
HAL Id: hal-01859681
https://hal.science/hal-01859681v1

Submitted on 22 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generating Term Weighting Schemes through Genetic
Programming

Ahmad Mazyad, Fabien Teytaud, Cyril Fonlupt

To cite this version:
Ahmad Mazyad, Fabien Teytaud, Cyril Fonlupt. Generating Term Weighting Schemes through Ge-
netic Programming. GECCO 2018, the Genetic and Evolutionary Computation Conference Compan-
ion a recombination of the 27th International Conference on Genetic Algorithms (ICGA) and the 23rd
Annual Genetic Programming Conference (GP), Jul 2018, Kyoto, Japan. pp.268-269. �hal-01859681�

https://hal.science/hal-01859681v1
https://hal.archives-ouvertes.fr

Generating Term Weighting Schemes through

Genetic Programming

Ahmad Mazyad, Fabien Teytaud and Cyril Fonlupt

LISIC, Université du Littoral Côte d’Opale,
50 Rue Ferdinand Buisson, 62100 Calais - France

August 22, 2018

Abstract

Term-Weighting Scheme (TWS) is an important step in text classi-
fication. It determines how documents are represented in Vector Space
Model (VSM). Even though state-of-the-art TWSs exhibit good behav-
iors, a large number of new works propose new approaches and new TWSs
that improve performances. Furthermore, it is still difficult to tell which
TWS is well suited for a specific problem. In this paper, we are interested
in automatically generating new TWSs with the help of evolutionary al-
gorithms and especially genetic programming (GP). GP evolves and com-
bines different statistical information and generates a new TWS based on
the performance of the learning method. We experience the generated
TWSs on three well-known benchmarks. Our study shows that even early
generated formulas are quite competitive with the state-of-the-art TWSs
and even in some cases outperform them.

1 Introduction

Text Classification (TC) aims to automatically assign a set of predefined cate-
gories to a text document based on their content. TC is an important machine
learning problem that has been applied to numerous applications such as spam
filtering [31], language identification [35], authorship recognition [30], sentiment
analysis [18], and so on. Generally, the TC approach is to learn an inductive
classifier from a set of predefined categories. This approach requires that doc-
uments are represented in a suitable format such as the Vector Space Model
(VSM) representation (Salton and Buckley, 1988).

In a VSM, a document dj is represented by a term vector dj = (w1,j , w2,j , ..., wt,j)
where each term is associated with a weight wk,j .

The weight represents how much a term contributes to the semantics of a
document. The method which assigns a weight to a term is called Term Weight-

1

ing Scheme (TWS).

Numerous TWSs exist and we introduce the most famous in Section 2. They
are generated according to human a priori and mathematical rules. TWSs
are usually simple mathematical expressions. Unfortunately, depending on the
application, it is not easy to know a priori which TWS will be effective.

As expression discovery may naturally be addressed by genetic programming
[1], we are interested in this paper to study the effectiveness of Genetic Pro-
gramming (GP) generated formulas and their aspects. We are also interested to
know if a stochastic evolutionary process with no information about the com-
plexity, the shape and the size of the expression can find at least competitive
discriminative TWS.

The paper is organized as follows: Section 2 presents the TWSs and related
works. In section 3 we present Genetic Programming and how it is applied to
TWS. Section 4 presents the experiments and the results, and then we conclude
in section 5.

2 Term Weighting Schemes

Text Classification (TC) is a supervised learning task. Hence, the training data
consists of a set of labeled documents

D = ((d1, l1), ..., (dN , lN)),

such that dj is the term vector of j-th document, lj is its label and N is the
total number of training documents. As in VSM representation, a document dj
is represented by a term vector dj = (w1,j , w2,j , ..., wk,j) where wi,j is a weight
assigned to the term ti of the document dj and determined by the TWS.

2.1 Statistical Information

Generally, a multi-labeled classification task is turned into several distinct single-
label binary task, one for each label, using the binary relevance (BR) transfor-
mation strategy. That is, given the list of labels L = {l1, l2, ..., lm}, the original
data set is transformed into m different data sets D = {D1, D2, ..., Dm}. For
each data set Dk, documents having the label lk will be tagged as the positive
category ck, and the rest as the negative category ck. Weights are then com-
puted independently for each binary data set.

