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Convolutional neural network architecture for
geometric matching

Ignacio Rocco, Relja Arandjelovi¢, and Josef Sivic

Abstract—We address the problem of determining correspondences between two images in agreement with a geometric model such
as an affine, homography or thin-plate spline transformation, and estimating its parameters. The contributions of this work are
three-fold. First, we propose a convolutional neural network architecture for geometric matching. The architecture is based on three
main components that mimic the standard steps of feature extraction, matching and simultaneous inlier detection and model parameter
estimation, while being trainable end-to-end. Second, we demonstrate that the network parameters can be trained from synthetically
generated imagery without the need for manual annotation and that our matching layer significantly increases generalization
capabilities to never seen before images. Finally, we show that the same model can perform both instance-level and category-level
matching giving state-of-the-art results on the challenging PF, TSS and Caltech-101 datasets.

Index Terms—Convolutional neural network, geometric matching, image alignment, category-level matching.

1 INTRODUCTION

STIMATING correspondences between images is one of the

fundamental problems in computer vision [1], [2] with ap-
plications ranging from large-scale 3-D reconstruction [3] to
image manipulation [4] and semantic segmentation [5]. Tradition-
ally, correspondences consistent with a geometric model such as
epipolar geometry or planar affine transformation, are computed
by detecting and matching local features (such as SIFT [6] or
HOG [7], [8]), followed by pruning incorrect matches using local
geometric constraints [9], [10] and robust estimation of a global
geometric transformation using algorithms such as RANSAC [11]
or Hough transform [6], [12], [13]. This approach works well in
many cases but fails in situations that exhibit (i) large changes
of depicted appearance due to e.g. intra-class variation [8], or
(ii) large changes of scene layout or non-rigid deformations that
require complex geometric models with many parameters which
are hard to estimate in a manner robust to outliers.

In this work we build on the traditional approach and develop a
convolutional neural network (CNN) architecture that mimics the
standard matching process. First, we replace the standard local
features with powerful trainable convolutional neural network
features [14], [15], which allows us to handle large changes of
appearance between the matched images. Second, we develop
trainable matching and transformation estimation layers that can
cope with noisy and incorrect matches in a robust way, mimicking
the good practices in feature matching such as the second nearest
neighbor test [6], neighborhood consensus [9], [10] and Hough
transform-like estimation [6], [12], [13].

The outcome is a convolutional neural network architecture
trainable for the end task of geometric matching, which can
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Fig. 1. Top: The proposed model can be trained from synthetic image
pairs, avoiding the need for manual annotation. Bottom: At evaluation
time, the trained geometry estimation network automatically aligns two
images with substantial appearance differences. It is able to estimate
large deformable transformations robustly in the presence of clutter.

handle large appearance changes, and is therefore suitable for both
instance-level and category-level matching problems.

The contributions of this work are three-fold. First, we pro-
pose a convolutional neural network architecture for geometric
matching, which mimics the standard steps of feature extraction,
matching and simultaneous inlier detection and model parameter
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estimation, while being trainable end-to-end. Second, we demon-
strate that the network parameters can be trained from syntheti-
cally generated imagery without the need for manual annotation
and that our matching layer significantly increases generalization
capabilities to never seen before images. Finally, we show that the
same model can give state-of-the-art results on several challenging
datasets for category-level image alignment.

All training and evaluation code, as well as our trained net-
works, is available online [16].

2 RELATED WORK

The classical approach for finding correspondences involves iden-
tifying interest points and computing local descriptors around
these points [6], [9], [17], [18], [19], [20], [21]. While this
approach performs relatively well for instance-level matching, the
feature detectors and descriptors lack the generalization ability for
category-level matching.

Recently, convolutional neural networks have been used to
learn powerful feature descriptors which are more robust to
appearance changes than the classical descriptors [22], [23], [24],
[25], [26], [27]. However, these works are focused on learning
descriptors [22], [23], [26], [27], or a similarity measure between
descriptors [24], [25], [28], and do not target the problem of
finding the transformation relating the two input images. In this
work, we go a step further from CNN descriptors, and seek to also
learn to estimate the geometric transformation.

Related are also network architectures for estimating inter-
frame motion in video [29], [30], [31] or instance-level homog-
raphy estimation [32], however their goal is very different from
ours, targeting high-precision correspondence with very limited
appearance variation and background clutter. Closer to us is the
network architecture of [33] which, however, tackles a different
problem of fine-grained category-level matching (different species
of birds) with limited background clutter and small translations
and scale changes, as their objects are largely centered in the
image. In addition, their architecture is based on a different
matching layer, which we show not to perform as well as the
matching layer used in our work.

Some works, such as [8], [20], [34], [35], [36], [37], have
addressed the hard problem of category-level matching, but rely
on traditional non-trainable optimization for matching [20], [34],
[35], [36], [37], or guide the matching using object proposals
[8]. On the contrary, our approach is fully trainable in an end-
to-end manner and does not require any optimization procedure at
evaluation time, or guidance by object proposals.

Others [38], [39], [40] have addressed the problems of instance
and category-level correspondence by performing joint image
alignment. However, these methods differ from ours as they: (i)
require class labels; (ii) don’t use CNN features; (iii) jointly align
a large set of images, while we align image pairs; and (iv) don’t
use a trainable CNN architecture for alignment as we do.

3 ARCHITECTURE FOR GEOMETRIC MATCHING

In this section, we introduce a new convolutional neural network
architecture for estimating parameters of a geometric transforma-
tion between two input images. The architecture is designed to
mimic the classical computer vision pipeline (e.g. [41]), while
using differentiable modules so that it is trainable end-to-end for
the geometry estimation task. The classical approach consists of

I,—| Feature extraction CNN |- f,
T

VIV Matching | fag

Regression |
CNN

Iy Feature extraction CNN |- fi,

Fig. 2. Diagram of the proposed architecture. Images I4 and I are
passed through feature extraction networks which have tied parameters
W, followed by a matching network which matches the descriptors. The
output of the matching network is passed through a regression network
which outputs the parameters of the geometric transformation.

the following stages: (i) local descriptors (e.g. SIFT) are extracted
from both input images, (ii) the descriptors are matched across
images to form a set of tentative correspondences, which are then
used to (iii) robustly estimate the parameters of the geometric
model using RANSAC or Hough voting.

Our architecture, illustrated in Fig. 2, mimics this process by:
(i) passing input images I 4 and Ip through a siamese architecture
consisting of convolutional layers, thus extracting feature maps
fa and fp which are analogous to dense local descriptors, (ii)
matching the feature maps (“descriptors”) across images into a
tentative correspondence map f4p, followed by a (iii) regression
network which directly outputs the parameters of the geometric
model, 6, in a robust manner. The inputs to the network are the
two images, and the outputs are the parameters of the chosen
geometric model, e.g. a 6-D vector for an affine transformation.

