Ahmad Mazyad 
  
Fabien Teytaud 
  
Cyril Fonlupt 
  
Generating Term Weighting Schemes through Genetic Programming

Term-Weighting Scheme (TWS) is an important step in text classification. It determines how documents are represented in Vector Space Model (VSM). Even though state-of-the-art TWSs exhibit good behaviors, a large number of new works propose new approaches and new TWSs that improve performances. Furthermore, it is still difficult to tell which TWS is well suited for a specific problem. In this paper, we are interested in automatically generating new TWSs with the help of evolutionary algorithms and especially genetic programming (GP). GP evolves and combines different statistical information and generates a new TWS based on the performance of the learning method. We experience the generated TWSs on three well-known benchmarks. Our study shows that even early generated formulas are quite competitive with the state-of-the-art TWSs and even in some cases outperform them.

Introduction

Text Classification (TC) aims to automatically assign a set of predefined categories to a text document based on their content. TC is an important machine learning problem that has been applied to numerous applications such as spam filtering [START_REF] Tretyakov | Machine learning techniques in spam filtering[END_REF], language identification [START_REF] Zissman | Comparison of four approaches to automatic language identification of telephone speech[END_REF], authorship recognition [START_REF] Stamatatos | A survey of modern authorship attribution methods[END_REF], sentiment analysis [START_REF] Kumar | Sentiment analysis on twitter[END_REF], and so on. Generally, the TC approach is to learn an inductive classifier from a set of predefined categories. This approach requires that documents are represented in a suitable format such as the Vector Space Model (VSM) representation [START_REF] Salton | Term-weighting approaches in automatic text retrieval[END_REF].

In a VSM, a document d j is represented by a term vector d j = (w 1,j , w 2,j , ..., w t,j ) where each term is associated with a weight w k,j .

The weight represents how much a term contributes to the semantics of a document. The method which assigns a weight to a term is called Term Weight-ing Scheme (TWS).

Numerous TWSs exist and we introduce the most famous in Section 2. They are generated according to human a priori and mathematical rules. TWSs are usually simple mathematical expressions. Unfortunately, depending on the application, it is not easy to know a priori which TWS will be effective.

As expression discovery may naturally be addressed by genetic programming [START_REF] Cazenave | Nested monte-carlo expression discovery[END_REF], we are interested in this paper to study the effectiveness of Genetic Programming (GP) generated formulas and their aspects. We are also interested to know if a stochastic evolutionary process with no information about the complexity, the shape and the size of the expression can find at least competitive discriminative TWS.

The paper is organized as follows: Section 2 presents the TWSs and related works. In section 3 we present Genetic Programming and how it is applied to TWS. Section 4 presents the experiments and the results, and then we conclude in section 5.

Term Weighting Schemes

Text Classification (TC) is a supervised learning task. Hence, the training data consists of a set of labeled documents D = ((d 1 , l 1 ), ..., (d N , l N )), such that d j is the term vector of j-th document, l j is its label and N is the total number of training documents. As in VSM representation, a document d j is represented by a term vector d j = (w 1,j , w 2,j , ..., w k,j ) where w i,j is a weight assigned to the term t i of the document d j and determined by the TWS.

Statistical Information

Generally, a multi-labeled classification task is turned into several distinct singlelabel binary task, one for each label, using the binary relevance (BR) transformation strategy. That is, given the list of labels L = {l 1 , l 2 , ..., l m }, the original data set is transformed into m different data sets D = {D 1 , D 2 , ..., D m }. For each data set D k , documents having the label l k will be tagged as the positive category c k , and the rest as the negative category c k . Weights are then computed independently for each binary data set.

Based on the BR transformation, given a term t i and a category c k , TWS could be expressed using statistical information a, b, c and d obtained from the training data:

• a is the number of documents that contain the term t i and belong to the positive category c k . • c is the number of documents that contain t i and do not belong to c k .

• d is the number of documents that do not contain t i and do not belong to c k .

Using these statistics, the inverse document frequency (idf) is generally expressed as idf (t i , D) = log N |d∈D:t∈d| could also be expressed as idf (t i , D) = log N a+c where N = a + b + c + d is the total number of documents in the training data. Besides the statistics described above, Table 1 shows different statistical information that could be extracted from the training data.