Based on the BR transformation, given a term ti and a category ck, TWS
could be expressed using statistical information a, b, c and d obtained from the
training data:

• a is the number of documents that contain the term ti and belong to the
positive category ck.

2

Table 1: Statistical information (Terminals) used to evolve a TWS.

Label Description

N Total number of documents
C Number of categories
Ct Number of categories that contain the term t
Nt Number of documents that contain t
Nt Number of documents that do not contain t
Ncat Number of documents in the positive category

cat
Ncat Number of documents that do not belong to cat

• b is the number of documents that do not contain ti and belong to the
positive category ck.

• c is the number of documents that contain ti and do not belong to ck.

• d is the number of documents that do not contain ti and do not belong to
ck.

Using these statistics, the inverse document frequency (idf) is generally ex-
pressed as idf(ti, D) = log N

|d∈D:t∈d| could also be expressed as idf(ti, D) =

log N
a+c where N = a+b+c+d is the total number of documents in the training

data.
Besides the statistics described above, Table 1 shows different statistical infor-
mation that could be extracted from the training data.

2.2 Term Weighting Schemes

Generally, TWSs combines two of three factors pointed out by Salton et al. in
[26] that are believed to improve both recall and precision:

• Term Frequency (TF) factor : The TF factor is used to capture the relative
importance of terms in a document. Table 2 lists four different TF factors.

• Collection Frequency (CF) factor : Also called term discrimination. The
importance of words in a document (TF factor) does not provide enough
discrimination ability. A common word like ’The’ is frequent in almost
all documents, and then it could not separate a group of documents from
the remainder of the collection. Hence a discrimination factor is needed
to favor those terms that are concentrated in a few documents of the
collection. This corresponds to the second part of the previous formula.
Main known CF factors are presented in Table 3.

TWSs could be divided into two sets depending on whether they make use
of available information on document membership (Supervised TWSs) or not
(Unsupervised TWSs).

3

Table 2: Term Frequency Factors

TF Description

1.0 1 for terms present, 0 otherwise
raw frequency #times a term occurs in a document

log(1 + tf) log normalization

0.5 + 0.5 tf
max tf double normalization 0.5

Table 3: Six traditional CF factors. Given a term t and a category cat, N stands
for the total number of documents, a is the number of documents that contain
t and belong to cat, c is the number of documents that contain t and do not
belong to cat, b is the number of documents that do not contain t and belong
to cat, d is the number of documents that do not contain t and do not belong
to cat, C is the number of categories and Ct is the number of categories that
contains documents containing the term t.

CF Defined by

idf log(N
Nt
)

χ2 N∗(a∗d−b∗c)∗(a∗d−b∗c)
(a+c)∗(b+d)∗(a+b)∗(c+d)

or log(2 + a∗d
b∗c)

rf log(2 + a
max(1,c)

)

icf log(C
Ct
)

ig (a
N × log a×N

(a+b)(a+c)) + (c
N × log c×N

(c+d)(a+c))

+(b
N × log b×N

(a+b)(b+d)) + (d
N × log d×N

(c+d)(b+d))

4

Unsupervised TWSs [26, 29, 28, 11] are generally borrowed from Information
Retrieval domain [26, 29] and adopted for TC [22, 6, 23].

Term Frequency-Inverse Document Frequency (TF-IDF) is the most famous
term weighting method, proposed by Jones in [29]. This method combines the
TF factor and the CF factor and can be formally defined as below:

wi,j = tfi,j × log
N

Nt
. (1)

with, wi,j is the weight of the term ti in the document dj , tfi,j = fi,j is the
term frequency represented by the raw count of ti in dj , and log N

Nt
is the inverse

document frequency (idf).
Besides the raw count (ft,d) representation of tf , their exist numerous other
variants such as binary representation (wi,j = 1 if the term ti occurs in the
document dj and 0 otherwise), log(fi,j) + 1, fi,j/

∑
t′∈d ft′,d. All these variants

are also used as TWS on their own [26, 22, 6, 7]. The inverse document frequency
has also a number of variants such as log(N/Nt) + 1, log((N −Nt)/Nt) [26].