In the following, we describe each of the three stages in detail.

3.1

The first stage of the pipeline is feature extraction, for which
we use a standard CNN architecture. A CNN without fully
connected layers takes an input image and produces a feature
map f € RM®Xd which can be interpreted as a h X w
dense spatial grid of d-dimensional local descriptors. A similar
interpretation has been used previously in instance retrieval [42],
[43], [44], [45] demonstrating high discriminative power of CNN-
based descriptors. Thus, for feature extraction we use the VGG-16
network [15], cropped at the poo14 layer (before the ReLLU unit),
followed by per-feature L2-normalization. We use a pre-trained
model, originally trained on ImageNet [46] for the task of image
classification. As shown in Fig. 2, the feature extraction network
is duplicated and arranged in a siamese configuration such that the
two input images are passed through two identical networks which
share parameters.

Feature extraction

3.2 Matching network

The image features produced by the feature extraction networks
should be combined into a single tensor as input to the regres-
sor network to estimate the geometric transformation. We first
describe the classical approach for generating tentative correspon-
dences, and then present our matching layer which mimics this
process.

3.2.1

Classical methods start by computing similarities between all pairs
of descriptors across the two images. From this point on, the
original descriptors are discarded as all the necessary information
for geometry estimation is contained in the pairwise descriptor
similarities and their spatial locations. Secondly, the pairs are

Tentative matches in classical geometry estimation
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Fig. 3. Correlation map computation with CNN features. The cor-
relation map c4p contains all pairwise similarities between individual
features f4 € f4 and fp € fp. At a particular spatial location (i, j) the
correlation map output c4 g contains all the similarities between £z (3, j)
andallfs € fa.

pruned by either thresholding the similarity values, or, more com-
monly, only keeping the matches which involve the nearest (most
similar) neighbors. Furthermore, the second nearest neighbor test
[6] prunes the matches further by requiring that the match strength
is significantly stronger than the second best match involving the
same descriptor, which is very effective at discarding ambiguous
matches.

3.2.2 Matching layer

Our matching layer applies a similar procedure. Analogously to
the classical approach, only descriptor similarities and their spatial
locations should be considered for geometry estimation, and not
the original descriptors themselves.

To achieve this, we propose to use a correlation layer followed
by normalization. Firstly, all pairs of similarities between descrip-
tors are computed in the correlation layer. Secondly, similarity
scores are processed and normalized such that ambiguous matches
are strongly down-weighted.

In more detail, given L2-normalized dense feature maps
fa, fe € RM¥WXd the correlation map cap € RAXwx (hxw)
outputted by the correlation layer contains at each position the
scalar product of a pair of individual descriptors f4 € fa and
fp € fp, as detailed in Eq. (1).

cap(i,j, k) = £5(i, 5) " £a(ix, jr) (1)

where (4, 7) and (i, ji) indicate the individual feature positions
in the h X w dense feature maps, and k = h(ji — 1) + iy is an
auxiliary indexing variable for (i, ji).

A diagram of the correlation layer is presented in Fig.3.
Note that at a particular position (i, j), the correlation map cap
contains the similarities between fp at that position and all the
features of f4.

As is done in the classical methods for tentative correspon-
dence estimation, it is important to postprocess the pairwise
similarity scores to remove ambiguous matches. To this end, we
apply a channel-wise normalization of the correlation map at
each spatial location to produce the final tentative correspondence
map fap. The normalization is performed by ReLU, to zero
out negative correlations, followed by L2-normalization, which
has two desirable effects. First, let us consider the case when
descriptor fg correlates well with only a single feature in f4.
In this case, the normalization will amplify the score of the match,
akin to the nearest neighbor matching in classical geometry esti-
mation. Second, in the case of the descriptor fz matching multiple

features in f 4 due to the existence of clutter or repetitive patterns,
matching scores will be down-weighted similarly to the second
nearest neighbor test [6]. However, note that both the correlation
and the normalization operations are differentiable with respect
to the input descriptors, which facilitates backpropagation thus
enabling end-to-end learning.

3.2.3 Discussion

The first step of our matching layer, namely the correlation layer,
is somewhat similar to layers used in DeepMatching [29] and
FlowNet [30]. However, DeepMatching [29] only uses deep RGB
patches and no part of their architecture is trainable. FlowNet [30]
uses a spatially constrained correlation layer such that similari-
ties are are only computed in a restricted spatial neighborhood
thus limiting the range of geometric transformations that can be
captured. This is acceptable for their task of learning to estimate
optical flow, but is inappropriate for larger transformations that
we consider in this work. Furthermore, neither of these methods
performs score normalization, which we find to be crucial in
dealing with cluttered scenes.

Previous works have used other matching layers to combine
descriptors across images, namely simple concatenation of de-
scriptors along the channel dimension [32] or subtraction [33].
However, these approaches suffer from two problems. First, as
following layers are typically convolutional, these methods also
struggle to handle large transformations as they are unable to
detect long-range matches. Second, when concatenating or sub-
tracting descriptors, instead of computing pairwise descriptor
similarities as is commonly done in classical geometry estimation
and mimicked by the correlation layer, image content information
is directly outputted. To further illustrate why this can be problem-
atic, consider two pairs of images that are related with the same
geometric transformation — the concatenation and subtraction
strategies will produce different outputs for the two cases, making
it hard for the regressor to deduce the geometric transformation.
In contrast, the correlation layer output is likely to produce
similar correlation maps for the two cases, regardless of the image
content, thus simplifying the problem for the regressor. In line
with this intuition, in Sec. 7.3 we show that the concatenation and
subtraction methods indeed have difficulties generalizing beyond
the training set, while our correlation layer achieves generalization
yielding superior results.

3.3 Regression network

The normalized correlation map is passed through a regression
network which directly estimates parameters of the geometric
transformation relating the two input images. In classical geometry
estimation, this step consists of robustly estimating the transfor-
mation from the list of tentative correspondences. Local geometric
constraints are often used to further prune the list of tentative
matches [9], [10] by only retaining matches which are consistent
with other matches in their spatial neighborhood. Final geometry
estimation is done by RANSAC [11] or Hough voting [6], [12],
[13].

