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Abstract. In this work, a mechanical constitutive law is proposed for a plastic-bonded 

explosive (PBX) which is a quasi-brittle energetic aggregate material, submitted to quasi-

static loadings. Such material, sensitive to hydrostatic pressure, presents viscoelastic 

behaviour with damage induced anisotropy and irreversible strains. Previous models 

developed for this kind of material were mainly devoted for transient dynamic behaviour. The 

few existing quasi-static models considered the mechanical behaviour either isotropic or only 

elastoplastic. So, a new viscoelastic Microplane model with the damage induced anisotropy is 

proposed and implemented in commercial Finite Element software. The viscoelasticity was 

taken into account using a Maxwell generalized model with Microplane approach. The model 

consists in implementing the viscoelasticity inside the microplanes defining thus a Maxwell 

model on every direction. The sensitivity of the model to the strain increment magnitude and 

to the loading direction was analysed. As main conclusion, the experimental behaviour of the 

studied material was successfully predicted by this model. 

 

Keywords: Plastic-bonded explosive, Microplane model, damage induced anisotropy, 

viscoelasticity 

 

1 Introduction 

Pyrotechnic structures constituted of plastic-bonded explosives (PBX) are commonly used in 

applications under quasi-static loadings, like storage and transportation. These applications 

induce high stress levels due to mechanical and/or thermal loadings that affect the material 

behaviour, which requires improved and accurate constitutive laws to simulate this 
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behaviour. Many models were developed in the last two decades for PBX materials, 

especially for dynamic and high-pressure loading conditions leading to ignition. The most 

popular is Visco-Scram (viscoelastic statistical crack mechanics) model (Bennett, et al., 

1998). This model is a combination of the fragmentation theory proposed by Dienes from the 

early 80’s (Dienes, 1982) (Dienes, 1996) (SCRAM) for brittle materials and viscoelastic 

Maxwell model (visco). The SCRAM approach consists of an isotropic model with the 

damage related to the mean crack radius, in which the growth rate is limited to a maximum 

value. An update was proposed afterward by Hackett & Bennett (Hackett & Bennett, 2000). 

They modified the crack growth law to consider the influence of the hydrostatic pressure on 

the damage and on the tensile and compressive responses. Recently, Xiao et al. (Xiao, et al., 

2017) described the dynamic mechanical behaviour of PBX1314 as a function of aspect ratio 

and inclusion concentration. They modelled the viscoelastic behaviour of the polymer binder 

using a generalized Maxwell model, with a Prony series representation for the stress 

relaxation functions. Another damage constitutive model with viscoelastic response and 

statistical fracture was developed by Xiao et al. (Xiao, et al., 2017) to model low velocity 

impact experiment, for PBX. This model is based on SCRAM approach of Dienes (Dienes, et 

al., 2006) with a generalized Maxwell scheme. An isotropic constitutive relation is employed 

to describe the damage response of the material. For quasi-static loadings, Gratton et al. 

(Gratton, et al., 2009) developed an isotropic model assuming the material as damageable 

elastic viscoplastic. Then, an additional isotropic model that account for damageable 

viscoelasticity and plasticity was proposed by Le et al. (Le, et al., 2010) and Caliez et al. 

(Caliez, et al., 2014). The viscoelasticity was modelled using a generalized Maxwell chain 

model. Recently, Benelfellah et al. (Benelfellah, et al., 2014) and Picart et al. (Picart, et al., 

2014) proposed an elastoplastic model with damage induced anisotropy, without considering 

the material viscosity. The authors illustrated the effect of the damage on engineering 

parameters and compared existing models based on the different aspects of the material 

behaviour. This investigation revealed that, among the constitutive laws proposed to model 

the anisotropic damage induced by the loading and satisfying the thermodynamic 

requirements, the Microplane approach, initially developed for concrete by Bazant & 

Gambarova (Bazant & Gambarova, 1984), provides a powerful framework to implement 

complex laws. Particularly, the introduction of a unilateral effect is possible keeping a non-

dissipative free energy, a continuous stress–strain response or a symmetrical stiffness tensor 

(Benelfellah, et al., 2014). The Microplane-based models were successfully used to predict 



4 

 

viscoelastic behaviour of uncracked concrete, creep, rate dependence of crack growth, aging 

creep and creep-cracking interaction (Di Luzio & Cedolin, 2007) (Di Luzio, 2009) (Ozbolt & 

Reinhardt, 2001) (Ozbolt & Bazant, 1992) (Hasegawa & Bazant, 1993) (Bazant, et al., 2000). 

These models were developed following two approaches: "internal approach", where the 

viscoelasticity is integrated inside the microplanes (Zi & Bazant, 2002), and "external 

approach", where the viscoelasticity is defined in series with a damaged elastic Microplane 

model (Di Luzio & Cedolin, 2007) (Di Luzio, 2009). In the present paper, a constitutive law 

for a quasi-brittle energetic material submitted to quasi-static loadings, is proposed. This 

constitutive law accounts simultaneously for the viscoelasticity and the anisotropic nature of 

the damage, based on the Microplane approach.  