Supervised TWSs makes use of available information on the membership of
training documents by replacing the unsupervised idf component in TF-IDF by
another supervised component. Debole et al. and Deng et al. in [7, 6] are
the first to take advantage of such information by combining the unsupervised
TF component with different supervised term discrimination component: χ2

(TF-CHI), which makes a test of independence between a term and a category.
χ2 alongside with other supervised feature selection metrics, has been tested
in several papers, as a term weighting methods for text categorization. For
example, Deng et al. in [7], replaces the idf factor with χ2 factor, claiming that
TF-CHI is more efficient than TF-IDF. In contrast, in a similar test, Debole et al.
in [6], compare TF-IDF with three supervised term weightings, namely, TF-CHI,
Odds Ratio (TF-OR) and Information Gain (TF-IG). The authors have found
no consistent superiority of these new term weighting methods over TF-IDF;
Information Gain TF-IG which measures the amount of information obtained for
category prediction by knowing the presence or absence of a term in a document
[34, 6, 7]; Gain Ratio (TF-GR) first used in a feature selection method defined
as the the ratio between the information gain of two variables and the entropy of
one of them [6]; Odds Ratio (TF-OR) first used as a feature selection methods by
Mladeni’c et al. [24]. It is a measure that describes the strength of association
between two random variables. A comparative study on term-weighting for TC
is made by Deng et al. in [7]. The study shows a good performance of TF-OR
but is outperformed by TF-GR; Relevance frequency (TF-RF) proposed in [20],
measures the distribution of a term between positive and negative category,
and favors those terms that are more concentrated in positive category than in
negative categories; Inverse Category Frequency (TF-ICF) is a new supervised
TWS proposed by Wang et al. in [33]. The measure aims to favor those terms
that appear in fewer categories. Several comparative studies on these TWSs
for both term-weighting and feature selection has been reported in [34, 19, 24,
7, 22, 12]. A new and different approach for term-weighting based on (TF-IG)
have been proposed for multi-labeled classification task in [23]. The method

5

computes a score based on all categories and then subtracts it from the original
TF-IG weight. The idea is to take into consideration the weights of terms not
only in terms of positive and negative categories but also in terms of every
single category. Similar approaches have been proposed to learn TWSs via
GP in [3, 5, 4, 32, 25, 10], however, these studies have focused on information
retrieval problem. For TC, a similar approach proposed by Escalante et al. in
[8]. However our study differs in two ways: first, Escalante et al. try to generate
new TWSs by combining existing TWS, and secondly, they learn a single TWS
for each data set whereas we learn a TWS for each category in a data set. In our
work, we generate TWSs by combining statistical information at a microscopic
level to evolve new TWSs. We also extends the study on the thematic TC. We
hope this leads into more robust non human based TWSs.

3 Genetic Programming

Evolutionary computing is based on Darwin’s theory of “survival of the fittest”.
The main scheme of evolutionary algorithms is to evolve a population of indi-
viduals that are randomly generated. Each individual represents a candidate
solution that undergoes a set of genetic operators that allow to mix and alter
partial solutions. One of the key features of evolutionary algorithms is that they
are stochastic schemes.

3.1 Introduction

GP belongs to the family of evolutionary algorithms. It was first proposed by
Cramer [2] and then popularized by Koza [17]. Unlike genetic algorithms where
the aim is to discover a solution, the goal of GP is to find out a computer
program that is able to solve a problem.

In GP, a set of random expressions that usually represent computer pro-
grams are generated. As in all evolutionary computation algorithms, this set
of programs will evolve and change dynamically during the evolution. What
makes GP suitable for a number of different applications is that these computer
programs can represent many different structures, such as mathematical ex-
pressions for symbolic regression [27], decision trees [15], programs that control
a robot [16, 21] to fulfill a certain task or programs that are able to predict
defibrillation success in patients and so on.

The quality of a candidate solution (i.e. a program) is usually assessed
by confronting it with a set of fitness cases. This step is usually the most
time-consuming step as the programs may get huge and several thousands of
candidate programs are usually evaluated at each generation. These computer
programs will undergo one or several evolutionary operators that will alter in
a hopefully beneficial way. The most classical evolutionary operators are usu-
ally the crossover operator that allows the exchange of genetic material (in our
case subtrees) and the mutation operator that allows a small alteration to the
program.