Term Weighting Schemes

Generally, TWSs combines two of three factors pointed out by Salton et al. in [START_REF] Salton | Term-weighting approaches in automatic text retrieval[END_REF] that are believed to improve both recall and precision:

• Term Frequency (TF) factor : The TF factor is used to capture the relative importance of terms in a document. Table 2 lists four different TF factors.

• Collection Frequency (CF) factor : Also called term discrimination. The importance of words in a document (TF factor) does not provide enough discrimination ability. A common word like 'The' is frequent in almost all documents, and then it could not separate a group of documents from the remainder of the collection. Hence a discrimination factor is needed to favor those terms that are concentrated in a few documents of the collection. This corresponds to the second part of the previous formula.

Main known CF factors are presented in Table 3.

TWSs could be divided into two sets depending on whether they make use of available information on document membership (Supervised TWSs) or not (Unsupervised TWSs). 
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Unsupervised TWSs [START_REF] Salton | Term-weighting approaches in automatic text retrieval[END_REF][START_REF] Jones | A statistical interpretation of term specificity and its application in retrieval[END_REF][START_REF] Sebastiani | Machine learning in automated text categorization[END_REF][START_REF] Feldman | The text mining handbook: advanced approaches in analyzing unstructured data[END_REF] are generally borrowed from Information Retrieval domain [START_REF] Salton | Term-weighting approaches in automatic text retrieval[END_REF][START_REF] Jones | A statistical interpretation of term specificity and its application in retrieval[END_REF] and adopted for TC [START_REF] Mazyad | A comparative study on term weighting schemes for text classification[END_REF][START_REF] Debole | Supervised term weighting for automated text categorization[END_REF][START_REF] Mazyad | Information gain based term weighting method for multi-label text classification task[END_REF].

Term Frequency-Inverse Document Frequency (TF-IDF) is the most famous term weighting method, proposed by Jones in [START_REF] Jones | A statistical interpretation of term specificity and its application in retrieval[END_REF]. This method combines the TF factor and the CF factor and can be formally defined as below:

w i,j = tf i,j × log N N t . (1) 
with, w i,j is the weight of the term t i in the document d j , tf i,j = f i,j is the term frequency represented by the raw count of t i in d j , and log N Nt is the inverse document frequency (idf). Besides the raw count (f t,d ) representation of tf , their exist numerous other variants such as binary representation (w i,j = 1 if the term t i occurs in the document d j and 0 otherwise), log(f i,j ) + 1, f i,j / t ∈d f t ,d . All these variants are also used as TWS on their own [START_REF] Salton | Term-weighting approaches in automatic text retrieval[END_REF][START_REF] Mazyad | A comparative study on term weighting schemes for text classification[END_REF][START_REF] Debole | Supervised term weighting for automated text categorization[END_REF][START_REF] Deng | A comparative study on feature weight in text categorization[END_REF]. The inverse document frequency has also a number of variants such as log(N/N t ) + 1, log((N -N t )/N t ) [START_REF] Salton | Term-weighting approaches in automatic text retrieval[END_REF].