We again mimic the classical approach using a neural network,
where we stack two blocks of convolutional layers, followed by
batch normalization [47] and the ReLU non-linearity, and add a
final fully connected layer which regresses to the parameters of the
transformation, as shown in Fig. 4. The intuition behind this archi-
tecture is that the estimation is performed in a bottom-up manner
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Fig. 4. Architecture of the regression network. It is composed of two
convolutional layers without padding and stride equal to 1, followed by
batch normalization and ReLU, and a final fully connected layer which
regresses to the P transformation parameters.

somewhat like Hough voting, where early convolutional layers
vote for candidate transformations, and these are then processed
by the later layers to aggregate the votes. The first convolutional
layers can also enforce local neighborhood consensus [9], [10]
by learning filters which only fire if nearby descriptors in image
A are matched to nearby descriptors in image B, and we show
qualitative evidence in Sec. 7.5 that this indeed does happen.

3.3.1 Discussion

A potential alternative to a convolutional regression network is to
use fully connected layers. However, as the input correlation map
size is quadratic in the number of image features, such a network
would be hard to train due to a large number of parameters that
would need to be learned, and it would not be scalable due to
occupying too much memory and being too slow to use. It should
be noted that even though the layers in our architecture are convo-
lutional, the regressor can learn to estimate large transformations.
This is because one spatial location in the correlation map contains
similarity scores between the corresponding feature in image B
and all the features in image A (c.f. equation (1)), and not just the
local neighborhood as in [30].

4 GEOMETRIC TRANSFORMATIONS

Three different parametric geometric transformations were em-
ployed in this work: affine, homography and thin-plate spline. The
details of their parametrizations are presented next. As images
are warped using the reverse mapping, the transformations map
coordinates from the target image B to the source image A.

4.1 Affine transformation

An affine transformation is a 6 degree-of-freedom linear trans-
formation capable of modeling translation, rotation, non-isotropic
scaling and shear. It can be parametrized by a 6 dimensional vector
HAFF:

Oarr = [a11, @12, a21, G2, ta, by, 2
such that points Pg = [r5,y5]7
[4,ya]" according to:

a
Py = 11
a21

are mapped to points P4y =

CL12:| Py + [iz} . 3)

a2 y

4.2 Homography transformation

A homography transformation deforms a given quadrilateral
Op = {Qp1,...,Qps} into any other given quadrilateral
Q4 = {Qua1,...,Qa4}, while keeping collinearity. It has 8
degrees-of-freedom and is more flexible than the affine transfor-
mation, as it can handle perspective since parallel lines need not
remain parallel. Homography is the model relating 2-D images

Ca={Ca,..

., Cao} Cs ={CgB1,...,Cpo}

Fig. 5. Thin-plate spline control points. lllustration of the 3 x 3 TPS
grid of control points used in the thin-plate spline transformation model.

(pinhole projections) of a 3-D plane. We adopt the 4-point ho-
mography parametrization from [32], which consists of defining
the quadrilateral Qp of the target image to be the outer edge of
the image, and using the coordinates of the quadrilateral Q4 of
the source image as the 8-dimensional vector Gyom:

) yQA4]' (€]

This parametrization can be converted to the 3 X 3 homography
matrix H [2], which is used to perform the actual transformation:

9HOM = [IQA17"~7$QA47yQA13-~'

_hnzp+hiays +his
hs1xp + hs2yp + has’

A
(5)
_ ha12p + haayp + hos
hs1zp + haa yp + has’
where, h;; are elements of the homography matrix H.

YA

4.3 Thin-plate spline transformation

The thin-plate spline (TPS) transformation [48] is a parametric
model which performs smooth 2-D interpolation given a set of k
corresponding control points C4 = {Cay,...,Cax} and Cp =
{Cp1,...,Cpi} between two images. In this work we use k = 9
and arrange the control points Cp in a 3 X 3 uniform grid on the
target image, as illustrated in Fig. 5. Because control points Cp are
fixed for all image pairs, the TPS transformation is parametrized
only by the control points C4 in the source image:

Yo Ag] . (6)

HTPS = [xCA1>"'a$CA97yCA1,"

Then, the thin-plate spline transformation maps points Pg =
[z5,yp]T to points P4 = [x4,y4]T according to:

k
Ta=0y+by2p+coys+ Y weiU(|Ps — Chail)),
. (7)
Yya =ay +byxp +cyyp + ZwyiU(”PB - Cgil)-
i=1

Here, U(z) = 22 log 2% and the parameters a, b, ¢ and w are
computed from Orpg by:

[wzly ce. awzk;az>bz7cw}T = L_l[xC'Alv o 7xCAka0a070]T
[wyla cee 7wykaay7by7cy}T = Lil[yCAu cee ayCAk’O7070}T7
(®)

where L™ is a constant matrix which needs to be computed only
once, as it depends only on the fixed control points Cg. Please
refer to [48] for further details.



SUBMISSION TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018 5

Stage 1

I, H Feature Extraction -\
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Affine Regression
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— Oarr

Stage 2

In M Warp [PFeature Extraction -\
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Fig. 6. Estimating progressively more complex geometric transformations. Images A and B are passed through a network which estimates
an affine transformation with parameters 0arr (see Fig. 2). Image A is then warped using this transformation to roughly align it with B, and passed
along with B through a second network which estimates a thin-plate spline (TPS) transformation that refines the alignment.

4.4 Hierarchy of transformations

A commonly used approach when estimating image to image
transformations is to start by estimating a simple transformation
and then progressively increase the model complexity, refining the
estimates along the way [18], [20], [41]. The motivation behind
this method is that estimating a very complex transformation could
be hard and computationally inefficient in the presence of clutter,
so a robust and fast rough estimate of a simpler transformation
can be used as a starting point, also regularizing the subsequent
estimation of the more complex transformation.

We follow the same good practice and start by estimating
an affine transformation (or alternatively a homography) which
performs a rough alignment. The estimated affine transformation is
then used to align image A to image B using an image resampling
layer [49]. The aligned images are then passed through a second
geometry estimation network which estimates the parameters
of a thin-plate spline transformation. The final estimate of the
geometric transformation is then obtained by composing the two
transformations. The process is illustrated in Fig. 6, and detailed
in Algorithm 2.

4.5

When input images are related by a large transformation, it is
difficult to obtain many good matches, so a single pass through
the geometry estimation network might produce a poor alignment.
In such cases, performing several iterations of the estimation can
be beneficial, as illustrated in Fig.7, since it allows the number
of matches to progressively grow. This approach has proven to
be particularly useful for instance-level alignment, as detailed in
section 6.4.

Iterative refinement

5 TRAINING

In order to train the parameters of our geometric matching CNN,
it is necessary to design the appropriate loss function, and to use
suitable training data. We address these two important points next,
and also provide details about the implementation.