6

In the most conventional GP approach, programs are usually depicted by
trees. In GP terminology, the set of nodes are split into two sets, inner nodes
of the tree are drawn from a set of functions while the terminal nodes (leaves)
are drawn from a so-called terminal set. Depending on the problem, the set of
functions can be mathematical functions, boolean functions, control flow func-
tions (if,...), or any functions that may be suitable to solve the given problem.
The terminal set is usually the set of inputs of the problem, e.g., parameters
and constants for symbolic regression problems, sensors for robot planning and
so on.

When the stopping criterion is reached, the best individual is returned, oth-
erwise, the loop continues and the best individuals are selected (according to
their fitness). There exist numerous ways for selecting the population, the mu-
tation and the crossover operators. This is beyond the scope of this paper and
the reader can refer to [17, 14] for more information.

3.2 Evolving Term Weighting Scheme using Genetic Pro-
gramming

A CF factor is a combination of statistical information. It is intended to measure
the discriminative power of a term, i.e. it tells how much a term is related to a
certain category. These statistics combined by means of mathematical operators
and functions.

We are interested in automatically evolving a CF factor (an individual) using
GP. In our approach, the learned CF factor combined to the TF factor forms a
term weighting method.

In our context of automatically evolving term weighting methods, an indi-
vidual is a combination of the function set that is built with simple arithmetical
operators (+,-,*,/,log,...) and the terminal set (constant values and inputs to
our problem).

Tables 1 show the statistical information used as terminal set for generating
formulas (the function set) which represent CF factors. As it can be seen, the
function set is made of very simple arithmetical functions while the terminal
set includes to the best of our knowledge all the statistical information used to
build a TWS.

As previously mentioned, programs (generated TWS) are depicted as trees.
In this problem, the terminal nodes consist of statistical information extracted
from training data, while the inner nodes are a set of defined operators that
combines the statistical information to form a new TWS.

Figure 1 describes the representation graphically and Table 4 shows the
parameters used in the genetic programming algorithm.

3.2.1 Terminals and Function Set

In this study, we try to generate new TWS by evolving the CF factor and then
combines it with the TF factor. The CF factor is a combination of constants,
statistical information (N , Nt,...), and mathematical operators. Hence we define

7

Figure 1: Representation for the idf component log(1+ N
Nt

) in Genetic Program-
ming.

Table 4: Parameters used in our genetic program.

Parameter Value

Population Size 100
Max Individual Size 20
Number of generations 100
Function set +, −, /, ∗,

√
x,

log1(x) = log(1 + x),
log2(x) = log(2 + x)

Terminal set a, b, c, d, N , Nt, verlineNt,

Ncat, Ncat, C, Ct

Mutation Type OnePointMutation
Probability 1/indvidual size

CrossOver Type SubtreeCrossover
Probability 0.85

8

Figure 2: The generic diagram of evolutionary algorithm as applied in our study.

the terminals as the statistical information shown in Table 1. Regarding the
mathematical operators, they are defined as one of the following (+, −, /, ∗,√
x, log1(x) = log(1 + x) and log2(x) = log(2 + x)).

We should note that the statistical information has different types (single
value, vector, and matrix). For instance, the number of documents in the train-
ing data N is a constant (single value), the number of documents that contains
a term t is a vector containing the number of documents for each term and
finally, the number of documents that belongs to a category cat and contains a
term t is a matrix. Operations on these different types of statistical information
are taken care of by Eigen1 library using element-wise transformations.

3.2.2 Genetic Operators

In GP, a set of individuals is initialized and then evolved according to a set
of genetic operators. At first, we randomly generate a random size individuals
with a max size of twenty genes (the max size could be overpassed during the
cross-over operation). As for genetic operators, we use the elite selection and re-
insertion, a subtree crossover with a probability of 0.85 and one point mutation
with a probability of 1/size of the individual.
Figure 2 describes graphically the course of evolution of individuals in this study.

3.2.3 Fitness Function

Generally, the performance of a TWS is assessed on known benchmark by eval-
uating a classification model on VSM representation of this TWS. Numerous
evaluation metrics exist to evaluate the classification models such as f1 measure.
Evaluating the classification model is a vital step that affects the performance
of the GP. However, it could be very time-consuming. Hence, it is important

1http://eigen.tuxfamily.org/

9

to choose a good and fast machine learning algorithm. LibLinear [9] is an open
source library for large-scale linear classification. It supports logistic regression
and linear support vector machines.

