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D Épartement 
  
ON THE LIMITING ABSORPTION PRINCIPLE AT ZERO ENERGY FOR A NEW CLASS OF POSSIBLY NON SELF-ADJOINT SCHR ÖDINGER OPERATORS

We recall a Moure theory adapted to non self-adjoint operators and we apply this theory to Schrödinger operators with non real potentials, using different type of conjugate operators. We show that some conjugate operators permits to relax conditions on the derivatives of the potential that were required up to now.

INTRODUCTION

In this article, we will study the Schrödinger operator H " ∆ `V with possibly a nonreal potential, on L 2 pR n q, where ∆ is the non negative Laplacian operator. Here V is a multiplication operator, i.e. V can be the operator of multiplication by a function or by a distribution of strictly positive order. When V " 0, we know that H " ∆ on L 2 pR n q has for spectrum the real set r0, `8q with purely absolutely continuous spectrum on this set. In this article, we are always in the application framework of the Weyl's Theorem. In particular, the essential spectrum of H is the same that the essential spectrum of ∆, the 1 interval r0, `8q. Thus, 0 is the bound of the essential spectrum and, for this reason, 0 is a threshold for H. Here, we are interested in the nature of the essential spectrum of the perturbed operator and in the existence of a Limiting Absorption Principle near the threshold 0.

A general technique to prove a Limiting Absorption Principle if H is self-adjoint is due to E. Mourre [START_REF] Mourre | Absence of singular continuous spectrum for certain self-adjoint operators[END_REF] and it involves a local version of the positive commutator method due to C.R. Putnam [START_REF] Putnam | On commutators and Jacobi matrices[END_REF][START_REF] Putnam | Commutation properties of Hilbert space operators and related topics[END_REF]. This method is based on the research of another selfadjoint operator A, named the conjugate operator, for which the operator H is "regular" with respect to A and for which the Mourre estimate is satisfied on a set I in the following sense:

EpIqrH, iAsEpIq ě c 0 EpIq `K, where c 0 ą 0, E is the spectral mesure of H and K is a compact operator. When H is a Schrödinger operator, we usually apply the Mourre theory with the generator of dilations A D as conjugate operator. With this conjugate operator, we obtain for the first order commutator of the Laplacian r∆, iA D s " 2∆. In particular, by considering potential such that H is a compact perturbation of the Laplacian, and under some assumptions on it, we can prove the Mourre estimate if I is a compact interval of p0, `8q. This implies a Limiting Absorption Principle on all compact interval of p0, `8q (see [START_REF] Amrein | C 0 -groups, commutator methods, and spectral theory of N -body Hamiltonians[END_REF]). But, we can see that since EpIqr∆, iA D sEpIq is not strictly positive when 0 P I, we can not use the Mourre theorem to prove a Limiting Absorption Principle at zero energy. To do this, several methods linked to Mourre theory exist. A first method uses the standard Mourre theory with a parameter. The goal is to obtain a Limiting Absorption Principle for a modified operator which depends on the parameter and to deduce from this Limiting Absorption Principle a similar estimate for the initial operator, without the parameter (see [START_REF] Bony | Low frecuency resolvent estimates for long range perturbations of the euclidean Laplacian[END_REF]). A second method is to show a Limiting Absorption Principle with weights which depends on a parameter and to deduce from this a Limiting Absorption Principle for our operator (see [START_REF] Fournais | Zero energy asymptotics of the resolvent for a class of slowly decaying potentials[END_REF]). Here, we will use a third method which is, contrary to the others, a general method: the method of the weakly conjugate operator. With this method, we do not have to assume that the first order commutator is strictly positive but only positive and injective (see [START_REF] Mȃntoiu | Absence of singular spectrum for Schrödinger operators with anisotropic potentials and magnetic fields[END_REF][START_REF] Richard | Some improvements in the method of the weakly conjugate operator[END_REF][START_REF] Boussaid | Limiting absorption principle for some long range perturbations of Dirac systems at threshold energies[END_REF]).

Let k P N ˚, k ď n, and consider the decomposition R n " R k ˆRn´k . With this decomposition, denote px, yq P R n where x P R k and y P R n´k . For h P C 8 pR n q, denote ∇ x hpx, yq " ˆBi hpx, yq ˙i"1,¨¨¨,k .

In [START_REF] Mȃntoiu | Absence of singular spectrum for Schrödinger operators with anisotropic potentials and magnetic fields[END_REF], using the method of weakly conjugate operator, M. Mȃntoiu and S. Richard proved the following

Theorem 1.1 ([MR00], Theorem II.2). Let k ě 2. Let H " ∆ `V whith V P C 8 pR n q X L 8 pR n q a real potential. Assume that (1) x ¨∇x V P L 8 pR n q.
(2) For all px, yq P R n , ´x ¨∇x V px, yq ě 0.

(3) There is a constant c such that, for all px, yq P R n , ˇˇpx ¨∇x q 2 V px, yq ˇˇď ´cx ¨∇x V px, yq.

Then, there exists a Banach space A Ă L 2 pR n q such that }pH ´λ ˘iνq ´1} BpA,A ˚q is bounded uniformly in λ P R, ν ą 0, where A ˚is the dual space of A.

These conditions do not permit to cover some situations: in fact, assumption (2) does not allow to have an oscillating potential of the form V pxq " sinp|x| 2 qe ´|x| 2 . Moreover, because of the derivative, for an oscillating potential, px ¨∇x q 2 V can be unbounded. In this article, we will use the abstract result of the method of the weakly conjugate operator with different type of conjugate operators.

A first conjugate operator we use is the operator A F defined by

A F " 1 2 pp ¨F pqq `F pqq ¨pq
with F a C 8 vector field with some good properties. Remark that this type of conjugate operator was already used by R. Lavine in [START_REF] Richard B Lavine | Absolute continuity of Hamiltonian operators with repulsive potential[END_REF][START_REF] Richard B Lavine | Commutators and scattering theory i: Repulsive interactions[END_REF][START_REF] Lavine | Absolute continuity of positive spectrum for Schrödinger operators with longrange potentials[END_REF][START_REF] Amrein | C 0 -groups, commutator methods, and spectral theory of N -body Hamiltonians[END_REF]. This conjugate operator permits to apply the method of the weakly conjugate operator to potentials for which the derivative does not have enough decay at infinity. With this conjugate operator, we can prove the following:

Theorem 1.2. Let n ě 3 and 0 ď µ ă p1 `n n´2 q ´2. Let V 1 , V 2 P L 1 loc pR n , Rq and H " ∆ `V1 `iV 2 . Assume that (1) V k are ∆-compact and V 2 ě 0; (2) qxqy ´µ ¨∇V k are ∆-compact; (3) There is C ą ´pn ´2q 2 p1 ´µp1 `n n´2 q 2 q 2 such that ´x ¨∇V 1 pxq ě C |x| 2 for all x P R n ; (4) There is C 1 ą 0 such that for all x P R n , |pxxxy ´µ ¨∇q 2 V k pxq| ď C 1 |x| ´2xxy ´µ.
Then sup λPR,ηą0 }xqy ´µ{2 |q| ´1pH ´λ `iηq ´1|q| ´1xqy ´µ{2 } ă 8.