5.1 Loss function

We assume a fully supervised setting, where the training data
consists of pairs of images and the desired outputs in the form of
the parameters O of the ground-truth geometric transformation.
The loss function £ is designed to compare the estimated trans-
formation @ with the ground-truth transformation f51 and, more
importantly, compute the gradient of the loss function with respect

Iteration i

I, H Warp [H Feature Ext. -\

Matching |H Regression -0 (-

Iy Feature Ext. -/

Iggi) _ ggifl) o g(i)l

Fig. 7. Iterative transformation refinement. In iteration /, image A is
warped using the cumulative transformation estimate Bﬁi_l) obtained
from the previous iteration (9£°> is initialized to identity). A fine align-
ment, 0(*), between image B and the warped image A is estimated
and chained onto 6?’1) to form the refined cumulative transformation

estimate 6%9.

to the estimates %—S. This gradient is then used in a standard

manner to learn the network parameters which minimize the
loss function by using backpropagation and Stochastic Gradient
Descent.

It is desired for the loss to be general and not specific to a
particular type of geometric model, so that it can be used for esti-
mating affine, homography, thin-plate spline or any other geomet-
ric transformation. Furthermore, the loss should be independent
of the parametrization of the transformation and thus should not
directly operate on the parameter values themselves. We address
all these design constraints by measuring loss on an imaginary grid
of points G = {G;} = {(24,¥:) }i=1...v which is being deformed
by the transformation. Namely, we construct a grid of points in
image space, transform it using the neural network estimated and
ground-truth transformations 7y and 7y, with parameters 6 and
O, respectively, and measure the discrepancy between the two
transformed grids by summing the squared distances between the
corresponding grid points:

1 N
L£0,0cT) = NZHG;—Gg’Hz ©9)

i=1

where G, = Tp(G;) and G = Tg..(G;) are the transformed
grid points according to the estimated and ground-truth transfor-
mations respectively. The grid points are uniformly distributed in
the image using normalized coordinates, i.e. z;,y; € [—1,1].
Note that we construct the coordinate system such that the center
of the image is at (0,0) and that the width and height of the
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Fig. 8. Synthetic image generation. Symmetric padding is added to the
original image to enlarge the sampling region, its central crop is used as
image A, and image B is created by performing a randomly sampled
transformation Ty,

image are equal to 2, i.e. the bottom left and top right corners
have coordinates (—1, —1) and (1, 1), respectively.

The gradient of the loss function with respect to the transfor-
mation parameters, needed to perform backpropagation in order
to learn network weights, can be computed easily if the location
of the transformed grid points G; = Tg(G;) is differentiable
with respect to 6. This is commonly the case, for example, when
T is an affine transformation, 79(G;) is linear in parameters
and therefore the loss can be differentiated in a straightforward
manner.

5.2 Training data

Our training procedure requires fully supervised training data
consisting of image pairs and a known geometric relation. Training
CNNs usually requires a lot of data, and no public datasets exist
that contain many image pairs annotated with their geometric
transformation. Therefore, we opt for training from synthetically
generated data, which gives us the flexibility to gather as many
training examples as needed, for any 2-D geometric transformation
of interest. Given that this training data is obtained for free, the ap-
proach can be classified as unsupervised (or self-supervised), even
though the loss function requires the ground-truth transformation
parameters.

5.2.1 Synthetic pair generation

We generate each training pair (14, I5), by sampling I4 from a
public image dataset, and generating I by applying a random
transformation 7y, to I4. More precisely, 14 is created from
the central crop of the original image, while Ip is created by
transforming the original image with added symmetrical padding
in order to avoid border artifacts; the procedure is shown in Fig. 8.

5.2.2 Synthetic training datasets

The images used for the synthetic pair generation are sampled
from the Tokyo Time Machine dataset [45] which contains Google
StreetView images of Tokyo. We select 20k images for training
and 20k for validation.

During training, a batch is first selected from the training split
of the dataset, and then a random transformation for each image in
the batch is sampled independently from reasonable ranges. These
ranges depend on the geometric model chosen for training the
network.

In the case of the affine transformation, we chose a rotation
angle 0 ~ U (—n/12,7/12), a shear angle ¢ ~ U (—x/6,7/6),
anisotropic scaling factors A1, A2 ~ U (0.75,1.25), and trans-
lations t,,t, ~ U (—0.25,0.25). These parameters are defined
on the SVD decomposition of the affine transformation (see [2]

Algorithm 1: Training procedure using synthetic pairs
input : Image database DB
CNN model My
output: Trained CNN model My,

for training epochs do

for I in DB do

// Generate synthetic training pair
Sample random transformation Ogr

14 = central crop of [;

Ip = %GT (I)’

// Estimate transformation 6

0 = Mw (1a,IB);

// Compute loss and update model
L=L(9,0cT);

W = update(W, 55 );

end
end

sec. 2.4.3), and must then be composed to obtain the [a;;] matrix
described in section 4.1:

{fln
a21

In the case of the homography and thin-plate spline trans-
formations, the target points Q4 and C4 are obtained by per-

turbing the fixed Qp and Cp with random translations J, §, ~
U(-0.4,04):

mﬂzszﬂa—¢mmgAhAﬁRw» (10)

a22

Qai = Qpi + (6z,0y),

11
Cai = Cpi + (6,6,). an

In all cases, the uniform distribution was used in order not
to impose a strong prior on the transformation parameters. The
ranges were chosen to roughly cover the observed transformations
in the PF-WILLOW dataset.

5.3 Implementation details

We use the PyTorch library [50] and train the networks using the
Adam [51] optimizer with learning rate 10~3, and a batch size of
16. There is no need for jittering as instead of data augmentation
we can simply generate more synthetic training data. Input images
are resized to 240 x 240 producing 15 x 15 feature maps that
are passed into the matching layer. Single-stage models specific
for each particular geometric transformation (affine, homography
or thin-plate spline) are trained, with transformations sampled
randomly at training time according to the previously described
procedure. Each network is trained until convergence which typi-
cally occurs after 20 epochs (25000 iterations), and takes between
4 and 8 hours on a single GPU, depending on the complexity of the
geometric model. The training algorithm is detailed in Algorithm
1.

At evaluation time, the single-stage models featuring different
geometric transformations can be used in conjunction as illustrated
in Fig.6. Trained networks can also be executed iteratively as
described in section 4.5 and illustrated in Fig. 7. The evaluation
algorithm is detailed in Algorithm 2.
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Algorithm 2: Transformation estimation using two-
stage network

input : Source and target images (14, )
Stage 1 CNN model M,
Stage 2 CNN model M,

output: Aligned image I’}

// First stage
th = Ml(IAva);
le4 = 7—91(114);

// Second stage
2 = Ma(I'y, I);
Iy =Te,(I}):

6 EXPERIMENTAL RESULTS

In this section we compare our method to baselines and the state-
of-the-art for both category-level and instance-level alignment
problems.