In our study, once a new individual is generated, we perform a 3-fold cross-
validation on the training data which generates three disjoint subsets. We use
two subsets as the training set and one subset as the test set. The process is
repeated three times using each time different subset for testing. The perfor-
mance is measured using the f1 measure. The average classification performance
is used as the fitness function. The f1 measure considers both precision p (true
positive over true positive plus false positive) and recall r (true positive over
true positive plus false negative) and can be formally defined as f1(p, r) = 2rp

r+p .

4 Experiments and Results

This section presents an empirical evaluation of the proposed approach. The
goal of this study is to assess the effectiveness of the generated TWSs and
compare their performances to standard TWSs.

4.1 Experimental setup

In our experiments, we have used three widely well-known benchmarks in TC:
Reuters-21578 Benchmark Corpus2, Oshumed Benchmark Corpus2 and the 4
Universities data set also called Webkb3. The Reuters-21578 data set is one of
the most used test collection for TC research. We use the well-known “Apte-
Mod” split [13]. This split includes 10788 documents from the reuters financial
service, divided into a training set of 7769 documents and a test set of 3019
documents. The data set is highly skewed, the smallest category contains only
2 documents and the biggest contains 3964 documents. Documents in this data
set belongs to one or more categories. This version of the data set contains
ninety categories, however, in our experiments, we report results only for the
largest ten categories. Oshumed dataset is extracted from the Oshumed1 col-
lection compiled by William Hersh. It includes 13,929 medical abstracts (6,286
for training and 7,643 for testing) from the MeSH categories of the year 1991.
Each document in this data set belongs to one or more categories from 23 car-
diovascular diseases categories. Webkb data set contains WWW-pages collected
from computer science departments of various universities in January 1997 by
the World Wide Knowledge Base (Webkb) project of the CMU text learning
group. In this experiment, we kept only the four largest categories (“student”,
“faculty”, “course” and “project”), and we split it into three random folds where
two folds are used for the training set and one fold for the test set.

For all three data sets considered in the experiments:

• A default list of stop words, punctuation and numbers are removed.

2http://disi.unitn.it/moschitti/corpora.htm
3http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/

10

Table 5: Statistics on the selected data sets used for our experiments (train-
ing/test).

Reuters Oshumed Webkb

documents 7769/3019 6286/7643 2803/1396
classes 90 23 4
terms 26000 30198 7890

smallest category 1/1 65/70 336/168
largest category 2877/1087 1799/2153 1097/544

• Lower case transformation is applied.

• Porter’s stemming is performed.

Furthermore, for each experiment, a binary transformation is applied. That
leads to multiple distinct single-label binary task, one for each label (see Sec-
tion 2.1). Each task could be treated as an independent experiment with its
own data set.

As mentioned above, each data set has been split into training and test
subsets. Table 5 shows, for each data set, the number of documents in the
training and test subsets, the number of classes, the number of terms, the size
of smallest category and the size of the largest category.

TWSs are evolved using the training subset (see Section 3.2.3). Finally, the
test subset is used to evaluate the performance of the generated TWS. And
finally, for each data set, we report the f1 measure (see Section 3.2.3).

In order to obtain more reliable results, we have performed 20 runs on each
task. After having evaluated the generated TWSs, we report the performance
average and standard deviation over the 20 runs. In addition, we report the
maximum and minimum f1 score obtained across the 20 runs (for each run,
only the last generated TWS is taken into account).

Tables 6,7 and 8 show the results obtained by the generated TWSs and the
best baseline using linearSVM.

Table 9 shows the average classification performance of the generated TWSs
on the test subset of the training data (Validation) and the performance on the
test data (Test). The goal of this experiment is to show us if further learning is
possible or to warn us of eventual overfitting.

Table 10 shows the average classification performance of a random learned
TWS for a single-label binary task on the complete data set. This is impor-
tant in order to know whether our GP-Based TWS has good generalization
performances.