Moreover, H does not have eigenvalue in R.

We make few remarks about this theorem:

(1) If 0 ă µ, we do not require to have q ¨∇V i bounded.

(2) Let V 1 pxq " xqy ´α, α ą 0 and V 2 pxq " xxy ´β , β ą 0. If we want to use the generator of dilations with these potentials, we can see that we have to assume that α, β ě 2 to use the method of the weakly conjugate operator (see [START_REF] Boussaid | Limiting absorption principle for some long range perturbations of Dirac systems at threshold energies[END_REF]Theorem C.1]). Here, we only have to assume that there is 0 ď µ ă p1 `n n´2 q ´2 such that α `µ ě 2 and β `µ ě 2. In particular, if α ą 2 ´p1 `n n´2 q ´2 and β ą 2 ´p1 `n n´2 q ´2, then Theorem 1.2 applies.

Another conjugate operator we use is the operator A u defined by

A u " 1 2 pq ¨uppq `uppq ¨qq
where u is a C 8 vector field with some good properties. Remark that this conjugate operator was already used in [START_REF] Amrein | C 0 -groups, commutator methods, and spectral theory of N -body Hamiltonians[END_REF]. Moreover, it turns out that this type of conjugate operator is particulary usefull when the potential has high oscillations because conditions on commutators does not impose derivatives (see [START_REF] Martin | A new class of Schrödinger operators without positive eigenvalues[END_REF][START_REF] Martin | On the limiting absorption principle for a new class of Schrödinger Hamiltonians[END_REF]). Using this conjugate operator, we obtain the following:

Theorem 1.3. Let n ě 3. Let V 1 , V 2 P L 1 loc pR n ,
Rq and H " ∆ `V1 `iV 2 with V 2 ě 0. Assume that |q| 2 V 1 and |q|V 1 are bounded with bound small enough and that xqy 3 V i is bounded. Then Theorem 3.1 applies. In particular, for all 1 ď µ ă 2, sup ρPR,ηą0 }xpy ´µ{2 |q| ´1pH ´ρ `iηq ´1|q| ´1xpy ´µ{2 } ă 8.

Moreover, H does not have eigenvalue in R.

We will make few remarks about Theorem 1.3

(1) Let W 1 , W 2 potentials such that xqy 3 W i is bounded and W 2 ě 0. Let w P R.

Then V 1 " wW 1 and V 2 " W 2 satisfy assumptions of Theorem 1.3 for |w| small enough.

(2) In the case V 2 " 0 and V 1 P L n{2 , the absence of negative eigenvalues can be proved with an other method: using the Lieb-Thirring inequality (see [START_REF] Elliott | Lieb-Thirring inequalities[END_REF]), we already know that if V 1 is small enough, the number of negative eigenvalue have to be 0.

(3) Using Sobolev inequalities and taking upxq " xxxy ´µ, 1 ă µ ă 2, we can replace the assumption xqy 3 V bounded by xqy 2 V bounded and x Þ Ñ |x| 3 V pxq P L p with p ě n µ´1 (see [Mar18, Corollary 5.9]). ( 4) Since assumptions on the potential does not impose conditions on the derivatives of the potential, we can use this result with potentials which have high oscillations.

For example, if V 2 " 0 and V 1 pxq " wp1 ´κp|x|qq sinpk|x| α q |x| β with w, k, α P R, β ą 0 and κ P C 8 c pR, Rq such that κ " 1 on r´1, 1s and 0 ď κ ď 1, it suffices to suppose that w is small enough and that β ě 3 to obtain a Limiting Absorption Principle on all R. Remark that because of the oscillations, Theorem C.1 of [START_REF] Boussaid | Limiting absorption principle for some long range perturbations of Dirac systems at threshold energies[END_REF] does not apply nor Theorem 1.1 of [START_REF] Fournais | Zero energy asymptotics of the resolvent for a class of slowly decaying potentials[END_REF].

(5) Notice that the absence of eigenvalue was also proved for this type of potential.

For example, we can see in [FKV15, Theorem 1 and Theorem 2] that is is sufficient in dimension n ě 3 to assume that |x| 2 V is bounded with bound small enough to prove the absence of eigenvalue. Here, we suppose more decay on the potential V and the absence of real eigenvalue is only a consequence of the obtention of a Limiting Absorption Principle on all the real axis.

The paper is organized as follows. In Section 2, we will give some notations we will use below and we recall some basic fact about regularity with respect to a conjugate operator.

In Section 3, we will recall the abstract result corresponding to Theorem 1.1. In Section 4, we will recall a result concerning the application of the method of the weakly conjugate operator with the generator of dilations as conjugate operator, and we will see that, with this conjugate operator, we can avoid conditions on the second order derivatives. In Sections 5 and 6, we will use the method of the weakly conjugate operator with A F and A u as conjugate operator. In Section 7, we will see that we can use a conjugate operator which is a differential operator only in certain directions. In Section 8, we will give examples of potentials for which our previous results apply. In Appendix A, we recall the Helffer-Sjostrand formula and some properties of this formula we will use in the text.

NOTATION AND BASIC NOTIONS

2.1. Notation. Let X " R n and for s P R let H s be the usual Sobolev spaces on X with H 0 " H " L 2 pXq whose norm is denoted } ¨}. We are mainly interested in the space H 1 defined by the norm }f } 2 1 " ş `|f pxq| 2 `|∇f pxq| 2 ˘dx and its dual space H ´1.

We denote q j the operator of multiplication by the coordinate x j , p j " ´iB j and we denote p " pp j q j"1,¨¨¨,n and q " pq j q j"1,¨¨¨,n considered as operators in H. For k P X we denote k ¨q " k 1 q 1 `¨¨¨`k ν q n . If u is a measurable function on X let upqq be the operator of multiplication by u in H and uppq " F ´1upqqF , where F is the Fourier transformation:

pF f qpξq " p2πq ´ν 2 ż e ´ix¨ξ upxqdx.
If there is no ambiguity we keep the same notation for these operators when considered as acting in other spaces.