Numerical aspects of microplane models didn’t have the same interest as constitutive laws. 

Previous studies show an influence of strain increment magnitude and loading direction on 

the simulation results. In addition, the integration formula (number and weight of the 

microplanes for the spatial partition) has an important impact on the predictions of the models 

and depending on the number and the distribution of the integration points used, the influence 

can be very distinct (Badel & Leblond, 2004) (Ehret, et al., 2010) (Huang, et al., 2017) 

(Levasseur, et al., 2013) (Nemecek, et al., 2002) (Verron, 2015) (Qiu & Crouch, 1997). Thus, 

the sensitivity of the proposed model to the strain increment magnitude and to the loading 

direction is analysed using different integration formulas.  

Numerical simulations achieved in this work are based on experimental data performed on a 

Plastic Bonded Explosive (PBX) and published in (Le, et al., 2010). This data includes 

monotonic and cyclic compression and tension, carried out at a strain rate of 3.3×10-5/s, and 

monotonic compression, performed at strain rates of 8.3×10-4/s and 4.4×10-6/s. Experimental 

results showed a quasi-brittle nonlinear behaviour and a high dependency on the strain rate, 

hydrostatic pressure and temperature, which makes difficult the experimental investigation 

and modelling of the PBX behaviour.  

2 Experimental investigation  

The studied PBX material is made of more than 95% of energetic crystals (octahydro-1,3,5,7-

tetranitro-1,3,5,7-tetrazocine, HMX) mixed with a low percentage of a polymer binder. The 

mixture is pressed using an isostatic compaction process that aims to eliminate the initial 

porosity of the powder. The final product was machined into solid samples of various shapes 

(Picart, et al., 2014). Optical microscopy observations showed the high solid fraction of 
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crystals whose size varies from a few tens of microns to a few hundred of microns, with an 

average size of 200 μm. The crystals have different forms and are randomly orientated in the 

material (Picart, et al., 2014). On the pristine material, optical microscopy observations 

highlighted the presence of a lot of pre-existing intra-granular microcracks and a lot of grain–

grain surface contacts. However, after submitting the material to a low confinement, optical 

micrographs revealed loading induced intergranular and intra-granular microcracks, and 

straight bands related to inelastic deformation of some grains (Picart, et al., 2014) (Le, et al., 

2010). PBX material presents a nonlinear behaviour, whatever the loading conditions, with 

asymmetry between tension and compression. A quasi-brittle behaviour is obtained during 

tensile tests while a more ductile one is observed during compression and triaxial tests. Due 

to the presence of polymer binder, the material presents strain rate and temperature 

dependencies (Le, et al., 2010) (Caliez, et al., 2014). Also, a dependency of the material 

behaviour, particularly the initial elastic modulus, on the confinement pressure is observed. 

This could be related to the closure of a part of initial porosity and the evolution of contact 

conditions between crystals with increasing hydrostatic pressure, as suggested by Caliez et al. 

(Caliez, et al., 2014) and Picart et al. (Picart, et al., 2014). Residual strains are registered after 

unloading and recovery and a hysteretic response are highlighted for cyclic loading. The 

observed broad loops and the decrease of the stress (respectively the strain) during the 

relaxation (respectively the recovery) conditions are attributed to viscoelastic behaviour of 

the material and probably internal friction (Picart, et al., 2014). The observations above prove 

that the studied material behaves like a concrete, due to its quasi-compact aggregate 

microstructure. The main difference with concrete is the strong temperature and strain-rate 

dependencies. The literature contains some studies on the strain rate dependent behaviour of 

PBXs (Ellis, et al., 2005) (Chen, et al., 2007) (Liu, et al., 2009) (Williamson, et al., 2008) 

(Le, et al., 2010). Viscoelastic behaviour of the material was characterized using DMA 

experiments allowing the determination of the storage and loss moduli (Le, et al., 2010). 

Analysing the results of cyclic compression and cyclic confined compression at hydrostatic 

pressure levels of 5 MPa and 10 MPa, Le (Le, et al., 2010) suggested that the studied PBX 

displays linear viscoelastic behaviour. Using these tests, and comparing the viscous stress at 

two levels of isovalues of global stress, Le (Le, et al., 2010) concluded that the viscoelastic 

part does not depend on the pressure. In some recent models, the behaviour of PBX materials 

was considered as anisotropic. Using a dynamic compression test on a Hopkinson bar Trumel 

et al. (Trumel, et al., 2010) showed the presence of a network of cracks that induces an 
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anisotropic degradation of the mechanical properties of the material. Unfortunately, the 

anisotropic nature of the damage could not yet be directly observed. Evidence of anisotropic 

damage is highlighted by the degradation observed on the longitudinal modulus and the 

called "transversal elastic modulus". Picart et al. (Picart, et al., 2014) reported the results of 

tension and compression experiments where the "transversal stiffness" of the studied PBX 

evolves faster in compression than in tension, which is in accordance with the idea of an 

anisotropic damage that preferentially occurs in mode I. This has been proved also using the 

evolution of the contraction ratio defined as the ratio of the transversal elastic strain and the 

longitudinal elastic strain
e e
T Lε ε− . It appeared that this ratio varies from 0.28 to 0.75 for the 

studied PBX (Le, et al., 2010), while it should not exceed 0.5 in the isotropic framework. An 

explanation presented by Pecqueur (Pecqueur, 1995) after studying sandstone and then 

adopted by Dragon et al. (Bargellini, 2006) invokes damage induced anisotropy. If such 

anisotropic damage is macroscopically observed, its causes remain difficult to be identified. 