4.2 Results

First, a fast study of the Tables 6,7 and 8 shows that the best baseline TWS is
different for each binary task. Therefore, a multi-labeled task requires different

11

Table 6: Classification performance on top 10 categories of Reuters-21578 ob-
tained with the generated TWSs and the best baseline. We put in bold the
best results between our generated TWSs and the best baseline of the standard
TWSs.

GP Best Baseline

Label f1 Min Max f1 Baseline
earn 98.34±0.09 98.24 98.54 98.38 tf.idf
acq 96.93±0.23 96.55 97.54 97.10 tf.idf
money-fx 79.60±0.50 78.16 80.45 78.63 tf.idf
grain 94.25±0.63 93.10 95.22 93.43 tf.rf
crude 90.01±0.81 88.27 90.94 88.24 tf.rf
trade 79.10±1.21 77.69 80.18 78.03 tf.rf
interest 75.16±0.50 74.45 76.19 76.19 tf.idf
ship 80.52±1.54 77.84 82.93 78.95 tf.or
wheat 88.11±1.26 86.12 90.96 90.20 tf.chi
corn 92.80±0.27 90.83 93.94 93.91 tf.chi
Average 87.48±0.70 86.13 88.69 87.30

TWSs for each category. Using different TWSs could lead to better results.
However, the problem is to recognize the best TWS for a specific task. Finding
the TWS by cross-validation does not obligatorily return the best TWS.

Regarding Reuters-21578, the generated TWSs and the baseline schemes
have similar performances. However, on Oshumed and Webkb data sets, the
GP-Based TWSs outperforms the best baseline schemes.

From Table 9 , we can see that the performance of generated TWSs on the
test subset of the training data during the cross-validation (See Section 3.2.3)
are very similar to the performance on the test data. In addition, the standard
TWSs have different results. That is interesting as it suggests that there is no
overfitting and that further learning can improve the performance.

From Table 10, we can see that the average performance (macro-f1) of the
generated TWSs outperforms the best baseline on the three corpora which
means that the three learned TWS have good generalization performance.

Finally, compared to the results obtained in [8] on Reuters-21578 and Webkb,
we have similar results. Note that, in [8], they used Reuters-10 data set which
contains, only documents from the top 10 categories of the Reuters-21578 data
set, whereas we use Reuters-21578 “ModApte” split which contains documents
from 90 categories. This makes our task harder.

5 Conclusion

In this paper, we have studied the benefits of using genetic programming for gen-
erating term-weighting schemes for text categorization. Unlike previous studies,
we generate formula by combining statistical information at a microscopic level.

12

Table 7: Classification performance on Oshumed data set obtained with the
generated TWSs and the best baseline.

GP Best Baseline

Label f1 Min Max f1 Baseline
C01 68.19±1.00 65.91 70.71 64.36 tf.or
C02 41.28±1.20 38.45 43.51 36.38 tf.or
C03 76.54±3.28 72.03 81.21 78.23 tf.or
C04 80.06±1.48 77.67 81.72 80.06 tf.chi
C05 59.48±0.20 59.05 60.59 52.85 tf.or
C06 73.99±1.29 71.49 75.76 71.44 tf.or
C07 41.40±3.35 34.86 47.45 32.6 tf.or
C08 63.97±2.51 59.13 67.69 61.34 tf.or
C09 53.75±2.63 50.85 58.43 48.00 tf.or
C10 57.00±2.33 51.05 59.53 50.2 tf.rf
C11 67.78±1.06 65.52 69.23 66.67 tf.or
C12 76.72±1.10 73.52 78.25 72.86 tf.or
C13 66.48±0.47 64.72 67.92 63.70 tf.or
C14 80.08±0.39 79.22 80.55 77.11 tf.idf
C15 65.98±0.71 64.16 67.20 61.53 tf.chi
C16 33.54±0.89 31.14 35.41 28.00 tf.or
C17 64.85±0.90 61.87 66.87 59.24 tf.chi
C18 61.21±1.50 57.50 65.12 61.22 tf.or
C19 41.60±2.04 38.23 45.01 39.84 tf.or
C20 71.61±0.28 70.96 72.07 69.62 tf.or
C21 65.55±0.32 64.18 67.56 64.37 tf.chi
C22 10.31±0.12 8.33 14.37 4.21 tf.or
C23 46.77±0.08 45.59 47.20 46.15 tf.idf
Average 59.48±1.26 56.76 61.89 56.08

Table 8: Classification performance on Webkb data set obtained with the gen-
erated TWSs and the best baseline.