We are mainly interested in potentials V which are multiplication operators in the following general sense.

Definition 2.1. A map V P B is called a multiplication operator if V e ik¨q " e ik¨q V for all k P X. Or, equivalently, if V θpqq " θpqqV for all θ P C 8 c pXq.

As usual xxy " a 1 `|x| 2 . Then xqy is the operator of multiplication by the function x Þ Ñ xxy and xpy " F ´1xqyF . For real s, t we denote H t s the space defined by the norm }f } H t s " }xqy s f } H t " }xpy t xqy s f } " }xqy s xpy t f }.

(2.1)

Note that the dual space of H t s may be identified with H ´t ´s.

2.2. Regularity. Let F 1 , F 2 be two Banach space and T : F 1 Ñ F 2 a bounded operator.

Let A a self-adjoint operator.

Let k P N. we say that T P C k pA, F 1 , F 2 q if, for all f P F 1 , the map R Q t Ñ e itA T e ´itA f has the usual C k regularity. The following characterisation is available:

Proposition 2.2. T P C 1 pA, F 1 , F 2 q if and only if rT, As has an extension in BpF 1 , F 2 q. It follows that, for k ą 1, T P C k pA, F 1 , F 2 q if and only if rT, As P C k´1 pA, F 1 , F 2 q.
If T is not bounded, we say that T P C k pA, F 1 , F 2 q if for one z R σpT q, and thus for any z R σpT q, pT ´zq

´1 P C k pA, F 1 , F 2 q.
Proposition 2.3. For all k ą 1, we have

C k pA, F 1 , F 2 q Ă C 1,1 pA, F 1 , F 2 q Ă C 1 pA, F 1 , F 2 q.
If F 1 " F 2 " H is an Hilbert space, we note C 1 pAq " C 1 pA, H, H ˚q. If T is not bounded, T is of class C 1 pAq if and only if rT, iAs : DpT q Ñ DpT q ˚is bounded and, for some z P CzσpT q, the set tf P DpAq, Rpzqf P DpAq and Rpzqf P DpAqu is a core for A. Remark that, in general, because of the second assumption, it is more difficult to show that T is of class C 1 pAq than to show that T is of class C 1 pA, DpT q, DpT q ˚q. This is not the case if we suppose that the unitary group generated by A leaves DpT q invariant. For T is self-adjoint, we have the following:

Theorem 2.4 (Theorem 6.3.4 from [START_REF] Amrein | C 0 -groups, commutator methods, and spectral theory of N -body Hamiltonians[END_REF]). Let A and T be self-adjoint operator in a Hilbert space H. Assume that the unitary group texppiAτ qu τ PR leaves the domain DpT q of T invariant. Set G " DpT q endowed with it graph topology. Then

(1)

T is of class C 1 pAq if and only if T P C 1 pA, G, G ˚q. (2) T is of class C 1,1 pAq if and only if T P C 1,1 pA, G, G ˚q.
If G is the form domain of H, we have the following:

Proposition 2.5 (see p. 258 of [START_REF] Amrein | C 0 -groups, commutator methods, and spectral theory of N -body Hamiltonians[END_REF]). Let A and T be self-adjoint operators in a Hilbert space H. Assume that the unitary group texppiAτ qu τ PR leaves the form domain G of T invariant. Then T is of class C k pAq if and only if T P C k pA, G, G ˚q, for all k P N.

As previously, since T : G Ñ G ˚is always bounded, it is, in general, easier to prove that T P C k pA, G, G ˚q than T P C k pAq.

The Hardy inequality.

To have concrete conditions on the potential, we will use the Hardy inequality. For this reason we recall it:

Proposition 2.6. Assume that n ě 3. Let f P H 1 pR n q. We have

pn ´2q 2 4 ż R n 1 |x| 2 |f pxq| 2 dx ď ż R n |∇f pxq| 2 dx.
In particular, this inequality implies that if Bpqq is a multiplication operator such that

|q| 2 Bpqq is bounded, if n ě 3, then, there is C ą 0 such that |pf, Bpqqf q| ď C}∇f } 2 .

THE METHOD OF THE WEAKLY CONJUGATE OPERATOR

In this section, we will recall a version of the Mourre theory in order to obtain a limiting absorption principle near thresholds, called the method of the weakly conjugate operator. This Mourre theory was developed by A. Boutet de Monvel and M. Mantoiu in [START_REF] Boutet De Monvel | The method of the weakly conjugate operator[END_REF]. An improvement of this theory was developped by S. Richard in [START_REF] Richard | Some improvements in the method of the weakly conjugate operator[END_REF] fo the self-adjoint case. Here, we recall a version of this theory present in [START_REF] Boussaid | Limiting absorption principle for some long range perturbations of Dirac systems at threshold energies[END_REF] adapted to the non-selfadjoint case.

Let H ˘two closed operators with a common domain D. We suppose that pH `q˚" H

´.

Since H ˘are densely defined, has common domain and are adjoint of the other, ℜpH ˘q and ℑpH ˘q are closable and symmetric on D. Even if they are not self-adjoint, we can remark that D is a core for them. Therefore G is a core for them too. We keep the same notation for their closure.

We assume that H `is dissipative i.e ℑpH `q ě 0. This implies that ℑpH ´q ď 0 and, by the numerical range theorem, we can say that σpH ˘q is include in the half-plane tz P C, ˘ℑpzq ě 0u. Let S a non negative, injective, self-adjoint operator with form domain

G " DpS 1{2 q Ą D. Let S the completion of G under the norm }f } S " `}S 1{2 f } ˘1{2 .
We get the following inclusions with continuous and dense embeddings

D Ă G Ă S Ă S ˚Ă G ˚Ă D ˚.
We will need an external operator A, the conjugate operator. for all f, g P D X DpAq. Assume that ˘ℑpH ˘q ě 0 and that there is c 1 ě 0 such that rℜpH ˘q, iAs ´c1 ℜpH ˘q ě S ą 0, (3.2) ˘c1 rℑpH ˘q, iAs ě 0, in sense of forms on G. Suppose also there exists C ą 0 such that ˇˇpf, rrH ˘, As, Asf

q ˇˇď C}S 1{2 f } 2 (3.3)
for all f P G. Then, there are c 1 and µ 0 ą 0 such that

ˇˇpf, pH ˘´λ ˘iµq ´1f q ˇˇď c 1 ´}S ´1{2 f } 2 `}S ´1{2 Af } 2 ¯(3.4)
for all 0 ă µ ă µ 0 and λ ě 0 if c 1 ą 0, and λ P R if c 1 " 0.