Supervised TWSs makes use of available information on the membership of training documents by replacing the unsupervised idf component in TF-IDF by another supervised component. Debole et al. and Deng et al. in [START_REF] Deng | A comparative study on feature weight in text categorization[END_REF][START_REF] Debole | Supervised term weighting for automated text categorization[END_REF] are the first to take advantage of such information by combining the unsupervised TF component with different supervised term discrimination component: χ 2 (TF-CHI), which makes a test of independence between a term and a category. χ 2 alongside with other supervised feature selection metrics, has been tested in several papers, as a term weighting methods for text categorization. For example, Deng et al. in [START_REF] Deng | A comparative study on feature weight in text categorization[END_REF], replaces the idf factor with χ 2 factor, claiming that TF-CHI is more efficient than TF-IDF. In contrast, in a similar test, Debole et al. in [START_REF] Debole | Supervised term weighting for automated text categorization[END_REF], compare TF-IDF with three supervised term weightings, namely, TF-CHI, Odds Ratio (TF-OR) and Information Gain (TF-IG). The authors have found no consistent superiority of these new term weighting methods over TF-IDF; Information Gain TF-IG which measures the amount of information obtained for category prediction by knowing the presence or absence of a term in a document [START_REF] Yang | A comparative study on feature selection in text categorization[END_REF][START_REF] Debole | Supervised term weighting for automated text categorization[END_REF][START_REF] Deng | A comparative study on feature weight in text categorization[END_REF]; Gain Ratio (TF-GR) first used in a feature selection method defined as the the ratio between the information gain of two variables and the entropy of one of them [START_REF] Debole | Supervised term weighting for automated text categorization[END_REF]; Odds Ratio (TF-OR) first used as a feature selection methods by Mladeni'c et al. [START_REF] Mladeni'c | Feature selection for classification based on text hierarchy[END_REF]. It is a measure that describes the strength of association between two random variables. A comparative study on term-weighting for TC is made by Deng et al. in [START_REF] Deng | A comparative study on feature weight in text categorization[END_REF]. The study shows a good performance of TF-OR but is outperformed by TF-GR; Relevance frequency (TF-RF) proposed in [START_REF] Lan | Supervised and traditional term weighting methods for automatic text categorization[END_REF], measures the distribution of a term between positive and negative category, and favors those terms that are more concentrated in positive category than in negative categories; Inverse Category Frequency (TF-ICF) is a new supervised TWS proposed by Wang et al. in [START_REF] Wang | Inverse category frequency based supervised term weighting scheme for text categorization[END_REF]. The measure aims to favor those terms that appear in fewer categories. Several comparative studies on these TWSs for both term-weighting and feature selection has been reported in [START_REF] Yang | A comparative study on feature selection in text categorization[END_REF][START_REF] Lan | A comprehensive comparative study on term weighting schemes for text categorization with support vector machines[END_REF][START_REF] Mladeni'c | Feature selection for classification based on text hierarchy[END_REF][START_REF] Deng | A comparative study on feature weight in text categorization[END_REF][START_REF] Mazyad | A comparative study on term weighting schemes for text classification[END_REF][START_REF] Forman | An extensive empirical study of feature selection metrics for text classification[END_REF]. A new and different approach for term-weighting based on (TF-IG) have been proposed for multi-labeled classification task in [START_REF] Mazyad | Information gain based term weighting method for multi-label text classification task[END_REF]. The method computes a score based on all categories and then subtracts it from the original TF-IG weight. The idea is to take into consideration the weights of terms not only in terms of positive and negative categories but also in terms of every single category. Similar approaches have been proposed to learn TWSs via GP in [START_REF] Cummins | Evolving general term-weighting schemes for information retrieval: Tests on larger collections[END_REF][START_REF] Cummins | Evolving local and global weighting schemes in information retrieval[END_REF][START_REF] Cummins | Evolved term-weighting schemes in information retrieval: an analysis of the solution space[END_REF][START_REF] Trotman | Learning to rank[END_REF][START_REF] Oren | Reexamining tf. idf based information retrieval with genetic programming[END_REF][START_REF] Fan | The effects of fitness functions on genetic programming-based ranking discovery for web search[END_REF], however, these studies have focused on information retrieval problem. For TC, a similar approach proposed by Escalante et al. in [START_REF] Escalante | Term-weighting learning via genetic programming for text classification[END_REF]. However our study differs in two ways: first, Escalante et al. try to generate new TWSs by combining existing TWS, and secondly, they learn a single TWS for each data set whereas we learn a TWS for each category in a data set. In our work, we generate TWSs by combining statistical information at a microscopic level to evolve new TWSs. We also extends the study on the thematic TC. We hope this leads into more robust non human based TWSs.

Genetic Programming

Evolutionary computing is based on Darwin's theory of "survival of the fittest". The main scheme of evolutionary algorithms is to evolve a population of individuals that are randomly generated. Each individual represents a candidate solution that undergoes a set of genetic operators that allow to mix and alter partial solutions. One of the key features of evolutionary algorithms is that they are stochastic schemes.

Introduction

GP belongs to the family of evolutionary algorithms. It was first proposed by Cramer [START_REF] Cramer | A representation for the adaptive generation of simple sequential programs[END_REF] and then popularized by Koza [START_REF] Koza | Genetic programming: on the programming of computers by means of natural selection[END_REF]. Unlike genetic algorithms where the aim is to discover a solution, the goal of GP is to find out a computer program that is able to solve a problem.