GP Best Baseline

Label f1 Min Max f1 Baseline
student 90.29±0.50 89.05 90.90 90.11 tf.rf
faculty 86.62±0.15 85.69 87.81 86.21 tf.rf
project 80.82±0.64 77.48 81.76 80.25 tf.rf
course 94.47±0.34 93.86 96.08 93.56 tf.rf
Average 88.05±0.41 86.52 89.14 87.53

13

Table 9: Average classification performance for validation phase and test phase.

Reuters Oshumed Webkb

Validation 89.15±0.42 59.74±0.9 87.74±0.31
Test 87.48±0.70 59.48±1.26 88.05±0.41

Table 10: Average classification performance of random TWS learned for a
single-label task on its corresponding data set and the best baseline. The se-
lected TWS is randomly chosen between the best generated TWSs for each
category.

GP-Based Baseline

Data Set Prefixed formula TWS f1 f1 Best Baseline
Reuters-21578 ∗ ∗ C ∗ / / a c N log2 c C C ∗ C ∗ (a

c∗N ∗ log(2 + c)) 86.88 85.92 tf.rf
Oshumed / d / + Nt log2 Ct a

a
d∗(Nt+log(2+Ct))

60.30 57.10 tf.chi

Webkb log1 log2 a log(1 + log(2 + a)) 88.43 87.53 tf.rf

This kind of generation is new, and we can conclude that :

• Different data sets require a different formula. This means that having a
good generic formula is really hard to find.

• Within a corpus, it is even better to use a different formula for each
category. The hard task is to find the best for each one.

• Genetic programming is able to find very good formulas which outperform
standard formulas given by experts in the literature.

• Eventually, even if the generated formula is specific to a given category,
results show that the best formula for one category is generic enough to
be good (but not best) for other categories.

We propose the following further works:

• Parallelization of the GP algorithm in order to find better formula (as
the test performance is close to the learning performance, this means that
there is still room to improve the learning).

• As said previously, further learning can be done in order to find more
generic and robust formula.

References
[1] Cazenave, T.: Nested monte-carlo expression discovery. In: ECAI. pp. 1057–1058 (2010)

[2] Cramer, N.L.: A representation for the adaptive generation of simple sequential pro-
grams. In: Proceedings of the First International Conference on Genetic Algorithms. pp.
183–187 (1985)

14

[3] Cummins, R., O’riordan, C.: Evolving general term-weighting schemes for information re-
trieval: Tests on larger collections. Artificial Intelligence Review 24(3-4), 277–299 (2005)

[4] Cummins, R., O’Riordan, C.: Evolved term-weighting schemes in information retrieval:
an analysis of the solution space. Artificial Intelligence Review 26(1-2), 35–47 (2006)

[5] Cummins, R., O’Riordan, C.: Evolving local and global weighting schemes in information
retrieval. Information Retrieval 9(3), 311–330 (2006)

[6] Debole, F., Sebastiani, F.: Supervised term weighting for automated text categorization.
In: Text mining and its applications, pp. 81–97. Springer (2004)

[7] Deng, Z.H., Tang, S.W., Yang, D.Q., Li, M.Z.L.Y., Xie, K.Q.: A comparative study on
feature weight in text categorization. In: Advanced Web Technologies and Applications,
pp. 588–597. Springer (2004)

[8] Escalante, H.J., Garćıa-Limón, M.A., Morales-Reyes, A., Graff, M., Montes-y Gómez, M.,
Morales, E.F., Mart́ınez-Carranza, J.: Term-weighting learning via genetic programming
for text classification. Knowledge-Based Systems 83, 176–189 (2015)

[9] Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library for
large linear classification. Journal of machine learning research 9(Aug), 1871–1874 (2008)

[10] Fan, W., Fox, E.A., Pathak, P., Wu, H.: The effects of fitness functions on genetic
programming-based ranking discovery for web search. Journal of the Association for
Information Science and Technology 55(7), 628–636 (2004)

[11] Feldman, R., Sanger, J.: The text mining handbook: advanced approaches in analyzing
unstructured data. Cambridge university press (2007)