Nevertheless, this phenomenon was explained as the consequence of oriented microcracking 

process (Picart, et al., 2014). Previous works by Benelfellah et al. (Benelfellah, et al., 2014) 

and by Picart et al. (Picart, et al., 2014) also highlighted the damage effectivity of the PBX. In 

fact, tensile loading and compressive loading applied in the direction perpendicular to a 

"micro-crack" surface lead, respectively, to opening and closing of such a crack, which 

allows the recovery of the stiffness in the compression case. 

3 Constitutive laws 

In what follows, the Microplane approach and the damage evolution laws are presented. 

Then, the procedures and schemes used to model the viscoelasticity with the anisotropic 

damage are detailed. Finally, the identification procedure of the model material parameters is 

described.  

3.1 Microplane approach and damage evolution law 

As mentioned above, the material presents an evolving damage with induced anisotropy. 

Some procedures have been developed in the literature to model such damage (Maire & 

Chaboche, 1997) (Zhu, et al., 2008) (Bargellini, et al., 2008) (Murakami & Kamiya, 1997). 

However, despite continuous improvements of these procedures, inconsistencies remained in 

the used methods (Challamel, et al., 2006) (Cormery & Welemane, 2002) (Carol & Willam, 

1996). The background of the Microplane approach can be traced back to Taylor (Taylor, 
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1938). The basic idea is that the stress-strain relations can be defined 

independently on various planes in the material. It was applied first to model the 

plasticity (Batdorf & Budiansky, 1949). The Microplane approach was proposed by 

Bazant et al. (Bazant & Gambarova, 1984) to simulate concrete material behaviour. This 

approach states that each direction of the solid angle characterizes a microplane on which the 

strain is decomposed (Figure 1). It should be noted that Microplane approach is not a micro-

macro homogenisation model but rather a spatial partition. Constitutive equations are defined 

in the microplane level where the existence of free energy is assumed. The global stress 

tensor is determined by angular integration of the microplane stress vector over the whole 

solid angle. The global free energy g loψ  is equal to the angular integral over the entire solid 

angle Ω of the angular free energy density, expressed as 4iψ π  and associated to each plane 

defined by its normal vector
in : 

3
( , )

4

glo i q dtεψ ψ
π Ω

= Ω∫ ,                                      (Eq. 1)  

where the subscript i denotes the microplane orientation, .
i

ntε ε=  represents a deformation 

vector and q is a set of state variables. 

The global stress tensor σ  is defined by the partial derivative of the free energy g loψ  with 

respect to the strain tensor ε : 

( )00
,3

4

iglo q
d

t ερ ψρ ψ
σ

ε π εΩ

∂∂
= = Ω

∂ ∂∫   

It should be noted that variables underlined with one line are vectors, those underlined with 

two lines are twice rank tensors and those underlined with four lines are fourth rank tensors. 

Many different Microplane formulations exist in the literature, based on the strain 

decomposition (Normal-shear, volumetric-deviatoric, etc). Carol et al. (Carol, et al., 2001) 

proposed a thermodynamically consistent Microplane model with a Volumetric-Deviatoric-

Tangential (V-D-T) split i.e. with a decomposition of the strain tensor to volumetric, 

deviatoric and tangential components respectively noted Vε , Dε  and Tε  and expressed as 

follows in each microplane: 
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1
1 : :

3
V Vε ε ε= =                                                                          (Eq. 2)

1
1 : :

3
D n n Dε ε ε= ⊗ − = 

 
 

                                                        (Eq. 3)

( ) : :T n n n nI Tε ε ε= ⋅ − ⊗ ⊗ =                                                                                           (Eq. 4)                    

Equations (2), (3) and (4) define the projection of the global strain tensor on a microplane. It 

should be noted that εV is isotropic in the material. These strains allow the determination of 

stresses in a microplane with the following state laws: 

0
( , )

i

V

V

t qερ ψ
σ

ε
∂

=
∂

                             (Eq. 5)

0
( , )

i

D

D

t qερ ψ
σ

ε
∂

=
∂

                             (Eq. 6)

0
( , )

i

T

T

t qερ ψ
σ

ε
∂

=
∂

                                          (Eq. 7) 

The global stress tensor is then evaluated from the stresses defined in microplanes by an 

integral over the solid angle Ω, using the following equation: 

{ }3
. . .