In the case of category-level alignment, both qualitative and
quantitative evaluation is performed on three different datasets
previously used for this task: the PF dataset [8], the TSS dataset
[52] and the Caltech-101 dataset [53].

In the case of instance-level alignment, qualitative and quanti-
tative evaluation is performed on the Graffiti benchmark [19]. In
addition, qualitative alignment results are presented for the Tokyo
Time Machine dataset [45].

A different single-stage model for each of the affine, homog-
raphy and thin-plate spline transformations was trained indepen-
dently. Both single-stage (Fig.2) and two-stage (Fig. 6) alignment
strategies were investigated. Furthermore, the iterative refinement
procedure described in section 7 was used for the Graffiti bench-
mark.

6.1 PF dataset

This dataset contains image pairs depicting different instances of
the same classes, such as ducks and cars, but with large intra-
class variations, e.g. the cars are often of different make, or the
ducks can be of different subspecies. Furthermore, the images
contain significant background clutter, as can be seen in Fig.9.
It contains a total of 2251 image pairs from two subgroups: PF-
WILLOW (900 pairs, introduced in [54]) and PF-PASCAL (1251
pairs, introduced in [8]). Images from each pair were manually
selected to ensure that objects have similar poses.

6.1.1 Evaluation metric

The quality of the obtained alignment is assessed by exploiting
the keypoint annotation provided with the PF dataset. The task
is to predict the locations of predefined keypoints from image A
in image B. We do so by estimating a geometric transformation
T that warps image A into image B, and applying the same
transformation to the keypoint locations P4 = {P%}i—1 . in
I 4, to obtain the estimated keypoint locations {7 (P%)}iz1,. . n
in Ip. The alignment quality is then computed using the standard
evaluation metric for this benchmark, the average probability of
correct keypoint (PCK) [55], being the proportion of keypoints
that are correctly matched. A keypoint is considered to be matched
correctly if the distance between its predicted location 7 (P ) and
its ground-truth position P} is below a predefined threshold L.
Therefore, the PCK is computed as follows:

TABLE 1
Matching accuracy on the PF dataset (PF-PASCAL/PF-WILLOW)
measured in terms of the PCK (a = 0.1). All the numbers apart from
ours and RANSAC are taken from [8].

Methods PF-PASCAL  PF-WILLOW
DeepFlow [56] 0.21 0.20
GMK [35] 0.27 0.27
SIFT Flow [34] 0.33 0.38
DSP [36] 0.30 0.37
Proposal Flow (SS+NAM) [8] 0.36 0.52
Proposal Flow (SS+PHM) [8] 0.42 0.55
Proposal Flow (SS+LOM) [8] 0.45 0.56
RANSAC with our features (affine) 0.44 0.46
Ours (affine) 0.46 0.48
Ours (homography) 0.48 0.49
Ours (TPS) 0.51 0.54
Ours (affine + TPS) 0.51 0.60
Ours (homography + TPS) 0.53 0.60
Ours (2XTPS) 0.52 0.57

bk - [(PA € Pad(T(PY). P < L))
n

(12)
where the distance threshold is L = o - max(h,w), o = 0.1
and (h,w) are the height and width of the object bounding box,
respectively.

6.1.2 Results

We compare our method against SIFT Flow [34], Graph-matching
kernels (GMK) [35], Deformable spatial pyramid matching (DSP)
[36], DeepFlow [56], and all three variants of Proposal Flow
(NAM, PHM, LOM) [8]. As shown in Tab. 1, our method out-
performs all others and sets the new state-of-the-art on this data.
The best competing methods are based on Proposal Flow and make
use of object proposals, which enables them to guide the matching
towards regions of images that contain objects. Their performance
varies significantly with the choice of the object proposal method,
illustrating the importance of this guided matching. On the con-
trary, our method does not use any guiding, but it still manages
to outperform even the best Proposal Flow and object proposal
combination.

Furthermore, we also compare to affine transformations esti-
mated with RANSAC using the same descriptors as our method
(VGG-16 poold). The parameters of this baseline have been
tuned extensively to obtain the best result by adjusting the
thresholds for the second nearest neighbor test and by pruning
proposal transformations which are outside of the range of likely
transformations. Our affine estimator outperforms the RANSAC
baseline on this task by a 2% margin.

Fig.9 illustrates the effectiveness of our method in category-
level matching, where challenging pairs of images from the Pro-
posal Flow dataset [8], containing large intra-class variations, are
aligned correctly. The method is able to robustly, in the presence
of clutter, estimate large translations, rotations, scale changes, as
well as non-rigid transformations and some perspective changes.

6.2 TSS dataset

The TSS dataset introduced in [52] contains 400 image pairs of
three subgroups: FG3DCar contains 195 image pairs of cars, JODS
contains 81 image pairs of airplanes, horses and cars and PASCAL
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Aligned A (affine+TPS)

Fig. 9. Qualitative results on the PF dataset. Each row shows one test example from the Proposal Flow dataset. Ground truth matching keypoints,
only used for alignment evaluation, are depicted as crosses and circles for images A and B, respectively. Keypoints of same color are supposed to
match each other after image A is aligned to image B. To illustrate the matching error, we also overlay keypoints of B onto different alignments of
A so that lines that connect matching keypoints indicate the keypoint position error vector. Our method manages to roughly align the images with
an affine transformation (column 2), and then perform finer alignment using thin-plate spline (TPS, column 3). The top two examples are from the

PF-WILLOW dataset while the bottom one is from PF-PASCAL.

contains 124 image pairs of bicycles, motorbikes, buses, cars and
trains. For all 400 image pairs, approximate ground-truth optical
flow data is provided.

6.2.1 Evaluation metric

The evaluation metric used for the TSS dataset is also the PCK,
presented in Eq. (12), previously presented for the PF dataset.
However, the ground-truth optical flow data available in the TSS
dataset allows to compute the PCK using a dense set of keypoints
Pa={P) € Ma}i—1.. n, composed by the foreground pixels
inside the segmentation mask IM 4 of the object in I 4. Therefore,
this allows for the alignment to be densely evaluated over the
object of interest, in contrast to the PCK computation for the PF
dataset, where the alignment is only evaluated in a handful of
manually annotated keypoints.