[12] Forman, G.: An extensive empirical study of feature selection metrics for text classifica-
tion. Journal of machine learning research 3(Mar), 1289–1305 (2003)

[13] Joachims, T.: Text categorization with support vector machines: Learning with many
relevant features. In: European conference on machine learning. pp. 137–142. Springer
(1998)

[14] Karakus, M.: Function identification for the intrinsic strength and elastic properties of
granitic rocks via genetic programming (gp). Computers & geosciences 37(9), 1318–1323
(2011)

[15] Koza, J.R.: Concept formation and decision tree induction using the genetic program-
ming paradigm. In: International Conference on Parallel Problem Solving from Nature.
pp. 124–128. Springer (1990)

[16] Koza, J.R.: Genetic Programming II, Automatic Discovery of Reusable Subprograms.
MIT Press, Cambridge, MA (1992)

[17] Koza, J.R.: Genetic programming: on the programming of computers by means of natural
selection, vol. 1. MIT press (1992)

[18] Kumar, A., Sebastian, T.M.: Sentiment analysis on twitter. IJCSI International Journal
of Computer Science Issues 9(3), 372–378 (2012)

[19] Lan, M., Tan, C.L., Low, H.B., Sung, S.Y.: A comprehensive comparative study on term
weighting schemes for text categorization with support vector machines. In: Special
interest tracks and posters of the 14th international conference on World Wide Web. pp.
1032–1033. ACM (2005)

[20] Lan, M., Tan, C.L., Su, J., Lu, Y.: Supervised and traditional term weighting meth-
ods for automatic text categorization. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 31(4), 721–735 (2009)

[21] Lewis, M.A., Fagg, A.H., Solidum, A.: Genetic programming approach to the construc-
tion of a neural network for control of a walking robot. In: Robotics and Automation,
1992. Proceedings., 1992 IEEE International Conference on. pp. 2618–2623. IEEE (1992)

[22] Mazyad, A., Teytaud, F., Fonlupt, C.: A comparative study on term weighting schemes
for text classification. In: International Workshop on Machine Learning, Optimization,
and Big Data. pp. 100–108. Springer (2017)

15

[23] Mazyad, A., Teytaud, F., Fonlupt, C.: Information gain based term weighting method
for multi-label text classification task. In: IntelliSys 2018 (2018)

[24] Mladeni’c, D., Grobelnik, M.: Feature selection for classification based on text hierarchy.
In: Text and the Web, Conference on Automated Learning and Discovery CONALD-98.
Citeseer (1998)

[25] Oren, N.: Reexamining tf. idf based information retrieval with genetic programming.
In: Proceedings of the 2002 annual research conference of the South African institute of
computer scientists and information technologists on Enablement through technology. pp.
224–234. South African Institute for Computer Scientists and Information Technologists
(2002)

[26] Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Infor-
mation processing & management 24(5), 513–523 (1988)

[27] Searson, D.P., Leahy, D.E., Willis, M.J.: Gptips: an open source genetic programming
toolbox for multigene symbolic regression. In: Proceedings of the International multicon-
ference of engineers and computer scientists. vol. 1, pp. 77–80. Citeseer (2010)

[28] Sebastiani, F.: Machine learning in automated text categorization. ACM computing
surveys (CSUR) 34(1), 1–47 (2002)

[29] Sparck Jones, K.: A statistical interpretation of term specificity and its application in
retrieval. Journal of documentation 28(1), 11–21 (1972)

[30] Stamatatos, E.: A survey of modern authorship attribution methods. Journal of the
Association for Information Science and Technology 60(3), 538–556 (2009)

[31] Tretyakov, K.: Machine learning techniques in spam filtering. In: Data Mining Problem-
oriented Seminar, MTAT. vol. 3, pp. 60–79 (2004)

[32] Trotman, A.: Learning to rank. Information Retrieval 8(3), 359–381 (2005)

[33] Wang, D., Zhang, H.: Inverse category frequency based supervised term weighting scheme
for text categorization. preprint arXiv:1012.2609v4 (2013)

[34] Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization

[35] Zissman, M.A.: Comparison of four approaches to automatic language identification of
telephone speech. IEEE Transactions on speech and audio processing 4(1), 31 (1996)

16