In GP, a set of random expressions that usually represent computer programs are generated. As in all evolutionary computation algorithms, this set of programs will evolve and change dynamically during the evolution. What makes GP suitable for a number of different applications is that these computer programs can represent many different structures, such as mathematical expressions for symbolic regression [START_REF] Searson | Gptips: an open source genetic programming toolbox for multigene symbolic regression[END_REF], decision trees [START_REF] Koza | Concept formation and decision tree induction using the genetic programming paradigm[END_REF], programs that control a robot [START_REF] Koza | Genetic Programming II, Automatic Discovery of Reusable Subprograms[END_REF][START_REF] Lewis | Genetic programming approach to the construction of a neural network for control of a walking robot[END_REF] to fulfill a certain task or programs that are able to predict defibrillation success in patients and so on.

The quality of a candidate solution (i.e. a program) is usually assessed by confronting it with a set of fitness cases. This step is usually the most time-consuming step as the programs may get huge and several thousands of candidate programs are usually evaluated at each generation. These computer programs will undergo one or several evolutionary operators that will alter in a hopefully beneficial way. The most classical evolutionary operators are usually the crossover operator that allows the exchange of genetic material (in our case subtrees) and the mutation operator that allows a small alteration to the program.

In the most conventional GP approach, programs are usually depicted by trees. In GP terminology, the set of nodes are split into two sets, inner nodes of the tree are drawn from a set of functions while the terminal nodes (leaves) are drawn from a so-called terminal set. Depending on the problem, the set of functions can be mathematical functions, boolean functions, control flow functions (if,...), or any functions that may be suitable to solve the given problem. The terminal set is usually the set of inputs of the problem, e.g., parameters and constants for symbolic regression problems, sensors for robot planning and so on.

When the stopping criterion is reached, the best individual is returned, otherwise, the loop continues and the best individuals are selected (according to their fitness). There exist numerous ways for selecting the population, the mutation and the crossover operators. This is beyond the scope of this paper and the reader can refer to [START_REF] Koza | Genetic programming: on the programming of computers by means of natural selection[END_REF][START_REF] Karakus | Function identification for the intrinsic strength and elastic properties of granitic rocks via genetic programming (gp)[END_REF] for more information.

Evolving Term Weighting Scheme using Genetic Programming

A CF factor is a combination of statistical information. It is intended to measure the discriminative power of a term, i.e. it tells how much a term is related to a certain category. These statistics combined by means of mathematical operators and functions. We are interested in automatically evolving a CF factor (an individual) using GP. In our approach, the learned CF factor combined to the TF factor forms a term weighting method.

In our context of automatically evolving term weighting methods, an individual is a combination of the function set that is built with simple arithmetical operators (+,-,*,/,log,...) and the terminal set (constant values and inputs to our problem).

Tables 1 show the statistical information used as terminal set for generating formulas (the function set) which represent CF factors. As it can be seen, the function set is made of very simple arithmetical functions while the terminal set includes to the best of our knowledge all the statistical information used to build a TWS.

As previously mentioned, programs (generated TWS) are depicted as trees. In this problem, the terminal nodes consist of statistical information extracted from training data, while the inner nodes are a set of defined operators that combines the statistical information to form a new TWS.

Figure 1 describes the representation graphically and Table 4 shows the parameters used in the genetic programming algorithm.

Terminals and Function Set

In this study, we try to generate new TWS by evolving the CF factor and then combines it with the TF factor. The CF factor is a combination of constants, statistical information (N , N t ,...), and mathematical operators. Hence we define the terminals as the statistical information shown in Table 1. Regarding the mathematical operators, they are defined as one of the following (+, -, /, * , √

x, log1(x) = log(1 + x) and log2(x) = log(2 + x)).

We should note that the statistical information has different types (single value, vector, and matrix). For instance, the number of documents in the training data N is a constant (single value), the number of documents that contains a term t is a vector containing the number of documents for each term and finally, the number of documents that belongs to a category cat and contains a term t is a matrix. Operations on these different types of statistical information are taken care of by Eigen1 library using element-wise transformations.

Genetic Operators

In GP, a set of individuals is initialized and then evolved according to a set of genetic operators. At first, we randomly generate a random size individuals with a max size of twenty genes (the max size could be overpassed during the cross-over operation). As for genetic operators, we use the elite selection and reinsertion, a subtree crossover with a probability of 0.85 and one point mutation with a probability of 1/size of the individual. Figure 2 describes graphically the course of evolution of individuals in this study.