4
TV DV D Tσ σ σ σ

π Ω

= + +∫                              (Eq. 8) 

We should note that the operators used to get the global stress are the same used during the 

decomposition of the strain into the microplanes. 

When the Microplane approach is used to model only damageable elasticity, a global 

potential can be expressed by integration by taking into account a damaged elastic global 

anisotropic operator. Microplane approach can be used in this case only to define this 

operator without introducing all the variables at the level of microplanes. To model the 

induced anisotropic damage of the material, the free energy is defined as follows (Picart, et 

al., 2014): 

( )( ) ( )( ) ( )2 21 1 1
1 1 1 .

2 2 2

i

T TV V V V V D D D D D T Td d dE E Eψ α ε ε α ε ε ε ε= − + − + −                         (Eq. 9) 

In this equation, three damage variables dV, dD and dT, that affect the corresponding elastic 

moduli denoted, respectively, EV, ED and ET, are introduced. These moduli are related to the 

bulk and shear global parameters K and μ as follows: EV = 3K and 2ED+3ET = 10μ (Carol, et 

al., 2001). The damage is calculated at the level of microplanes. dV is the same for all 
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microplanes since εV is isotropic. dD and dT are calculated individually for each microplane, 

based on εD and Tε  (Eqs. (2), (3) and (4)). αV and αD are the effectivity functions defined, 

respectively, in terms of volumetric strain and deviatoric strain for each microplane. These 

effectivity functions manage the opening/closure of microcracks, asymmetry of the behaviour 

between tension and compression and the effect of hydrostatic pressure. It has been assumed 

that dT is not affected by the effectivity. To avoid a spurious dissipation and discontinuity in 

the model responses and to obtain simple constitutive laws, αV and αD depend on their 

associated strain components. In the proposed model the damage depends on the total strain. 

The assumed relationships between damage variables and their associated forces FV, FD and 

FT are given in terms of εV, 
Dε  and Tε  respectively for each microplane: 

( ) 20
1

2

i

V V V V V

V

F
d

E
ρ ψ

α ε ε
∂

= − =
∂

                                               

(Eq. 10) 

 ( ) 20
1

2

i

D D D D D

D

F
d

E
ρ ψ

α ε ε
∂

= − =
∂

                                    (Eq. 11) 

0
1

.
2

i

T TT T

T

F
d

E
ρ ψ

ε ε
∂

= − =
∂

                                                                                (Eq. 12) 

Taking into account the effect of the pressure on the damage evolution and the dependency of 

this damage on strain, the following phenomenological relations have been proposed by 

(Picart, et al., 2014) in a microplane:  

( ) ( )( )2

, , , , 1

0

, , , ,, max ,1 expV D T V D T

a

t
V D T V D Td F p d p a F= − − 

 
, , ,0 1V D Td≤ ≤                     (Eq. 13) 

where:  

[ ] 0 10

3 41 . ( ) . ( )
H

V V V V Vp a H a H Eε ε ε ε −

+
= + − + −                        (Eq. 14) 

The effectivity functions are defined as follows: 

( )
( )

( )
( )

0 10

3

0 10

4

0 0.5

0 1

H
V V V V

H
V V V V

D D D

D D D

a

a

ε ε α ε

ε ε α ε

ε α ε

ε α ε

−

−

 ≥ → =


→ =

 ≥ → =


→ =

f

f

 

In the previous equations, aj are four material parameters. a1 and a2 manage the evolution of 

the damage versus the strain, and a3 and a4 manage the dependency of the damage on the 

pressure. The pressure dependency is carried out through the function p given by equation 
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(14), where 
0 10H

Vε −
 is a third of the negative volumetric strain reached after hydrostatic 

compaction of 10 MPa. In this model (Picart, et al., 2014), the four material parameters aj are 

the same for dV, dD and dT. Nevertheless, the evolution law offers the possibility to use 

different values of a1 and a2 for dV, dD and dT. The main limit of the models based on an 

additivity of oriented damages comes from the impossibility to experimentally identify the 

effect of each oriented microcracks group on the global mechanical response of the material. 

Thus, the parameters related to the damage evolution should be calibrated by comparing the 

numerical predictions of the material global behaviour to the test data. 

3.2 Viscoelastic Microplane model 

Many viscoelastic models exist in the literature. One of the commonly used models is based 

on the nonlinear viscoelastic model of Schapery identified for solid propellants which that 

have many similarities to PBX materials (Ha & Schapery, 1998). Belmas et al. (Belmas, et 

al., 1982) have modelled both linear and non-linear viscoelasticity of an explosive material 

composed of 90%wt of crystals. Linear viscoelasticity is generally defined in the low strain 

range while nonlinear viscoelasticity is defined in the large one. Based on the studies of Le 

(Le, et al., 2010) (Caliez, et al., 2014) and Belmas (Belmas, et al., 1982), the linear 

viscoelasticity would be convenient for the material studied in the present work. The 

generalized Maxwell model corresponds to a Prony series development for the relaxed 

moduli. It is considered as a sum of contributions or elements, each one consisting of a spring 

and a dashpot in series. In this context, the Maxwell chain is more effective than the Kelvin 

chain (Zi & Bazant, 2002). As mentioned above, two approaches exist to take into account 

such a kind of viscoelasticity with a Microplane model: external and internal approaches.  