Regarding the distance threshold L = « - max(h, w) used for
the PCK computation, the criterion used in [8], [52] is adopted,
where the reported values are computed with o = 0.05 and with
(h,w) being the dimensions of the target image.

6.2.2 Results

The quantitative results for the TSS dataset are presented in Tab.
2, in terms of the mean PCK over the set of image pairs. For each
of the 400 pairs, both the forward (from /4 to I5) and backward
(from Ip to I4) alignments are computed an evaluated, resulting
in a total of 800 evaluation pairs.

The middle columns of Tab. 2 present mean PCK over the three
subsets of the TSS dataset: FG3DCar, JODS and PASCAL; and

TABLE 2
Matching accuracy on the TSS dataset in terms of PCK (o = 0.05).
The three intermediate columns show the results for each subset of the
TSS dataset: FG3DCar, JODS and PASCAL. The last column shows
the PCK result over the whole dataset.

Methods FG3DCar JODS PASCAL All
DSP [36] 0.49 0.47 0.38 0.45
SIFT Flow [34] 0.63 0.51 0.36 0.52
Taniai er al. [52] 0.83 0.60 0.48 0.67
Proposal Flow (SS+LOM) [8] 0.79 0.65 0.53 0.68
Ours (affine) 0.81 0.65 0.51 0.68
Ours (homography) 0.83 0.66 0.52 0.70
Ours (TPS) 0.84 0.72 0.51 0.71
Ours (affine + TPS) 0.89 0.72 0.54 0.75
Ours (homography + TPS) 0.88 0.72 0.55 0.75
Ours (2xTPS) 0.86 0.70 0.52 0.72

the right-most column presents the mean PCK over the whole TSS
dataset. It can be observed that our single-stage models improve
the overall average score by up to 3%, while the two-stage models
achieve the best results on all the different subsets, and improve
by up to 7% over the previously published results.

In Fig. 10 we present qualitative results on the TSS dataset. In
order to assess the visual quality of the obtained results, we also
present the ground-truth aligned and segmented images provided
with the dataset in the right-most column.

As it can be observed, the proposed method can produce good
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alignments results, which are close to the ground-truth alignment.

6.3 Caltech-101 dataset

Following the same procedure as in [8], [36], the alignment quality
is also evaluated on the Caltech-101 dataset [53]. For each of the
101 categories, 15 image pairs were chosen randomly, resulting in
1515 evaluation pairs. These pairs are the same as in [8].

6.3.1 Evaluation metrics

As no keypoint annotations are provided for the Caltech-101
dataset, PCK cannot be used to assess the matching accuracy.
Since segmentations masks are provided, we follow [8], [36] and
evaluate the quality of segmentation mask alignment using the
following metrics: label transfer accuracy (LT-ACC), intersection-
over-union (IoU), and localization error (LOC-ERR).

Let (I4,Ip) be a pair of images with ground-truth segmen-
tation masks (M 4,Mp), and T be the estimated transformation
from I4 to Ig. Then, the transferred annotated mask from the
source image, M’y = T (M), is compared with the ground-truth
mask in the target image M p to assess the alignment quality.

The label transfer accuracy metric (LT-ACC), measures the
number of correctly transferred foreground and background pixels
in the following way:

{P € Ip,My(P) = Mp(P)}|
|P S IB‘

Therefore, the numerator of the LT-ACC adds up the number of
background pixels which are correctly mapped to background and
the foreground pixels which are correctly mapped to foreground.

The intersection-over-union (IoU), or Jaccard index, as the LT-
ACC also compares the mask alignment quality. However, con-
trary to LT-ACC, it only considers the correctly aligned foreground
pixels, ignoring the background. It is computed in the following
way:

LT-ACC =

13)

_ M, N Mp|
My UMp|
Finally, the localization error (LOC-ERR) metric measures

the spatial error of each transferred pixel [36], assuming that

the images are related by a translation and anisotropic scaling
transformation which aligns the bounding boxes of the source and
target images.

To this end, two normalized coordinates systems are defined
relative to the source and target image bounding boxes, such that
their origins are set on the top-left corners of the object bounding
boxes, and the coordinates are normalized by the widths and
heights of the bounding boxes.

LetO4 = (20,,Y0,) and Op = (2o, Yo ) be the top-left
corners of the objects bounding boxes on I 4 and I respectively,
and (ha,wa), (hp,wp) the bounding box dimensions.

Then LOC-ERR metric measures the disagreement between
the coordinates of the original point P, = (z4,ya4) relative to
O, and its transformed coordinates Py = T (Pa) = (2'4,v4)
relative to Op, in the following way:

>

(PA:PI,A)GV

IoU (14)

1
LOC-ERR = —

15

where (£4,74) and (&4, 9’,) are the normalized coordinates of
P4 and PA =T(Pa):

TABLE 3
Evaluation on the Caltech-101 dataset. Matching quality is measured in
terms of LT-ACC and loU. The best two Proposal Flow methods (RP,
LOM and SS, LOM) are included here. All numbers apart from ours are
taken from [54].

Methods LT-ACC IoU LOC-ERR
DeepFlow [56] 0.74 0.40 0.34
GMK [35] 0.77 0.42 0.34
SIFT Flow [34] 0.75 0.48 0.32
DSP [36] 0.77 0.47 0.35
Proposal Flow (RP, LOM) [54] 0.78 0.50 0.26
Proposal Flow (SS, LOM) [54] 0.78 0.50 0.25
Ours (affine) 0.78 0.51 0.24
Ours (homography) 0.80 0.52 0.24
Ours (TPS) 0.80 0.53 0.24
Ours (affine + TPS) 0.79 0.55 0.26
Ours (homography + TPS) 0.81 0.55 0.25
Ours (2XTPS) 0.80 0.54 0.26
PO TA =20, YA —YO
($A>yA): ( wa A7 hA A)
, , (16)
(,fj/ y/ ) — I'A B xOB yA B yOB
oA wg ' hp

and V is the set of all pairs of points (P, P}) in which the
transformed points Py = T (Pj4) fall inside the bounds of image
Ip.

6.3.2 Results

The quantitative results on the Caltech-101 dataset are presented
in Tab. 3. As it can be observed, our approach outperforms the
state-of-the-art by a significant margin, obtaining, for example, an
IoU of 0.55 compared to the previous best result of 0.50.

In addition, it can be observed that the LOC-ERR metric
values do not follow the trend of the other two metrics. This is
because the LOC-ERR metric makes the invalid assumption that
the images are related with a translation and anisotropic scaling
transformation.

The benefit of the two-stage approaches is clear from the more
realistic IoU metric, where adding a second stage achieves an
IoU of 0.55 compared to 0.53 of the single-stage best performing
model.