Fitness Function

Generally, the performance of a TWS is assessed on known benchmark by evaluating a classification model on VSM representation of this TWS. Numerous evaluation metrics exist to evaluate the classification models such as f 1 measure. Evaluating the classification model is a vital step that affects the performance of the GP. However, it could be very time-consuming. Hence, it is important to choose a good and fast machine learning algorithm. LibLinear [START_REF] Fan | Liblinear: A library for large linear classification[END_REF] is an open source library for large-scale linear classification. It supports logistic regression and linear support vector machines.

In our study, once a new individual is generated, we perform a 3-fold crossvalidation on the training data which generates three disjoint subsets. We use two subsets as the training set and one subset as the test set. The process is repeated three times using each time different subset for testing. The performance is measured using the f 1 measure. The average classification performance is used as the fitness function. The f 1 measure considers both precision p (true positive over true positive plus false positive) and recall r (true positive over true positive plus false negative) and can be formally defined as f 1 (p, r) = 2rp r+p .

Experiments and Results

This section presents an empirical evaluation of the proposed approach. The goal of this study is to assess the effectiveness of the generated TWSs and compare their performances to standard TWSs.

Experimental setup

In our experiments, we have used three widely well-known benchmarks in TC: Reuters-21578 Benchmark Corpus 2 , Oshumed Benchmark Corpus 2 and the 4 Universities data set also called Webkb 3 . The Reuters-21578 data set is one of the most used test collection for TC research. We use the well-known "Apte-Mod" split [START_REF] Joachims | Text categorization with support vector machines: Learning with many relevant features[END_REF]. This split includes 10788 documents from the reuters financial service, divided into a training set of 7769 documents and a test set of 3019 documents. The data set is highly skewed, the smallest category contains only 2 documents and the biggest contains 3964 documents. Documents in this data set belongs to one or more categories. This version of the data set contains ninety categories, however, in our experiments, we report results only for the largest ten categories. Oshumed dataset is extracted from the Oshumed 1 collection compiled by William Hersh. It includes 13,929 medical abstracts [START_REF] Debole | Supervised term weighting for automated text categorization[END_REF]286 for training and 7,643 for testing) from the MeSH categories of the year 1991. Each document in this data set belongs to one or more categories from 23 cardiovascular diseases categories. Webkb data set contains WWW-pages collected from computer science departments of various universities in January 1997 by the World Wide Knowledge Base (Webkb) project of the CMU text learning group. In this experiment, we kept only the four largest categories ("student", "faculty", "course" and "project"), and we split it into three random folds where two folds are used for the training set and one fold for the test set. For all three data sets considered in the experiments:

• A default list of stop words, punctuation and numbers are removed. • Lower case transformation is applied.

• Porter's stemming is performed.

Furthermore, for each experiment, a binary transformation is applied. That leads to multiple distinct single-label binary task, one for each label (see Section 2.1). Each task could be treated as an independent experiment with its own data set.

As mentioned above, each data set has been split into training and test subsets. Table 5 shows, for each data set, the number of documents in the training and test subsets, the number of classes, the number of terms, the size of smallest category and the size of the largest category.

TWSs are evolved using the training subset (see Section 3.2.3). Finally, the test subset is used to evaluate the performance of the generated TWS. And finally, for each data set, we report the f 1 measure (see Section 3.2.3).

In order to obtain more reliable results, we have performed 20 runs on each task. After having evaluated the generated TWSs, we report the performance average and standard deviation over the 20 runs. In addition, we report the maximum and minimum f 1 score obtained across the 20 runs (for each run, only the last generated TWS is taken into account).

Tables 6,7 and 8 show the results obtained by the generated TWSs and the best baseline using linearSVM.

Table 9 shows the average classification performance of the generated TWSs on the test subset of the training data (Validation) and the performance on the test data (Test). The goal of this experiment is to show us if further learning is possible or to warn us of eventual overfitting.

Table 10 shows the average classification performance of a random learned TWS for a single-label binary task on the complete data set. This is important in order to know whether our GP-Based TWS has good generalization performances.