The external approach consists on defining in series the Maxwell model with a damaged 

elastic Microplane model. The damage is calculated with the Microplane model, whereas the 

elastic strains and stresses are obtained for viscoelastic elements and elastic element from the 

Maxwell chain model defined with the Microplane model. The Microplane model is used to 

generate the 11 damaged elastic operators. No other state variables but damage variables are 

introduced in the microplanes. The Microplane model yields a fourth rank damaged stiffness 

tensor 
dC calculated using elastic and viscoelastic moduli that affect all the mechanisms in the 

Maxwell model. Each mechanism contributing to the global behaviour is defined by an 

elastic strain tensor and its corresponding stress tensor. In this approach, elastic strains in the 
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elements of the Maxwell model are not projected on the microplanes and, so, they do not 

depend on Microplane directions.  

The internal approach states that a viscoelastic law is integrated inside the microplanes, i.e 

each microplane contains a Maxwell chain model. The viscoelastic model is integrated in 

each microplane, following V-D-T decomposition, i.e a Maxwell chain model is defined 

along every direction, containing 10 viscoelastic elements and one elastic element. Defining 

the behaviour inside the microplanes requires the determination of the elastic strain and the 

elastic stress for every microplane direction and every element. By analogy with asphalt 

materials (Saadeh, 2005), the anisotropy of stiffness matrix due to damage is supposed to 

imply the anisotropy of relaxation times, while viscous moduli are considered to be constant 

through the time and through the solid angle. Only one set of damage variables (dV, dD and 

dT) is introduced for the whole multi branch model (for the elastic and the viscoelastic parts). 

The damage evolution laws of dV, dD and dT, in the viscoelastic model are non-associated: the 

damage depends only on the contribution of the associated force within the purely elastic 

element (total strain projected on the microplanes with VDT decomposition and properties of 

the elastic element) and not on the contributions of viscoelastic elements. The damage 

evolution laws are expressed in the same manner as Eq. 13 for each microplane, but in which 

FV,D,T don’t represent the associated forces to the damage variables. This calculated damage 

affects all the modules of all the branches in the same manner. 

Due to its simplicity and various capabilities, the internal approach is used in the present 

work. The viscoelasticity will be integrated using an implicit forward scheme. A scheme of 

the used approach is shown in Figure 2. 

The Maxwell chain model used for the viscoelasticity yields the following equations (stress 

additivity, element equilibrium and behaviour):  

m

tot

m
σ σ=∑                  (Eq. 15) 

For each viscoelastic element m, the strain is decomposed into elastic strain 
e

mε  and viscous 

strain 
v

mε , as follows:  

e v

m m
ε εε = +                                                                    (Eq. 16) 

The stress continuity imposes: 

e v

m m m
σ σ σ= =                                                        (Eq. 17) 

The behaviour inside the elements is described by: 
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:
e d e

m mm
Cσ ε=  and :

v v

mm m
σ η ε= &  for the elasticity and viscosity respectively. 

Using the previous equations, the following development was made for every element m: 

1n n
ε ε ε

+
= + ∆  

From (Eq. 16), we can write: 

1 1 1

e v e e v v

n n n n n
ε ε ε ε ε ε ε

+ + +
= + = + ∆ + + ∆  

( )e e v

n nn

v ε ε εε ε ε⇒ = + − + ∆ −∆ ∆  

Also, we obtain from (Eq. 17): 

 ( )
1 1 1

1

:

v

e v d e

n n n n n
nt

C
t

ε
σ

ηη ε ε ε ε ε
+ + ++

∆

∆
= = + ∆ − − =

∆
 

( )
1

1 1

e d e

n nn
C I

t t

η ηε ε ε
−

+ +

 
⇒ = + × + ∆ ∆ ∆ 

,                              (Eq. 18) 

where n and n+1 denote respectively the beginning and the end of an increment. To integrate 

the viscoelasticity inside the microplanes, as stated by the internal approach, the expression 

of the elastic strain in each viscoelastic element (Eq. 18) is projected on the microplanes i 

following V-D-T decomposition:  

( ) ( )
1 1

Volumetric Volumetric

n n

Volumetric
e e Volumetricm
m mVolumetric Volumetric Volumetric Volumetric

m mt E d

ηε ε ε
α η+

 
 = × + ∆
 ∆ × × − × + 

, (Eq. 19)

( ) ( )
1 11

Deviatoric Deviatoric

m mn n
i

Deviatoric
e e Deviatoricm
i i iDeviatroic Deviatoric Deviatoric Deviatoric

m i mt E d

ηε ε ε
α η+ +

 
 = × + ∆
 ∆ × × − × + 

,  (Eq. 