In Fig. 11, we present a qualitative comparison of the results
obtained by our method and other previous methods on images
from this dataset. For each example, the second row presents the
transferred segmentation mask 7 (M 4 ) of 14 overlaid with I 5, for
each of the methods. As it can be visually assessed, the proposed
approach achieves a superior alignment than most of the previous
methods.

6.4 Graffiti benchmark

This section presents the results of the proposed method on
the challenging Graffiti instance-level matching benchmark [19].
This benchmark contains 6 images of the same planar scene
with increasingly varying viewpoint, with up to 70° azimuthal
rotation from the reference image. Ground-truth homography
transformations from the reference image 1 to images 2-6 are
available with the dataset. We employed the same homography
estimation CNN used for the category-level alignment datasets,
trained from synthetic StreetView image pairs. To overcome the
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Image A Image B Aligned A (affine+TPS) Aligned A (ground-truth)

Fig. 10. Qualitative results on the TSS dataset. Each row shows one test example from the TSS dataset. The last column shows the ground-truth
alignment used for evaluation. Example 1 is from TSS-FG3DCar, examples 2-3 are from TSS-JODS, and 4-7 from TSS-PASCAL.
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(a) Image pairs (b) DeepFlow (c) GMK (d) SIFT Flow (e) DSP (f) Proposal Flow (g) Ours (aff.+TPS)

Fig. 11. Qualitative results on the Caltech-101 dataset. Each block of two rows corresponds to one example, where column (a) shows the original
images — image A in the first row and image B in the second row. The remaining columns of the first row show image A aligned to image B using
various methods. The second row shows image B overlaid with the segmentation map transferred from image A.
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Source image Iter. 1

Iter. 5 Target image

Fig. 12. Qualitative results on the Graffiti benchmark, pair (1, 5). The first and last columns show the source and target images. The intermediate

columns show the progress of the alignment at different iterations.

large viewpoint variation in this dataset, we perform iterative
refinement, as described in section 4.5, with a total of 5 iterations.
The same CNN model is used for all iterations.

6.4.1 Evaluation metric

In order to measure the quality of the estimated homography
transformation, the average endpoint error is used:

N
ABE(H, Hor) = - G}~ G| (7)
i=1

where G}, = Ty (G;) and G = Ty, (G;) are the transformed
sampling points G = [1,2,...,h] x [1,2,...,w] when applying
the estimated and ground-truth homographies, respectively. Note
that this is similar to the proposed loss (9), but without squaring
the distances.

6.4.2 Results

Quantitative results are presented on Tab. 4. The proposed method
is compared against state-of-the-art methods for this dataset, such
as SIFT features (DoG+SIFT) [6], [18], SIFT features with affine-
covariant detectors (DoG-affine+SIFT) [19] and ASIFT [57]. Fea-
tures are matched and filtered using the second nearest-neighbor
test [18] and the homography transformation is estimated with
the locally optimized RANSAC algorithm [58] with the following
parameter settings: distance threshold § = 6px, estimation confi-
dence 19 = 0.999, and the final refinement step using all inliers.
The rest of the parameters are set to their default values. The
RANSAC algorithm is executed 5 times and the mean error values
are reported. In all cases, the standard deviations were below 0.3
pixels.

As it can be observed from Tab. 4, although our method does
not produce the best results, it still achieves reasonable alignments
for pairs (1,2) up to (1,5), and fails for pair (1,6). The lower
performance of our method when compared to local interest points
methods can be explained by the lower resolution of the input
image, which is resized from 800 x 640px to 240 x 240px, and
also by the low resolution of the extracted CNN features, which
is of 15 x 15. In addition, due to the max-pooling operations, the
exact positions of the image features cannot be recovered from the
CNN features.

However, it is interesting to point out that while DoG-SIFT
fails for pair (1,5), our method does not. This confirms the
intuition that CNN feature descriptors have some degree of affine
invariance, achieved due to multiple pooling operations. The
invariance enables multiple good initial matches to be established,
producing a good initial transformation estimate, which is then
progressively refined using the iterative procedure.

Qualitative results for the pair (1, 5) of the Graffiti benchmark
are shown in Fig. 12. The figure also shows the progression of the

TABLE 4
Evaluation on the Graffiti benchmark. Matching quality is measured in
terms of the AEE (px), being the original image of 640 x 800 px. Our
homography estimation model is run recursively five times.

Methods Image pair
(1,2) (1,3) (1,4 (1,5 (1,6)
DoG+SIFT [19] 0.63 1.61 2.89 fail fail
DoG-affine+SIFT [19] 0.60 1.57 1.44 2.40 2.75
ASIFT [57] 0.45 1.35 1.02 0.96 1.62
Ours (5 xhomography)  4.17 4.81 3.17 2.55 fail

alignment as more refinement iterations are performed. As it can
be observed, the obtained alignment is qualitatively good.

6.5 Tokyo Time Machine dataset

Qualitative results for the Tokyo Time Machine dataset [45] are
shown in Fig. 14. The images have been captured at different
points in time which are months or years apart. Note that, by
automatically highlighting the differences (in the feature space)
between the aligned images, it is possible to detect changes in
the scene, such as occlusions, changes in vegetation, or structural
differences e.g. new buildings being built.

7 DISCUSSIONS AND ABLATION STUDIES

In this section we examine the importance of various components
of our architecture, and discuss about the impact of the training
set, the learned filters and the limitations of the method.

7.1 Correlation versus concatenation and subtraction.

Replacing our correlation-based matching layer with feature con-
catenation or subtraction, as proposed in [32] and [33], respec-
tively, incurs a large performance drop, as shown in Tab. 5. The
behavior is expected as we designed the matching layer to only
keep information on pairwise descriptor similarities rather than the
descriptors themselves, as is good practice in classical geometry
estimation methods, while concatenation and subtraction do not
follow this principle.

7.2 Normalization

Table 5 also shows the importance of the correlation map normal-
ization step, where the normalization improves results from 41%
to 48%. The step mimics the second nearest neighbor test used in
classical feature matching [6], as discussed in Sec. 3.2. Note that
[30] also uses a correlation layer, but they do not normalize the
map in any way, which is clearly suboptimal.
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B B

A

Fig. 13. Filter visualization. Some convolutional filters from the first layer of the regressor, acting on the tentative correspondence map, show
preferences to spatially co-located features that transform consistently to the other image, thus learning to perform the local neighborhood
consensus criterion often used in classical feature matching. Refer to the text for more details on the visualization.