Remark that, if we want to have (3.2) with c 1 ą 0, it seems necessary that rH, iAs reproduce H. This is the case with the generator of dilations for which we have r∆, iA D s " 2∆.

But with conjugate operators we want to use, the commutator with the Laplacian does not reproduce the Laplacian ∆. For this reason, we will use Theorem 3.1 only in the case c 1 " 0.

THE GENERATOR OF DILATIONS AS CONJUGATE OPERATOR

In this section, we will see what conditions are sufficient to apply Theorem 3.1 with the generator of dilations as conjugate operator. For this, we will recall a result from [START_REF] Boussaid | Limiting absorption principle for some long range perturbations of Dirac systems at threshold energies[END_REF] in dimension higher or equal to 3 which illustrate the method of the weakly conjugate operator and we will give a variation of this result. We will also recall a result from B.

Simon which show that dimensions 1 and 2 are quite particular.

Using the Hardy inequality and the generator of dilations as conjugate operator, one can show the following result

Theorem 4.1 (Theorem C.1, [BG10]). Let n ě 3. Assume that V 1 , V 2 P L 1 loc pR n , Rq satisfy:
(1) V k are ∆-bounded with bound less than one and V 2 ě 0;

(2) ∇V k , q ¨∇V k are ∆-bounded and |q| 2 pq ¨∇q 2 V k are bounded;

(3) There is c 1 P r0, 2q and C P r0, p2´c1qpn´2q 2 4 q such that If c 1 " 0, H has no eigenvalue in R and (4.1) holds true for λ P R.

x ¨∇V 1 pxq `c1 V 1 pxq ď C |x| 2
Using that A D can be writen as A D " q ¨p ´ni 2 " p ¨q `ni 2 , we can avoid the condition on the second order derivative of V 1 and V 2 to obtain the following We make few remarks about Theorem 4.2:

Theorem 4.2. Let n ě 3. Let V 1 , V 2 P L 1 loc pR n ,
(1) We do not assume any conditions on the second order derivatives which can be usefull if V is a multiplication by a function wich is not C 2 or if V is an oscillating potential (see Theorem 8.1).

(2) Remark that if |q| 2 q ¨∇V 1 is bounded with bound small enough, then Assumption (H.2) and (H.3) are satisfied with c 1 " 0.

(3) Remark that if V is a short range type potential, q∇V k is not necessary ∆-bounded.

For this reason, Theorems 4.1 and 4.2 do not apply to short range potentials.

Proof. [Theorem 4.2] Since the proof is quite similar to the proof of Theorem 4.1, we will only explain what changes. In particular, for conditions on the first order commutator (Assumptions (H.3)), nothing changes. The idea is to prove, using Hardy inequality that the first order commutator is positive and that S has the form c∆. In [START_REF] Boussaid | Limiting absorption principle for some long range perturbations of Dirac systems at threshold energies[END_REF], they use, in a second time, that V is of class C 2 pA D q and the Hardy inequality to show the second order commutator estimate. Since we want to use S " c∆ with c " 2 ´c1 , we can see that G " H 1 and }f } S " }pf } L 2 . Remark that e itAD H 1 Ă H 1 . In particular, we do not need to suppose that rrV, iA D s, iA D s is ∆-bounded to obtain the regularity C 2 pA D q but only that this commutator is bounded on G to G ˚.

For V " V 1 , V 2 , we have rV, iA D s " ´q ¨∇V. Thus rrV, iA D s, iA D s " ´rq ¨∇V, iA D s " ´iq ¨∇V A D `iA D q ¨∇V " ´ipq ¨∇V qpq ¨pq `ipp ¨qqpq ¨∇V q ´nq ¨∇V.

(4.3)

In particular, if we assume that |q|q ¨∇V k is bounded, then H P C 2 pA D , H 1 , H ´1q.

Let f P S. For the first term of the right side of (4.3), we have:

|pf, pq ¨∇V qpq ¨pqf q| " |ppq ¨∇V qqf, pf q| ď }pq ¨∇V qqf }}pf } ď }|q| 2 pq ¨∇V q} 8 }|q| ´1f }}pf } ď 2 n ´2q }|q| 2 pq ¨∇V q} 8 }pf } 2 .
A similar proof can be made for the second term. For the last term, from Hardy inequality, we deduce that |pf, pq ¨∇V qf q| ď 4 pn ´2q 2 }|q| 2 pq ¨∇V q} 8 }pf } 2 . This implies that the second order comutator is bounded from S to S ˚. For the rest of the proof, we follow the proof of Theorem C.1 of [START_REF] Boussaid | Limiting absorption principle for some long range perturbations of Dirac systems at threshold energies[END_REF]. l

Remark that in all cases, we assume that the dimension n is higher than 3 to use the Hardy inequality. The case of dimension n " 1 or n " 2 is quite particular. In fact, in dimension n " 1 or n " 2, for a large class of potential, we can prove the existence of a negative eigenvalue which is a contradiction with the result which said that if c 1 " 0, H has no real eigenvalue.

Theorem 4.3 (Theorem 2.5, [START_REF] Simon | The bound state of weakly coupled schrödinger operators in one and two dimensions[END_REF]). Let n " 1. Let V obey ş p1 `x2 q|V pxq|dx ă 8, V not a.e zero. Then H " ∆ `λV has a negative eigenvalue for all λ ą 0 if and only if ş V pxqdx ď 0.

Similarly in dimension 2, we have Theorem 4.4 (Theorem 3.4, [START_REF] Simon | The bound state of weakly coupled schrödinger operators in one and two dimensions[END_REF]). Let n " 2. Let V obey ş |V pxq| 1`δ d 2 x ă 8 and ş p1 `|x| δ q|V pxq|d 2 x ă 8 for some δ ą 0, V not a.e zero. Then H " ∆ `λV has a negative eigenvalue for all small positive λ if and only if ş V pxqdx ď 0.

These dimensions are very different from the others. In fact, by the Lieb-Thirring inequality (see [START_REF] Elliott | Lieb-Thirring inequalities[END_REF]), we know that, in dimension n ě 3, if the negative part of V is in L n{2 pR n q with norm small enough, then H " ∆ `V does not have any negative eigenvalue. This two results imply that in dimensions 1 and 2, a Schrödinger operator with a non positive potential which satisfies assumptions like in Theorems 4.1 and 4.2 can have negative eigenvalue. Thus, we have to assume some positivity of the first order commutator or to use c 1 ą 0.