Results

First, a fast study of the Tables 6,7 and 8 shows that the best baseline TWS is different for each binary task. Therefore, a multi-labeled task requires different TWSs for each category. Using different TWSs could lead to better results. However, the problem is to recognize the best TWS for a specific task. Finding the TWS by cross-validation does not obligatorily return the best TWS. Regarding Reuters-21578, the generated TWSs and the baseline schemes have similar performances. However, on Oshumed and Webkb data sets, the GP-Based TWSs outperforms the best baseline schemes.

From Table 9 , we can see that the performance of generated TWSs on the test subset of the training data during the cross-validation (See Section 3.2.3) are very similar to the performance on the test data. In addition, the standard TWSs have different results. That is interesting as it suggests that there is no overfitting and that further learning can improve the performance.

From Table 10, we can see that the average performance (macro-f 1 ) of the generated TWSs outperforms the best baseline on the three corpora which means that the three learned TWS have good generalization performance.

Finally, compared to the results obtained in [START_REF] Escalante | Term-weighting learning via genetic programming for text classification[END_REF] on Reuters-21578 and Webkb, we have similar results. Note that, in [START_REF] Escalante | Term-weighting learning via genetic programming for text classification[END_REF], they used Reuters-10 data set which contains, only documents from the top 10 categories of the Reuters-21578 data set, whereas we use Reuters-21578 "ModApte" split which contains documents from 90 categories. This makes our task harder. This kind of generation is new, and we can conclude that :

• Different data sets require a different formula. This means that having a good generic formula is really hard to find.

• Within a corpus, it is even better to use a different formula for each category. The hard task is to find the best for each one.

• Genetic programming is able to find very good formulas which outperform standard formulas given by experts in the literature.

• Eventually, even if the generated formula is specific to a given category, results show that the best formula for one category is generic enough to be good (but not best) for other categories.

We propose the following further works:

• Parallelization of the GP algorithm in order to find better formula (as the test performance is close to the learning performance, this means that there is still room to improve the learning).

• As said previously, further learning can be done in order to find more generic and robust formula.
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 1 Figure 1: Representation for the idf component log(1+ N Nt ) in Genetic Programming.

Figure 2 :

 2 Figure 2: The generic diagram of evolutionary algorithm as applied in our study.

Table 1 :

 1 Statistical information (Terminals) used to evolve a TWS. Number of documents that do not contain t N cat Number of documents in the positive category cat N cat Number of documents that do not belong to cat • b is the number of documents that do not contain t i and belong to the positive category c k .

	Label Description
	N	Total number of documents
	C	Number of categories
	C t	Number of categories that contain the term t
	N t	Number of documents that contain t
	N t	

Table 2

 2 

		: Term Frequency Factors
	TF	Description
	1.0	1 for terms present, 0 otherwise
	raw frequency #times a term occurs in a document
	log(1 + tf )	log normalization
	0.5 + 0.5 tf max tf	double normalization 0.5

Table 3 :

 3 Six traditional CF factors. Given a term t and a category cat, N stands for the total number of documents, a is the number of documents that contain t and belong to cat, c is the number of documents that contain t and do not belong to cat, b is the number of documents that do not contain t and belong to cat, d is the number of documents that do not contain t and do not belong to cat, C is the number of categories and C t is the number of categories that contains documents containing the term t.

	CF Defined by
	idf log( N Nt ) N * (a * d-b * c) * (a * d-b * c) χ 2 (a+c) * (b+d) * (a+b) * (c+d)

Table 4 :

 4 Parameters used in our genetic program.

	Parameter	Value	
	Population Size	100	
	Max Individual Size	20	
	Number of generations 100 Function set +, -, /, * ,	√ x,
		log1(x) = log(1 + x),
		log2(x) = log(2 + x)
	Terminal set	a, b, c, d, N , Nt, verlineNt,
		Ncat, Ncat, C, Ct
	Mutation	Type	OnePointMutation
		Probability 1/indvidual size
	CrossOver	Type	SubtreeCrossover
		Probability 0.85

Table 5 :

 5 Statistics on the selected data sets used for our experiments (training/test).

		Reuters	Oshumed	Webkb
	# documents	7769/3019 6286/7643 2803/1396
	# classes	90	23	4
	# terms	26000	30198	7890
	smallest category 1/1	65/70	336/168
	largest category	2877/1087 1799/2153 1097/544

Table 6 :

 6 Classification performance on top 10 categories of Reuters-21578 obtained with the generated TWSs and the best baseline. We put in bold the best results between our generated TWSs and the best baseline of the standard