(a) Image A (b) Image B

(c) Aligned image A

(d) Overlay of (b) and (¢) (e) Difference map

Fig. 14. Qualitative results on the Tokyo Time Machine dataset. Each row shows a pair of images from the Tokyo Time Machine dataset, and our
alignment along with a “difference map”, highlighting absolute differences between aligned images in the descriptor space. Our method successfully
aligns image A to image B despite of viewpoint and scene changes (highlighted in the difference map).

TABLE 5
Ablation studies on the matching layer and effect of the training
dataset. Accuracy is measured in terms of the PCK on the PF-WILLOW
dataset using the single-stage affine model.

Methods PCK
Subtraction [33] 0.24
Concatenation [32] 0.34
Ours (without normalization) 0.41
Ours (trained on PASCAL) 0.47
Ours (trained on StreetView) 0.48

7.3 Generalization

In order to assess the influence on the performance of the trained
method with respect to the training dataset used, we train a
second model using PASCAL VOC 2011 [59] images, instead of
StreetView images. As seen in Tab.5, our method is relatively
unaffected by the choice of training data as its performance
is similar regardless whether it was trained with StreetView or
PASCAL images. We also attribute this to the design choice of
operating on pairwise descriptor similarities rather than the raw
descriptors.

7.4 Geometric models

Different configurations of the proposed method have been ana-
lyzed, varying the geometric models and using both single-stage
(as in Fig. 2) and two-stage approaches (as in Fig. 6).

Results from Tables 1, 2, and 3 show that the two-stage
homography+TPS is the best performing approach, being slightly
superior to affine+TPS. On the other hand, TPS alone is the
best single-stage approach, but interestingly, two-iteration TPS
performs worse than both affine+TPS and homography+TPS.

This confirms the intuition discussed in section 4.4, where using
a simpler geometric model to perform the rough alignment is
expected to be more robust than using a more complex one.

7.5 What is being learned?

We examine filters of size 7 X 7 x 225 from the first convolutional
layer of the regressor, which operate directly on the output of the
matching layer, i.e. the tentative correspondence map. We observe
that two filter properties emerge from training: (i) filters specialize
in detecting matches in specific positions in image A, and (ii)
filters learn to mimic local neighborhood consensus for robust
match estimation. In order to visualize this, each 1 x 1 x 225
1-D slice through the channels of one convolutional filter at a
particular spatial location is reshaped as a 15 x 15 image. Recall
that the 225 channels correspond to flattened similarities with
image A (see Fig.3 and Eq. (1)), therefore these images show
the filter’s preferences to matches in specific locations in image
A. For visualization, we pick the peaks from all slices of filter
weights and average them together to produce a single image.
Several filters are shown in Fig. 13. It can be observed that matches
form clusters, which means that spatially co-located features in
image B (within the 7 X 7 support of the filter) respond strongly
to spatially consistent locations in image A, therefore confirming
that this layer has learned to mimic local neighborhood consensus.
Furthermore, it can be observed that the size of the preferred
spatial neighborhood varies across filters, thus showing that filters
specialize for certain scale changes. Finally, the fact that the
location of the highest filter weights (bright yellow) is different
for different filters shows that the filters specialize for different
locations in image A.

7.6 Limitations

Next, we analyze limitations of the proposed method and discuss
possible ways of alleviating them.
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TABLE 6
Evaluation of robustness to occlusions in terms of PCK on the
PF-WILLOW dataset.

Occluded area

Methods
0% 10%  20%
Proposal Flow (SS, LOM) [54] 0.56 046 030
Ours (homography+TPS) 0.60 046 032
Ours trained with 10% occlusions (hom.+TPS) 057 047 0.36
Ours trained with 20% occlusions (hom.+TPS) 048 043 038

7.6.1 Robustness to occlusion

The robustness of the proposed method to occlusion was as-
sessed by computing the PCK on the PF-WILLOW dataset when
substituting a rectangular portion of each image in the dataset
with a crop from a different unrelated image. Both positions and
aspect ratios of these rectangles were independently and randomly
sampled for each image. The results are shown in Tab. 6. It
can be observed that all methods, including Proposal Flow [54],
degrade significantly when occluding 10% or 20% of the area of
the images. Although retraining the proposed method replicating
the occlusion procedure helps to improve the performance on the
occluded data, it also degrades the performance on the unoccluded
case. Therefore, alignment with significant occlusion still presents
a challenge for the current methods, including ours.

7.6.2 Multiple objects

Currently, the proposed method can only produce a global align-
ment of the image pair, and handling multiple objects is still a
challenge. This is in line with current datasets on category-level
image alignment which contain a single foreground object, and
with all competing methods which also make this assumption.
This limitation could be addressed by incorporating an attention
mechanism.

7.6.3 Learning better features

Although the proposed architecture is fully differentiable, which
makes it end-to-end trainable for the task of semantic alignment,
we have observed that finetuning the feature extraction CNN
does not improve alignment performance. This is because our
synthetic dataset used for training does not contain rich appearance
variations present in the real category-level alignment datasets
used for evaluation. While supervision from synthetic data comes
with no cost and is useful to train the regression CNN, it is
not suited for learning better image features for alignment. As a
solution to this problem, we have developed a combined approach
using synthetic data for training the regression CNN and real data
for finetuning the feature extraction CNN [60].

7.6.4 Confidence in the estimated transformation

The proposed method does not currently produce a measure of
the confidence in the estimated transformation. However, the soft-
inlier count presented in [60] could be employed for this purpose.

7.6.5 Asymmetry in the method

Given an pair of images /4 and Ip, the method is trained to
produce the alignment in one direction only. In order to make the
method more symmetric, the alignments in both directions could
be estimated simultaneously and a cycle consistency loss [61],
[62] could be incorporated.

7.7 Computational cost

The presented method currently takes about 1.6s per 240 x 240px
image pair, which is 1.5x faster than SIFT Flow and 6x faster
than Proposal Flow, when run on a modern CPU. Furthermore,
the presented method can also be run on the GPU, which allows
to obtain an additional 40 X speedup.

8 CONCLUSIONS

We have described a network architecture for geometric matching
trainable from synthetic imagery without the need for manual
annotations. The architecture is modular and flexible, and can
be applied iteratively, in order to estimate large transformations,
or in a cascade, enabling estimation of complex transformations.
Thanks to our matching layer, the network generalizes well to
never seen before imagery, reaching state-of-the-art results on sev-
eral challenging datasets for category-level matching. The method
has also proven useful for instance-level alignment, obtaining
reasonable alignment for the challenging Graffiti benchmark. This
work opens-up the possibility of applying our architecture to other
difficult correspondence problems such as matching across large
changes in illumination (day/night) [45] or depiction style [63].
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