A CONJUGATE OPERATOR WITH DECAY IN THE POSITION VARIABLE

Now we will see how we can change the conjugate operator to obtain other conditions on the potential which require less decay on the derivatives of potentials. To do this, we will apply Theorem 3.1 with the following conjugate operator A F .

Let n ě 3, 0 ď µ ă 1 and let F pqq " qxqy ´µ. Let For all f P H 1 , by Hardy inequality, we have

A
pf, A D xqy ´2A D f q " }xqy ´1A D f } 2 ď ´}qxqy ´1 ¨pf } `n 2 }xqy ´1f } ¯2 ď ˆ1 `n n ´2 ˙2 }∇f } 2 .
In particular, if 0 ď µ ă p1 `n n´2 q ´2, r∆, iA F s ě 2p1 ´µp1 `n n ´2 q 2 qxqy ´µ{2 ∆xqy ´µ{2 ě 0.

Thus, we can take S " cxqy ´µ{2 ∆xqy ´µ{2 with c ą 0 with domain DpSq " H 2 . Remark that since S 1{2 " ? c|p|xqy ´µ{2 , G " DpS 1{2 q " H 1 . In particular, by Proposition 4.2.4 of [START_REF] Amrein | C 0 -groups, commutator methods, and spectral theory of N -body Hamiltonians[END_REF], we know that the C 0 -group associated to A F leaves G invariant. To prove that the C 0 -group associated to A F leaves S invariant, we will show that rS, iA F s is bounded from S to S ˚. We will consider this commutator as a form with domain C 8 c and we use the same notation for its closure. By a simple computation, rS, iA F s " crxqy ´µ{2 , iA F s∆xqy ´µ{2 `cxqy ´µ{2 r∆, iA F sxqy ´µ{2 `cxqy ´µ{2 ∆rxqy ´µ{2 , iA F s " cxqy ´µ{2 r∆, iA F sxqy ´µ{2 `c µ 2 ´xqy ´µ{2 |q| 2 xqy ´2∆xqy ´µ{2 `xqy ´µ{2 ∆|q| 2 xqy ´2xqy ´µ{2 ¯.

Using the form of r∆, iA F s, by a simple computation, we can see that the first term on the right hand side is bounded from S to S ˚. For the other term, by a simple computation, we have: 

xqy
Theorem 5.1. Let 0 ď µ ă p1`n n´2 q ´2. Let V 1 , V 2 P L 1 loc pR n , Rq and H " ∆`V 1 `iV 2 . Assume that (1) V k are ∆-compact and V 2 ě 0; (2) qxqy ´µ ¨∇V k are ∆-compact;
(3) There is C ą ´pn ´2q 2 p1 ´µp1 `n n´2 q 2 q 2 such that ´x ¨∇V 1 pxq ě C |x| 2 for all x P R n ; (4) There is C 1 ą 0 such that for all x P R n , |pxxxy ´µ ¨∇q 2 V k pxq| ď C 1 |x| ´2xxy ´µ.

Then Theorem 3.1 applies and sup λPR,ηą0 }xqy ´µ{2 |q| ´1pH ´λ `iηq ´1|q| ´1xqy ´µ{2 } ă 8.

Moreover, H does not have eigenvalue in R.

To prove this theorem, we use the abstract result of the method of the weakly conjugate operator and the Hardy inequality as in the proof of Theorems 4.1 and 4.2.

If n " 1, as we saw in the previous section, it is not sufficient to suppose only that the derivatives of V have sufficient decay at infinity. To avoid the possible negative eigenvalue, we can assume some positivity of the first order commutator of the potential V 1 . To simplify notation, remark that F 1 pxq " p1 ´µqxxy ´µ `µxxy ´µ´2 , F 2 pxq " ´µxxxy ´µ´2 `1 ´µ `pµ `2qxxy ´2˘,

F 3 pxq " µp1 ´µqp1 `µqxxy ´µ´2 `4µpµ `2qxxy ´µ´4 `µpµ `2qpµ `4qxxy ´µ´6 Theorem 5.2. Let 0 ď µ ď 1. Let F pxq " xxxy ´µ. Let V 1 , V 2 P L 1 loc pR, Rq and H " ∆ `V1 `iV 2 . Assume that (1) V i are ∆-compact and V 2 ě 0; (2) F pqqV 1 i are ∆-compact;
(3)

W pxq " ´F pxqV 1 1 pxq ´1 2 F 3 pxq ě 0 for all x P R; (4) There is C 1 , C 2 ą 0 such that ˇˇˇ2 F pxqW 1 pxq `F 3 pxqF 1 pxq `pF 2 pxqq 2 ˇˇˇď C 1 W pxq, @x P R and ˇˇˇF pxq 2 V 2 2 pxq `F pxqF 1 pxqV 1 2 pxq ˇˇˇď C 2 W pxq, @x P R.
Then Theorem 3.1 applies and there are c ą 0 and µ 0 ą 0 such that

ˇˇpf, pH ´λ `iηq ´1f q ˇˇď c ´}S ´1{2 f } 2 `}S ´1{2 A F f } 2 ¯,
with S " 2pF 1 pqqp `W pqq and A F " 1 2 ppF pqq `F pqqpq. Moreover, H does not have eigenvalue in R.

Remark that, a priori, if µ ą 0, we do not impose that xV 1 i pxq is bounded; Theorem 5.2 applies if xV 1 i pxq as the same size as xxy µ . In particular, if µ " 1, we only require that V 1 i is a bounded function.

Proof. [Theorem 5.2] To prove this result, we only have to show that our assumptions imply assumptions of Theorem 3.1. Remark that we can write

A F " 1 2 ppF pqq `F pqqpq " pF pqq `i 2 F 1 pqq " F pqqp ´i 2 F 1 pqq.
By a simple computation, we have:

r∆, iA F s " rp 2 , iA F s " prp, iA F s `rp, iA F sp " prp, iF pqqps `rp, ipF pqqsp `i 2 `rp, iF 1 pqqsp ´prp, iF 1 pqqs " 2prp, iF pqqsp ´1 2 rp, irp, iF 1 pqqss " 2pF 1 pqqp ´1 2 F 3 pqq.
Thus, we have:

rH, iA F s " 2pF 1 pqqp ´1 2 F 3 pqq ´F pqqV 1 1 pqq ´iF pqqV 1 2 pqq " 2pF 1 pqqp `W pqq ´iF pqqV 1 2 pqq " S ´iF pqqV 1 2 pqq.
Therefore, by assumptions, we know that (3.1) and (3.2) are satisfied. To prove that (3.3) is true, we have to calculate the second order commutator. Since W pqq is a multiplication operator, we have rW, iA F s " ´F pqqW 1 pqq.

