2

(20)

If h(θ) is a smooth function, a proxy of h(α) is π
{
h(θ0)δ(α− π

2 ) + h(−θ0)δ(α+ π
2 )
}
. Because of

the oscillating function exp {in2 (α′ − α)}, most of the contribution comes from the neighborhood
of α = α′ = π

2 and α = α′ = −π
2 . If a large number of trapped particle resonances n2 = 1, 2, ...

is involved, the summation over n2 can be replaced by a continuous integral that is trivial to
execute since it applies on δ functions (integral is 1/2 as it spans half the real axis - also we
use 2

∫+∞
0 dvv exp

(
−v2

)
= 1). Note that for passing particles, most of the weight comes from

θ = π, which is a location where the mode vanishes - hence their contribution is negligible in
this simplified calculation. This procedure provides an estimate of the form function

=
(
L̄res,e

)
'
√
π

2
ε1/2σ∗

∫ +∞

1

κdκ

Λ(κ)
τ2(κ)

∣∣∣h̃ω (θ0(κ))
∣∣∣2 (21)

where h̃ω (θ0) is the value of the perturbed Hamiltonian at the bounce point when expressed
in the θ variable. The normalised amplitude of the Hamiltonian perturbation h̃ω(θ) =
hnω (θ/ (Kρiφ0) appears to be of the form h̃ω(θ) = η1 sin(θ), where [6]

η1 = −
{

1 +
2 + τe
q2Ω2

+ o

(
1

q4Ω4

)}
τe
Ω

+ o (Kρi) (22)

Combining the exact expression of the Lagrangian Eq.(19) (or equivalently Eq.(18)) with the
estimate Eq.(21) one finds

=
(
L̄res,e

)
= G (q, τe) ε

1/2σ∗D(σ∗) (23)

where G is a function of q and τe only (in the limit of large aspect ratio)

G (q, τe) = η2
1

√
π

2

∫ +∞

0
dκκ

τ2(κ)

Λ(κ)
sin2 (θ0(κ)) (24)

and sin
(
θ0
2

)
= 1

κ . The function D(σ∗) measures the weight of the region in the phase space where

σ∗τ(κ)Λ1/2(κ)/v > 1, i.e. the number of near resonant particles. The special case D(σ∗) = 1



corresponds to the estimate based on a strong weight of bounce points, i.e. when Eq.(21) is
exact. Since only a fraction of particles fulfill this criterion, one expects that D(σ∗) ≤ 1. Strictly
speaking the form factor D (σ∗) depends also on ε, but this dependence is weak in the limit of
large aspect ratio. One important consequence of Eq.(23) is the dimensionless form =

(
L̄res,e

)
,

which offers an efficient way to probe the parametric dependencies. Since the frequency Ω and
potential amplitude are functions of (q, τe) only, this means that the mass scaling provides a
strong constraint on the dependence on safety factor q and electron to ion ratio temperature
τe = Te/Ti.

4. Estimate of the GAM damping rate due to electrons
Using Eqs.(23), and We = 2Ω= (Lres,e)

vTi
R0

, the following expression of the power exchange
between electrons and GAM is found

We = 2G (q, τe) Ω2D(σ∗)

(
me

mi

)1/2 q

τ
3/2
e

NiTi
vT i
R0

K2ρ2
i |φ0|2 (25)

The total dispersion relation with electrons is L̄ = 0, where

L̄ = K2ρ2
i |φ0|2

{
Λ1 − Λ2K

2ρ2
i + i

1

2

√
π

2
q5Ω3e−

q2Ω2

2

[
1 + 2

1 + 2τe
q2Ω2

]
+ i

1

1024

√
π

2
K2ρ2

i q
9Ω5e−

q2Ω2

8

[
1 + 16

1 + τe
q2Ω2

]
+ iG (q, τe)D(σ∗)

(
me

mi

)1/2 q

τ
3/2
e

Ω

}
where

Λ1 = 1−
(

7

2
+ 2τe

)
1

Ω2
−
(

23

2
+ 8τe + 2τ2

e

)
1

q2Ω4
(26)

and

Λ2 =
3

4
−
(

13

2
+ 6τe + 2τ2

e

)
1

Ω2
+

(
747

8
+

481

8
τe +

35

2
τ2
e + 2τ3

e

)
1

Ω4
(27)

A rough estimate of the damping rate due to electrons is obtained by fitting the parenthesis in

the real part of the dispersion relation by 1 − Ω2
0

Ω2 , where Ω0 is solution of <
[
L̄(Ω0)

]
= 0. A

perturbative calculation then provides the normalised damping rate

R0γ

vT i
' 1

2
G (q, τe)D(σ∗)

(
me

mi

)1/2 q

τ
3/2
e

Ω2
0 (28)

Using the value of η1 given by Eq.(22), the following results are found

G (q, τe) = 0.69

(
1 +

2 + τe
q2Ω2

0

)2 τ2
e

Ω2
0

(29)

and
R0γ

vT i
' 0.34

(
1 +

2 + τe
q2Ω2

0

)2

qτ1/2
e D(σ∗)

(
me

mi

)1/2

(30)

where Ω0 is a function of q and τe. It is stressed here that the expression Eq.(30) is exact,
though the weight function D(σ∗) ≤ 1 is unknown at this stage. Nevertheless this formulation
greatly constrains the dependencies on q, τe and me/mi, as anticipated . Hence a way to check
this expression is to perform first a scan on one parameter to determine the function D(σ∗), and
then check the variation with respect to the other parameters. Previous simulations indicate

that the damping rate due to trapped electrons scales as (me/mi)
1/2 [1]. This suggests that

D(σ∗) is constant and close to D(σ∗) ' 1.0 . If so, Eq.( 30) can then be used to test other
dependencies, in particular on τe and q.



5. Conclusion
The contribution of electrons to GAM damping has been derived. It appears that this
contribution is usually not negligible thanks to a resonance between barely trapped/passing
electrons bounce/transit frequency and the mode pulsation. Damping is estimated via the
computation of the exchange of energy between the mode and electrons. This expression appears
to be quite intricate as it involves a quadruple integral over the phase space and poloidal angles.
A more tractable expression is obtained by assuming a strong weight of trapped particle bounce
points in this integral. The ratio between the exact result and the approximate is a weight
function that depends only one dimensionless number, which characterises the ratio of the mode
pulsation to the thermal bounce frequency. This weight function thus measures the number
of resonant trapped electrons that participate in mode damping. Comparison with available
data in the literature suggests that this weight function is nearly constant and close to 1, thus
confirming a prominent role of barely trapped particles. Upcoming numerical simulations should
be able to test this conjecture.
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