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ARTICLE

Conformational dynamics in crystals reveal the
molecular bases for D76N beta-2 microglobulin
aggregation propensity
Tanguy Le Marchand1, Matteo de Rosa 2, Nicola Salvi 3, Benedetta Maria Sala2, Loren B. Andreas1,

Emeline Barbet-Massin1, Pietro Sormanni4, Alberto Barbiroli5, Riccardo Porcari6, Cristiano Sousa Mota7,

Daniele de Sanctis7, Martino Bolognesi 2,8, Lyndon Emsley1, Vittorio Bellotti 6, Martin Blackledge3,

Carlo Camilloni2, Guido Pintacuda1 & Stefano Ricagno 2

Spontaneous aggregation of folded and soluble native proteins in vivo is still a poorly

understood process. A prototypic example is the D76N mutant of beta-2 microglobulin

(β2m) that displays an aggressive aggregation propensity. Here we investigate the dynamics

of β2m by X-ray crystallography, solid-state NMR, and molecular dynamics simulations to

unveil the effects of the D76N mutation. Taken together, our data highlight the presence of

minor disordered substates in crystalline β2m. The destabilization of the outer strands

of D76N β2m accounts for the increased aggregation propensity. Furthermore, the

computational modeling reveals a network of interactions with residue D76 as a keystone:

this model allows predicting the stability of several point mutants. Overall, our study shows

how the study of intrinsic dynamics in crystallo can provide crucial answers on protein

stability and aggregation propensity. The comprehensive approach here presented may well

be suited for the study of other folded amyloidogenic proteins.
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Numerous pathologies are related to the transformation of
functional well-soluble proteins into amyloid fibrils.
Many involve disordered peptides or proteins (e.g., Aβ,

α-synuclein). More surprisingly, globular proteins (e.g., beta-2
microglobulin, superoxide dismutase, and lysozyme) can also be
associated to amyloidosis diseases1. Yet, evolution has highly
protected their native state from aggregation, and for these
proteins special conditions, such as low pH or high metal ion
concentration, are required for their aggregation in vitro. In
contrast, specific mutations are able to dramatically increase the
potential of these proteins to form fibrils. A recent case of
systemic amyloidosis involves the highly unstable D76N mutation
of beta-2 microglobulin (β2m)2. Patients carrying this mutation
exhibit large amyloid deposits in internal organs, leading to
progressive gastrointestinal symptoms and autonomic neuro-
pathy. In vitro, the native fold of the D76N mutant displays a
strikingly low thermodynamic stability compared to the wild type
(wt) protein2,3. The D76N mutant is strongly amyloidogenic
and, in contrast to the wt protein, aggregates efficiently and
abundantly without seeding and under native conditions4.

Common effects of point mutations are structural perturba-
tions of the backbone, the impairment of the hydrophobic core or
the introduction of hydrophobic patches on the protein surface,
with potentially very drastic outcomes involving a marked change
in size or in the chemical properties1. None of these effects can
nevertheless explain the enhanced reactivity of D76N β2m.
Indeed, the 76 position is located in a solvent exposed loop
between β-strands E and F (Fig. 1a). The D76N mutation does
not introduce a hydrophobic residue, which could lower protein
solubility and Asp and Asn are isosteric. From the structural
point of view the D76N mutation does not trigger major effects
neither in solution nor in the crystalline state2,4. In particular, the
crystal structures of wt β2m and of D76N mutant match very
closely and the residue 76 can be well superposed in the two
structures2.

However, the crystal structure does not exhaustively define the
native ensemble of a protein. Not only the position of each atom
rapidly (picosecond to nanosecond) fluctuates around its equili-
brium position, but also entire parts of proteins may undergo
coordinated slow motions (from microseconds to longer than
seconds). Such local and long-range conformational dynamics are
intimately connected to biomolecular function and malfunction.
Sparsely populated conformations, interconverting with the
major state can be more reactive and aggregation prone,
becoming a driving force in amyloid formation1,5. In order to
better understand the amyloidogenic properties of D76N, it is
therefore necessary to investigate the free energy landscape of
both the wt and D76N β2m variants.