By a similar calculus on ´iF pqqV 1 2 pqq, we deduce that, by assumptions, rrV 2 , iA F s, iA F s is bounded from S to S ˚.

For the last part of the second order commutator, we have:

rpF 1 pqqp, iA F s " rp, iA F sF 1 pqqp `prF 1 pqq, iA F sp `pF 1 pqqrp, iA F s " prp, iF pqqsF 1 pqqp `i 2 rp, iF 1 pqqsF 1 pqqp ´pF pqqF 2 pqqp `pF 1 pqqrp, iF pqqsp ´i 2 pF 1 pqqrp, iF 1 pqqs " p `2F 1 pqq 2 ´F pqqF 2 pqq ˘p `i 2 `F 2 pqqF 1 pqqp ´pF 1 pqqF 2 pqq " p `2F 1 pqq 2 ´F pqqF 2 pqq ˘p ´1 2 rp, iF 2 pqqF 1 pqqs " p `2F 1 pqq 2 ´F pqqF 2 pqq ˘p ´1 2 `F 3 pqqF 1 pqq `F 2 pqq 2 ˘.
Thus, we have

rrH, iA F s, iA F s " p `2F 1 pqq 2 ´F pqqF 2 pqq ˘p ´1 2 `2F pqqW 1 pqq `F 3 pqqF 1 pqq `F 2 pqq 2 ˘`irrV 2 , iA F s, iA F s.
Since p2F 1 pqq 2 ´F pqqF 2 pqqqF 1 pqq ´1 is bounded, by assumptions, (3.3) is satisfied and, thus, Theorem 5.2 is a consequence of Theorem 3.1 l

A CONJUGATE OPERATOR WITH DECAY IN THE MOMENTUM VARIABLE

In this section, we will prove Theorem 1.3.

Let λ : R n Ñ R a positive function of class C 8 , bounded with all derivatives bounded. We assume moreover that, for all, i " 1, ¨¨¨, n, x i B xi λpxq is bounded.

Let

A u " 1 2 pq ¨pλppq `pλppq ¨qq.

By [ABdMG96, Proposition 7.6.3], we know that A u is essentially self-adjoint on L 2 pR n q with domain C 8 c . Moreover, r∆, iA u s " 2∆λppq.

Thus, let S " c∆λppq with c P p0, 2s. Since λppq ą 0, λppq is injective. This implies that S is injective and positive. Moreover G " DpS 1{2 q " H m with m P r0, 1s. In particular, since exppitA u q leaves H t s invariants (see [ABdMG96, Proposition 4.2.4]), it also leaves G invariant. Moreover, if we denote S 1 " ∆λppq, we have:

rS 1 , iA u s " 2∆λ 2 ppq `λppq n ÿ k"1 p 3 k B x k λppq.
In particular, for f P DpSq X DpA u q: As in the previous section, we will give some concrete conditions on the potential which permits to apply Theorem 3.1.

|pf, rS 1 , iA u sf q| ď 2}S 1{2 1 f }}λppqS 1{2 1 f } `n ÿ k"1 ˇˇppkλ 1{2 ppqf, p k B x k λppqp k λ 1{2 ppqf q ˇď 2}λppq}}S 1{2 1 f } 2 `n ÿ k"1 }p k B x k λppq}}p k λ 1{2 ppqf } 2 ď ˆ2}λppq} `sup k }p k B x k λppq} ˙}S 1{2 1 f } 2 .
Theorem 6.2. Let n ě 3. Let V 1 , V 2 P L 1 loc pR n , Rq and H " ∆ `V1 `iV 2 with V 2 ě 0. Assume that |q| 2 V 1 and |q|V 1 are bounded with bound small enough and that xqy 3 V i is bounded. Then Theorem 3.1 applies. In particular, for all 1 ď µ ă 2, sup ρPR,ηą0 }xpy ´µ{2 |q| ´1pH ´ρ `iηq ´1|q| ´1xpy ´µ{2 } ă 8.

Moreover, H does not have eigenvalue in R.

Proof. Let 0 ă µ ă 2 and λppq " xpy ´µ. We can write:

A u " uppq ¨q `i 2 pdivuqppq " q ¨uppq ´i 2 pdivuqppq.

To alleviate the notations, let S 1 " pxpy ´µ{2 . Assume that |q| 3 V i is bounded. Remark that, by assumptions on λ, we ever prove that ∆ is of class ]). This implies by sum that H " ∆ `V1 `iV 2 is of class C 2 pA u , H 2 , L 2 q. In particular, for V " V i , rV, iA u s " V iA u ´iA u V " qV ¨iuppq `1 2 V pdivuqppq ´iuppq ¨qV `1 2 pdivuqppqV " rqV, iuppqs `1 2 pV pdivuqppq `pdivuqppqV q . (6.3)

C 2 pA u , H 2 , L 2 q. If µ ě 1, we can show that if V i satisfies |q| 2 V i is bounded, then V i is of class C 2 pA u , H 2 , L 2 q (voir [ Mar18 
For the first term, we will use the Helffer-Sjöstrand formula (see A): 

rqV, iuppqs " i 2π ż C Bφ C B z
P DpS 1{2 q |pf, rqV, iuppqsf q| ď p1 `2 n ´2 qp › › ›xpy µ{2 I ˇˇ`› › ›Ixpy µ{2 ˇˇq}S1f } 2 ď C}|q| 2 V } 8 }S 1 f } 2 ,
where C depends only of µ and n. For the second term of (6.3),

V pdivuqppq " V xpy ´µpn ´µ∆xpy ´2q " xpy ´µ{2 V pn ´µ∆xpy ´2qxpy ´µ{2

`rV, xpy ´µ{2 spn ´µ∆xpy ´2qxpy ´µ{2 .

By Hardy inequality, if |q|

2 V is bounded, ˇˇpf, xpy ´µ{2 V pn ´µ∆xpy ´2qxpy ´µ{2 f q ˇˇď }n ´µ∆xpy ´2}}|q| 2 V }}S 1 f } 2 .
As previously, we also have ˇˇpf, rV, xpy ´µ{2 spn ´µ∆xpy ´2qxpy ´µ{2 f q ˇˇď C 1 }n ´µ∆xpy ´2}}|q|V }}S 1 f } 2 , where C 1 depends only of µ. Therefore, as for pdivuqppqV , by (6.3), we have

|pf, rV, iA u sf q| ď Cp}|q| 2 V } 8 `}|q|V } 8 q}S 1 f } 2 .
In particular, if }|q| 2 V } 8 and }|q|V } 8 are small enough, then V 1 satisfies (6.2).