	TWSs.					
			GP		Best Baseline
	Label	f1	Min	Max	f1	Baseline
	earn	98.34±0.09	98.24 98.54 98.38 tf.idf
	acq	96.93±0.23	96.55 97.54 97.10 tf.idf
	money-fx 79.60±0.50 78.16 80.45 78.63	tf.idf
	grain	94.25±0.63 93.10 95.22 93.43	tf.rf
	crude	90.01±0.81 88.27 90.94 88.24	tf.rf
	trade	79.10±1.21 77.69 80.18 78.03	tf.rf
	interest	75.16±0.50	74.45 76.19 76.19 tf.idf
	ship	80.52±1.54 77.84 82.93 78.95	tf.or
	wheat	88.11±1.26	86.12 90.96 90.20 tf.chi
	corn	92.80±0.27	90.83 93.94 93.91 tf.chi
	Average	87.48±0.70 86.13 88.69 87.30	

Table 7 :

 7 Classification performance on Oshumed data set obtained with the generated TWSs and the best baseline.

			GP		Best Baseline
	Label	f1	Min	Max	f1	Baseline
	C01	68.19±1.00 65.91 70.71 64.36	tf.or
	C02	41.28±1.20 38.45 43.51 36.38	tf.or
	C03	76.54±3.28	72.03 81.21 78.23 tf.or
	C04	80.06±1.48	77.67 81.72 80.06 tf.chi
	C05	59.48±0.20 59.05 60.59 52.85	tf.or
	C06	73.99±1.29 71.49 75.76 71.44	tf.or
	C07	41.40±3.35 34.86 47.45 32.6	tf.or
	C08	63.97±2.51 59.13 67.69 61.34	tf.or
	C09	53.75±2.63 50.85 58.43 48.00	tf.or
	C10	57.00±2.33 51.05 59.53 50.2	tf.rf
	C11	67.78±1.06 65.52 69.23 66.67	tf.or
	C12	76.72±1.10 73.52 78.25 72.86	tf.or
	C13	66.48±0.47 64.72 67.92 63.70	tf.or
	C14	80.08±0.39 79.22 80.55 77.11	tf.idf
	C15	65.98±0.71 64.16 67.20 61.53	tf.chi
	C16	33.54±0.89 31.14 35.41 28.00	tf.or
	C17	64.85±0.90 61.87 66.87 59.24	tf.chi
	C18	61.21±1.50	57.50 65.12 61.22 tf.or
	C19	41.60±2.04 38.23 45.01 39.84	tf.or
	C20	71.61±0.28 70.96 72.07 69.62	tf.or
	C21	65.55±0.32 64.18 67.56 64.37	tf.chi
	C22	10.31±0.12 8.33	14.37 4.21	tf.or
	C23	46.77±0.08 45.59 47.20 46.15	tf.idf
	Average 59.48±1.26 56.76 61.89 56.08	

Table 8 :

 8 Classification performance on Webkb data set obtained with the generated TWSs and the best baseline.

			GP		Best Baseline
	Label	f1	Min	Max	f1	Baseline
	student	90.29±0.50 89.05 90.90 90.11 tf.rf
	faculty	86.62±0.15 85.69 87.81 86.21 tf.rf
	project	80.82±0.64 77.48 81.76 80.25 tf.rf
	course	94.47±0.34 93.86 96.08 93.56 tf.rf
	Average 88.05±0.41 86.52 89.14 87.53	

Table 9 :

 9 Average classification performance for validation phase and test phase.

		Reuters	Oshumed	Webkb
	Validation 89.15±0.42 59.74±0.9	87.74±0.31
	Test	87.48±0.70 59.48±1.26 88.05±0.41

Table 10 :

 10 Average classification performance of random TWS learned for a single-label task on its corresponding data set and the best baseline. The selected TWS is randomly chosen between the best generated TWSs for each category. Best Baseline Reuters-21578 * * C * / / a c N log2 c C C * C * ( a c * N * log(2 + c)) 86.88 85.92 tf.rf Oshumed / d / + N t log2 C t a

	GP-Based	Baseline

http://eigen.tuxfamily.org/

ConclusionIn this paper, we have studied the benefits of using genetic programming for generating term-weighting schemes for text categorization. Unlike previous studies, we generate formula by combining statistical information at a microscopic level.