20) 

( ) ( )
1 11

Tangential Tangential

m mn n
i

Tangential
e e Tangentialm
i i iDeviatroic Tangential Tangential Tangential

m i mt E d

ηε ε ε
α η+ +

 
 = × + ∆
 ∆ × × − × + 

, (Eq. 21) 

with η denoting the viscosity and  
Deviatoric Tangential Volumetric
m m mη η η= ≠ . 

The Microplane model is very computationally demanding, mainly because it deals with all 

microstress components. In the literature, some authors presented a comprehensive study on 

the numerical aspects of a class of microplane constitutive models for concrete with emphasis 

on the most popular one, i.e., the model M4 (Bazant, et al., 2000) (Caner & Bazant, 2000).  

It was observed that the Microplane model leads to numerical results that are sensitive to the 

strain increment magnitude (Huang, et al., 2017) (Nemecek, et al., 2002), which can cause an 

excessive lateral expansion on the macroscale level instead of contraction in the evaluated 
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uniaxial tension tests (Nemecek, et al., 2002). The algorithm gives different responses for 

small and large strain increments especially in the softening branches of macroscopic stress–

strain curves.  

Many studies (Qiu & Crouch, 1997) (Nemecek, et al., 2002) (Badel & Leblond, 2004) (Ehret, 

et al., 2010) (Levasseur, et al., 2013) (Verron, 2015) examined also the effect of the 

integration formula, number and distribution of the integration points on the unit sphere, on 

the performance of different Microplane models. It was found that the integration formula has 

an important impact on the predictions of the models and this effect depends on the number 

and the distribution of the integration points. The integration scheme usually adopted is a 

Gaussian integration with 21 or 28 points, developed by Bazant and Oh (Bazant & Oh, 1986).  

Di Luzio (Di Luzio, 2007) and Huang et al. (Huang, et al., 2017) reported that the numerical 

predictions of the Microplane model M4 depend on the loading directions when rotating the 

axes defining the position of the microplanes on the unit sphere. With a uniaxial compression 

test, in which displacements were applied in three orthogonal directions respectively, Di 

Luzio (Di Luzio, 2007) obtained different stress-strain curves. Huang et al. re-exanimed the 

influence of the loading direction on the response of the model using a more general 

approach, in which the axes (x, y, z) defining the position of the microplanes on the unit 

sphere are subjected to rotation while the loading direction remains constant. The following 

21, 28, 37 and 61-points integration formulas and 4 different orientations were considered. 

For each considered integration formula, different loading directions lead to different stress-

strain curves (Huang, et al., 2017). The dependence of the model responses on the loading 

direction mainly results from the directional behaviour of the used integration formula 

induced by the uneven distribution of the microplanes over the unit sphere (Huang, et al., 

2017). This numerical sensitivity of the Microplane models can affect their ability to reflect 

the isotropy or anisotropy of the considered constitutive equation and its ability to integrate 

non-smooth functions (Badel & Leblond, 2004) (Verron, 2015) (Ehret, et al., 2010). With the 

increase of the number of the integration point, the difference with the predicted stress–strain 

curves generally decreases. Among the most classical integration formulas, the 61-point one 

is recommended to be used in numerical simulations. Some authors suggested that the best 

strategy to numerically integrate functions of one variable exhibiting quick variations is not 

to use high-order Gaussian integration, but simply to subdivide the integration interval into 

many sub-intervals and use low-order Gaussian integration over each of them. Transposed to 

integration over some surface, this strategy consists in meshing this surface (Badel & 
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Leblond, 2004) (Levasseur, et al., 2013). Unfortunately, the price to pay for is an increase of 

the number of integration points (120 points seem necessary to converge well in the proposed 

problem), imposing an increase of the number of state variables that need to be stored and 

updated at each loading step.  

In this study, in one hand, the influence of the strain increment on the predictions from our 

model is examined in uniaxial compression using finite element simulations on a cube. Four 

step increment values are used: 10, 1, 0.1 and 0.01. In the other hand, to evaluate the 

influence of the loading direction, uniaxial compression simulations were run with 26 

different orientations over the ¼ of the hemisphere. The 26 different orientations of 

solicitation are extracted from a sphere surface meshed with 162 directions (same weight), 

keeping only those contained in ¼ of the hemisphere. The simulated cube is rotated with the 

loading direction while the axes (x, y, z) remain constant. The cube is rotated by an angle α 

along the axis y, followed by a second rotation by an angle β along the new axis z. For the 

loading direction sensitivity, three different integration formulas were considered from the 

literature (Bazant & Oh, 1986) (Badel & Leblond, 2004). The details and the results are 

presented and analysed in section 5. 

3.3 Parameters identification 

The viscoelastic parameters could be identified with the previously fixed damage parameters. 