For the second order commutator, we have

rrV, iA u s, iA u s " ´V A u A u `2A u V A u ´Au A u V " ´V pq ¨uppq ´i 2 pdivuqppqq 2 `puppq ¨q `i 2 pdivuqppqqV pq ¨uppq ´i 2 pdivuqppqq ´puppq ¨q `i 2 pdivuqppqq 2 V " rq 2 V, uppqsuppq `uppqrq 2 V, uppqs `B
where B depends only of the first and second order derivatives of u. As previously, by Helffer-Sjöstrand formula and Hardy inequality, we can see that

|pf, rq 2 V, uppqsf q| ď C 2 }|q| 3 V }}S 1 f } 2 .
For the term with B, as for V pdivuqppq, we can show that

|pf, Bf q| ď C 3 p}|q| 3 V } `}|q| 2 V } `}|q|V }q}S 1 f } 2 .
Thus V satisfies (6.1). l

OTHER POSSIBLE CONJUGATE OPERATORS

Let k P N ˚, k ă n. We can write R n " R k ˆRn´k . Denote px, yq P R n where x P R k and y P R n´k .

Since we only have to assume that S is injective, we can take a conjugate operator A of the form A " A k b 1 R n´k where A k is one of the previous conjugate operators (A D , A F , A u ) on L 2 pR k q. We obtain the same results, with similar proofs, that previously with the operator q of multiplication by px, yq replaced by the operator q x of multiplication by x and the gradient ∇ replaced by the gradient ∇ x having only derivatives on x. For Theorem 4.1, we get

Theorem 7.1. Let k ě 3. Let V 1 , V 2 P L 1 loc pR n , Rq and H " ∆ `V1 `iV 2 . Assume that (H.1) V i are ∆-bounded with bound less than one 1 et V 2 ě 0; (H.2) ∇ x V i and q x ∇ x V i are ∆-bounded and ˇˇpx∇ x q 2 V i px, yq ˇˇď C |x| 2 @x P R k zt0u; (H.3) There is C 1 P r0, pk ´2q 2 {2q such that x∇ x V 1 px, yq ď C 1 |x| 2 ;
Then Theorem 3.1 applies and sup λPR,ηą0

}|q x | ´1pH ´λ `iηq ´1|q x | ´1} ă 8.
Moreover, H does not have eigenvalue in R.

Remark that, as in Sections 5 and 6, since we can not obtain the laplacian in the expression of the first order commutator between H and A, we can not use a constant c 1 ą 0.

For Theorem 1.3, we have the following Theorem 7.2. Let k ě 3. Let V 1 , V 2 P L 1 loc pR n , Rq and H " ∆ `V1 `iV 2 with V 2 ě 0. Assume that |q x | 2 V 1 and |q x |V 1 are bounded with bound small enough and that xq x y 3 V i is bounded. Then Theorem 3.1 applies. In particular, for all 1 ď µ ă 2, sup ρPR,ηą0 }xp x y ´µ{2 |q x | ´1pH ´ρ `iηq ´1|q x | ´1xp x y ´µ{2 } ă 8.

Moreover, H does not have eigenvalue in R.

This choice of conjugate operator permits to consider potentials V of the form V " W b W 1 where W : R k Ñ R has good properties of decrease and of regularity and W 1 : R n´k Ñ R is bounded with a bound small enough. In particular, no conditions of decrease or on the derivatives of W 1 are imposed.

AN OSCILLATING POTENTIAL

In this section, we will see what conditions our different results impose on an oscillating potential to use Theorem 3.1 with this potential for V 1 .

Let n ě 3, α ą 0, β ą 0, k, w P R ˚and κ P C 8 c pR, Rq such that κ " 1 on r´1, 1s and 0 ď κ ď 1. Let W αβ pxq " wp1 ´κp|x|qq sinpk|x| α q |x| β . (8.1)

Notice that this potential was already studied in [BAD79, DMR91, DR83a, DR83b, JM17, Mar18, RT97a, RT97b] but the limiting absorption principle was only proved for high energy, far from the threshold zero.

Remark that W αβ does not satisfy assumptions of Theorem 1.1. In fact, because of the oscillations, ´x ¨∇W αβ is not positive. Moreover, if α ą 0, x ¨∇W αβ can be unbounded.

By a simple calculus, we can see that

x ¨∇W αβ pxq " ´wκ 1 p|x|q sinpk|x| α q |x| β´1 ´βW αβ pxq `kwαp1 ´κp|x|qq cospk|x| α q |x| β´α . (8.2)

We have the following Theorem 8.1. Let W αβ as above.

' If β ě 2 and β ´2α ě 2, then, for w small enough, Theorem 4.1 applies with V 1 " W αβ and V 2 " 0. ' If β ě 2 and β ´α ě 2, then, for w small enough, Theorem 4.2 applies with V 1 " W αβ and V 2 " 0. ' If β ě 3, then, for w small enough, Theorem 1.3 applies with V 1 " W αβ and V 2 " 0.

We make some remarks about this result:

(1) Remark that the condition β ě 2 and β ´α ě 2 is satisfied if we assume β ě 2 and β ´2α ě 2.

(2) For this type of potential, the Limiting Absorption Principle was already proved on all compact subset of p0, `8q (see [START_REF] Jecko | Limiting absorption principle for Schrödinger operators with oscillating potentials[END_REF][START_REF] Martin | On the limiting absorption principle for a new class of Schrödinger Hamiltonians[END_REF]). Moreover, by the Lieb-Thirring inequality, we already know that, for w small enough, there is no negative eigenvalue. Here, we show that, moreover, a Limiting Absorption Principle can be proved on all R and thus that zero is not an eigenvalue. In particular, if ρ ă 0, and if we choose s 1 near 0, we have xBy s I k pϕqxBy s 1 bounded, for all s ă k ´s1 ´ρ.

and ´c1 x ¨∇V 2 pxq ě 0

 0 for all x P R n .Then H has no eigenvalue in r0, `8q and sup λPr0,`8q,µą0 }|q| ´1pH ´λ `iµq ´1|q| ´1} ă 8.(4.1)

Proposition A. 3

 3 [START_REF] Golénia | A new look at Mourre's commutator theory[END_REF] and[START_REF] Møller | An abstract radiation condition and applications to n-body systems[END_REF]). Let T P C k pAq be a self-adjoint and bounded operator. Let ϕ P S ρ with ρ ă k. LetI k pϕq " ż C Bϕ C Bz pz ´Bq ´k ad k B pT qpz ´Bq ´1dz ^dz be the rest of the development of order k in (A.4). Let s, s 1 ą 0 such that s 1 ă 1, s ă k and ρ `s `s1 ă k. Then xBy s I k pϕqxBy s 1 is bounded.

  If c 1 " 0, H has no eigenvalue in R and (4.2) holds true for λ P R.

	Then H has no eigenvalue in r0, `8q and sup λPr0,`8q,µą0 }|q| ´1pH ´λ `iµq ´1|q| ´1} ă 8.	(4.2)
	|x∇V k pxq| ď (H.3) There is c 1 P r0, 2q and C P r0, p2´c1qpn´2q 2 C |x| 2 @x P R n zt0u; 4 q such that
	x ¨∇V 1 pxq `c1 V 1 pxq ď	C |x| 2

Rq and H " ∆ `V1 `iV 2 . Suppose that (H.1) V k are ∆-bounded with bound less than 1 and V 2 ě 0; (H.2) ∇V k and q∇V k are ∆-bounded and and ´c1 x ¨∇V 2 pxq ě 0 for all x P R n .

  ´µ{2 |q| 2 xqy ´2∆xqy ´µ{2 `xqy ´µ{2 ∆|q| 2 xqy ´2xqy ´µ{2 " xqy ´µ{2 `2p|q| 2 xqy ´2p `rp, rp, |q| 2 xqy ´2s ˘xqy ´µ{2 By Hardy inequality, since |q| 2 rp, rp, |q| 2 xqy ´2s is bounded, we can see that this term is bounded from S to S ˚. Thus, by [BG10, Remark B.1], the C 0 -group associated to A F leaves S invariant. Therefore, we have the following:

  This implies S P C 1 pA u , S, S ˚q which implies by[START_REF] Boussaid | Limiting absorption principle for some long range perturbations of Dirac systems at threshold energies[END_REF] Remark B.1] the invariance of S under the unitary group generated by A u . Therefore S P C 1 pA u q and by [BG10, Remark B.1], we can show that exppitA u q leaves S invariant. Using A u as conjugate operator in Theorem 3.1, we have the followingLemma 6.1. Let V 1 , V 2 P L 1 loc pR n ,Rq and H " ∆ `V1 `iV 2 . Assume that (H.1) V i are ∆-bounded with bound less than 1 and V 2 ě 0; (H.2) rV i , iA u s and rrV, iA u s, iA u s are ∆-bounded (or H 1 Ñ H ´1 bounded) and |pf, rrV i , iA u s, iA u sf q| ď C}pλ 1{2 ppqf } 2 ; (6.1) (H.3) There is C 1 ă 2 such that pf, rV 1 , iA u sf q ě C 1 }pλ 1{2 ppqf } 2 .

		(6.2)
	Then Theorem 3.1 applies and
	sup ρPR,ηą0	}λ 1{2 ppq|q| ´1pH ´ρ `iηq ´1|q| ´1λ 1{2 ppq} ă 8.

Moreover, H does not have eigenvalue in R.

  pz ´pq ´1rqV, ipspz ´pq ´1dz ^dz pz ´pq ´1qV pz ´pq ´1dz ^dzxpy µ{2 S 1 where φ C is an almost analytic extension of u. We can remark that, since µ ă 2 , pp `iq ´1xpy µ{2 is bounded with bound less than 1.

	" "	´1 2π `1 2π ´1 2π xpy µ{2 pp `iq ´1pS 1 `ixpy ´µ{2 q p ż C Bφ C z pz ´pq ´1qV pz ´pq ´1dz ^dz B ż C Bφ C z pz ´pq ´1qV pz ´pq ´1dz ^dzp B S 1 xpy µ{2 ż C Bφ C z pz ´pq ´1qV pz ´pq ´1dz ^dz B
		`1 2π	pS 1 `ixpy ´µ{2 qpp `iq ´1xpy µ{2
	ż C z Denote Bφ C B	
	I "	2π 1	ż		
	Since |q|V is bounded, we have		
	› › ›xpy µ{2 I	› › › ď	1 π	ż ˇˇˇB φ C B z ˇˇˇx xy µ{2 |y| ż ż	}qV }|y| ´1dx ^dy
			ď C 1	xPR	|y|ďC2xxy	xxy ´p2`µ{2q dx ^dy
			ď C 3 ,

C

Bφ C B z pz ´pq ´1qV pz ´pq ´1dz ^dz.

and similarly for }Ixpy µ{2 }. Remark that this bound depends on }qV } 8 .

Moreover, since |q| 2 V is bounded, by Hardy inequality, for all f
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(3) We always assume that V 2 " 0 but we can choose V 2 pxq " p1 ´κp|x|qq sinpk|x| γ q `1 |x| δ with similar conditions on γ, δ.

(4) If we want to use Theorem 1.3, remark that no conditions are impose on α. In particular, W αβ can have high oscillations at infinity and we can replace |x| α by e |x| 2 or another function with the same conditions on β.

(5) As it was explain in section 7, if we write R n " R k ˆRn´k , with k ě 3, we have the same conditions if V 1 px, yq " W αβ pxqW pyq for all px, yq P R k ˆRn´k with W bounded and ∆-compact.

Proof. [Theorem 8.1] By (8.2), we can see that if β ě 2 and β´α ě 2, then q¨∇V 1 ě c |x| 2 , with c ě 0 small enough if w is small enough.

' By a simple computation, we can remark that pq ¨∇q 2 V 1 pxq " B 1 pxq ´k2 α 2 p1 κp|x|qq sinpk|x| α q |x| β´2α where |q| 2 B 1 is bounded if β ě 2 and β ´α ě 2. Therefore, if β ´2α ě 2, Theorem 4.1 applies.

' Remark that we already prove that if β ě 2 and β ´α ě 2, then q ¨∇V 1 ě c |x| 2 , with c ě 0. Therefore, Theorem 4.2 applies.

is small enough. Thus Theorem 1.3. l

APPENDIX A. THE HELFFER-SJ ÖSTRAND FORMULA

Let ad 1 B pT q " rT, Bs be the commutator. We denote ad p B pT q " rad p´1 B pT q, Bs the iterated commutator. Furthermore, if T is bounded, T is of class C k pBq if and only if for all 0 ď p ď k, ad p B pT q is bounded. Proposition A.1 ([DG97] and [START_REF] Møller | An abstract radiation condition and applications to n-body systems[END_REF]). Let ϕ P S ρ , ρ P R. For all l P R, there is a smooth function ϕ C : C Ñ C, called an almost-analytic extension of ϕ, such that :

for constant c 1 and c 2 depending of the semi-norms of ϕ. In the general case, the rest of the previous expansion is difficult to calculate. So we will give an estimate of this rest.