These damage parameters were identified by fitting the curve "extended experimental relaxed 

points" with elastic damaged Microplane model predictions (Figure 3 and 4). Extended 

experimental relaxed points were obtained by eliminating temporal contributions, so the 

resulted points are supposed to represent an elastic damaged behaviour. The initial 

viscoelastic modules were obtained from (Le, et al. 2010) and then were iteratively adjusted 

to fit the relaxation steps, in tension and compression (Figure 7 and 8). To simplify the 

parameters identification process, values already used in (Picart, et al., 2014) (Le, et al., 

2010) and (Caliez, et al., 2014) were considered in the beginning. The initial experimental 

elastic modulus and viscous moduli of the material were identified from DMA tests, at 20°C 

(Le, et al., 2010). This initial elastic modulus was adjusted, based on the comparison between 

simulation results obtained using the damaged elastic Microplane model and the 

reconstructed experimental stress-strain (σ-ε) curves obtained by extending the relaxation 

steps. In fact, to insure a complete stress relaxation, the time step was extended from 1800 s, 

for cyclic compression, and from 3000 s, for cyclic tension, to 104 s. Figure 3 and Figure 4 
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show the original relaxed points and the extended relaxed points for compression and tension 

tests performed at a strain rate of 3.3×10-5/s. The elastic modulus was adjusted to better fit 

both tension and compression experimental data. The obtained value is E = 2400 MPa. 

Experimentally, initial Poisson’s ratio ranges between 0.25 and 0.4 for tension and 

compression tests (Le, et al., 2010) (Caliez, et al., 2014). A value of 0.4 was considered for 

this model. Damage parameters were also adjusted to capture experimental extended relaxed 

points with the damaged elastic Microplane model. The obtained values are given in Table 1. 

After calibrating initial elastic modulus and damage parameters with the damaged elastic 

Microplane model, viscous moduli initially obtained from DMA tests (Le, et al., 2010) are 

adjusted regarding the best fit between predictions for cyclic compression and tension 

obtained with the developed viscoelastic Microplane model and experimental results, in terms 

of longitudinal stress in relaxation steps. Relaxation times are kept identical as in (Le, et al., 

2010) without adjustment. It is to be noted that the first four viscous moduli do not 

significantly affect the simulations results for the strain rates considered in this paper. The 

viscous moduli and the relaxation times used in our model are reported in Table 2. Relaxation 

times were defined to guarantee an almost complete relaxation of the stress from quasi-static 

to slow dynamic solicitations (Le, et al., 2010). 

4 Validation of the viscoelastic Microplane model 

The viscoelastic behaviour was taken into account in the Microplane approach and the 

resulting model was successfully implemented in the commercial finite element software 

"Abaqus", using Umats and following the internal approach described above. The standard 21 

symmetric directions on a hemisphere, proposed by Bazant and Oh (Bazant & Oh, 1986), 

were used to define the directions of microplanes. A 3-dimensional, 8 nodes element with a 

reduced integration (element C3D8R) was considered. The model is simple and fast to be 

implemented, since variables are projected on the microplanes and, so, only scalar variables 

or vectors are managed. However, it requires many state variables to be saved (~900 SDV in 

this study), which makes the simulation times consuming.  Cyclic σ-ε curves are reported in 

Figure 5 and Figure 6, globally showing a good agreement between experimental results and 

numerical simulations, in both longitudinal and transversal directions. However, the proposed 

model still lacks accuracy when simulating unloading paths and strain evolution in recovery 

steps, in compression loadings, even if the experimental tendencies are well predicted. 
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Figure 7 and Figure 8 show experimental and numerical longitudinal stress evolutions, in 

relaxation steps, respectively, in cyclic compression and cyclic tension. The numerical 

predictions are globally consistent with experimental data with a better fit being obtained in 

compression. This is probably due to the fact that the compression experimental results were 

favoured in the adjustment process of the damage parameters (Figure 3 and Figure 4). 

To evaluate the model at different strain rates, monotonic compression tests with strain rates 

of 8.3×10-4 s-1, 3.3×10-5 s-1 and 4.4×10-6 s-1 were simulated and the results are compared to 

experimental data, respectively to the strain rate, in Figure 9, Figure 10 and Figure 11. 

Despite some slight divergence, reaching a maximum of ~11% between numerical and 

experimental curves, the proposed viscoelastic Microplane model reproduces the strain rate 

effect.  

5 Numerical aspects of the model 

To test the sensitivity of the proposed Microplane model on the strain increment, four 

simulations of the monotonic compression test were run at a strain rate of 3.3×10-5 with four 

different step increments: 10, 1, 0.1, and 0.01 corresponding respectively to strain increments 

of 3.3×10-4, 3.3×10-5, 3.3×10-6 and 3.3×10-7. The model was reduced to only one viscoelastic 

element and one elastic element so as to reduce CPU time. For this study, the standard 21 

symmetric directions on a hemisphere, proposed by Bazant and Oh (Bazant & Oh, 1986), 

were used to define the directions of microplanes. The simulations were stopped at the peak 

of the stress since the behaviour of the material at the softening phase is out of the focus of 

the present work. The results presented in Figure 12 do not show any remarkable sensitivity 

to the strain increment, particularly in the linear regime. 

An almost perfect convergence is obtained between the simulations at strain increments of 

3.3×10-6 and 3.3×10-7 which is consistent with the finding of (Nemecek, et al., 2002). The 

strain increment of 3.3×10-6 seems to be the critical value that ensures the best convergence 

and the stability of the model. In our study however, bigger step increments are acceptable 

since the behaviour of the material in the softening phase is not important.  

The literature already highlighted the sensitivity of the Microplane models to the loading 

orientation as mentioned above. In this study, we performed simulations with 26 different 

orientations over the ¼ of the hemisphere, where the simulated cube is rotated with the 

loading direction while the axes (x, y, z) remain constant using integration formulas with 21-, 

61-points, as proposed by (Bazant & Oh, 1986), and 362 points obtained from a sphere 
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surface meshing, as proposed by (Badel & Leblond, 2004).  With 21 points, a maximal 

divergence of 3.6% is obtained between the maximum and the minimum longitudinal 

stresses, in the last increment of the simulation (Figure 13). This divergence could be greater 

when simulating structures with many elements. Using the 61-point integration formula, the 

maximal divergence is reduced to 0.64% (Figure 14). In Figure 15, stress-strain curves were 

obtained with 362-points integration formula. All the Microplanes have the same weight 

(w=1/362). The maximal divergence is of 0.26%. The results mentioned above indicate the 

following findings:  

− Different loading directions lead to more or less dispersion in the predicted stress-strain 

curves for the used integration schemes; 

− When increasing the number of the integration point, the dispersion of the stress-strain 

curves is reduced; 

− The 61-point integration formula seems to be adequate for our model and extending to the 

362-point configuration is unnecessary based on the obtained results. 

Conclusion 

A new viscoelastic Microplane model has been proposed to simulate the behaviour of quasi-

brittle PBX materials, using a Maxwell chain model and the Microplane approach. The 

integration of both the viscoelasticity and the damage induced anisotropy represents one of 

the new contributions of this work for such kinds of materials. 

The modelling approach consists in integrating a viscoelastic model in each microplane 

where the components of elastic strains are projected on the microplane directions following 

a V-D-T decomposition. 

It appeared that the numerical predictions reasonably fitted experimental data, when 

considering the envelope curve, the transversal strain and the relaxation steps. Moreover, the 

effect of the strain rate on the material mechanical response seems to be quite well supported 

by the model. However, the proposed model still lacks accuracy when simulating unloading 

path in compression and strain evolution in recovery steps. As a perspective of this study, 

irreversible strain will be considered in our future investigations (plasticity or friction 

between microcracks lips). 

The model shows a small sensitivity to the strain increment though a good convergence is 

globally obtained. Different loading directions lead to more or less dispersion in the predicted 

stress-strain curves for the used integration formulas. The 21-point integration formula is 
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insufficient to minimize the influence of the loading direction on the results. The 61-point 

configuration seems to be a good compromise between the accuracy of the results, state 

variables and the CPU time. 
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Figure 1. VDT decomposition in Microplane directions (Kuhl, et al., 2001) 

 

 

Figure 2. Internal approach scheme 

 

 

Figure 3. Calibrating damage parameters based on extended experimental relaxed points of cyclic compression 
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Figure 4. Calibrating damage parameters based on extended experimental relaxed points of cyclic tension 

 

 

Figure 5. Experimental and numerical σ-ε curves of cyclic compression results. 
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Figure 6. Experimental and numerical σ-ε curves of cyclic tension results 

 

Figure 7. Experimental and numerical evolutions of longitudinal stress in relaxation steps of cyclic compression 

 



4 

 

 

Figure 8. Experimental and numerical evolution of longitudinal stress in relaxation steps of cyclic tension 

 

 

Figure 9. Experimental and numerical σ-ε curves of monotonic compression test, strain rate = 8.3×10-4/s 
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Figure 10. Experimental and numerical σ-ε curves of monotonic compression test, strain rate = 3.3×10-5/s 

 

 

Figure 11. Experimental and numerical σ-ε curves of monotonic compression test, strain rate = 4.4×10-6/s 
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Figure 12. Dependence on the strain increment magnitude 

 

Figure 13. Impact of loading direction on the simulation results in compression with 21 microplanes 
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Figure 14. Impact of loading direction on the simulation results in compression with 61 microplanes 

 

Figure 15. Impact of loading direction on the simulation results in compression with 362 microplanes 

 

 



1 

 

 Table 1. Damage parameters used in the model 

,
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ε −  

6 7.8 0.5 0.3 1.5 -8.309×10-4 

 

Table 2. Viscous parameters used in the model 

Element 

m 
1 2 3 4 5 6 7 8 9 10 

τm (sec) 5×10-4 29×10-4 168×10-4 0.098 0.567 3.28 19.05 110.5 640.7 3715 

Em (MPa) 546 336 240 348 60 40 692 752 392 588 

 

 