Nuclear magnetic resonance (NMR) has the unique ability to
reach both spatial (atomic) and temporal (from tens of picoseconds
to milliseconds) resolution. Although D76N β2m rapidly converts
into non-soluble oligomers and amyloid fibrils in solution, the
intrinsic dynamics of both wt and mutant forms of the protein can
be studied in the crystals using solid-state NMR (ssNMR). Addi-
tionally, the absence of molecular tumbling and the capacity of the
probes to achieve higher spin-lock powers in ssNMR experiments
allow probing dynamics in the biologically relevant 10−8–10−5 s
timescale. The advent of fast magic-angle spinning (MAS) probes
and high field magnets has recently6,7 enabled the investigation of
dynamics in samples ranging from microcrystals8,9,11 to membrane
proteins12–14 and amyloid fibrils15. The wealth of crystallographic
data available on β2m and the inherent protection against aggre-
gation makes MAS NMR a technique of choice for a comparative
study of the dynamics of wt and D76N β2m.

Here by combining ssNMR and ensemble modeling16, we shed
light on the determinants of the aggregation propensity of D76N

β2m. Our results show the presence of distinct minor conformers
exchanging with a major form, on sub-millisecond timescales,
within the crystal lattice of both wt and D76N. The minor states
are characterized by a local loss of β-strand structure that is
enhanced in D76N. A detailed analysis of the interaction energies
of the ensembles reveals that D76 is at the center of a network of
stabilizing electrostatic interactions that are lost in the D76N
mutant. These observations provide a molecular explanation for
the pathological aggregation propensity of D76N, together with a
model that accurately predicts the impact of further mutations on
β2m stability.

Results
Structural and biophysical studies on position 76 mutants.
Previous work suggests that D76 residue is key in determining the
thermal stability and aggregation properties of β2m. Indeed,
among all D to N mutations along the β2m sequence only D76N
affects significantly β2m stability and aggregation propensity17.
To strengthen this hypothesis, four mutations were inserted at
position 76: D76A, D76E, D76H, and D76K. While D76K
resulted too unstable to be purified, the other three variants were
structurally and biophysically characterized.

The crystal structures of D76A, D76E, and D76H were
determined to high resolution (Fig. 1 and Supplementary Table 1).
Analogously to the structure of D76N2, these structures do not
show any major conformational change compared to wt β2m
(Fig. 1 and Supplementary Table 2). However, although the
backbone of the EF loop is well superimposable between the
structures of wt β2m and the mutants (Supplementary Fig. 1),
changing the residue in position 76 alters the H-bond network
within the loop (Fig. 1), in particular in D76A and D76E. In
keeping with this observation, the D76A structure where
Ala76 side chain cannot establish any H-bond with neighboring
residues, displays an electron density for the EF loop poorer than
those of all other structures indicating an increased disorder
(Fig. 1d). The last three C-terminal residues (residues 97–99) are
the only stretch undergoing some rearrangement upon mutation
at position 76. The side chain of Arg97 presents different
conformations, and the strength of its interactions with the EF
loop and to Trp95 varies in different mutants; residue Met99
interacts with Ser11 or with Arg12 (Supplementary Fig. 1). Such
observations suggest a role for residue 76 in determining the
interactions within the EF loop and with β2m C-terminal region.

The thermal stability and aggregation propensity of these
variants were evaluated (Fig. 1g, h). Similarly to the D76N
mutant, all three mutants display a decreased stability and
increased aggregation propensity, confirming the key role played
by position 76 in determining β2m biophysical properties.
Nevertheless, despite the high resolution structural characteriza-
tion of these different D76 mutants, the static crystal structures
do not allow to provide a clear explanation for their distinct
aggregation propensities.

Fast protein dynamics. Figure 2a, b show the 15N–1H correlation
spectra of wt and D76N β2m, corresponding to around 70% of
the amide groups (see Supplementary Data 1 for the resonance
assignments). The absent signals are associated with residues
located in loops, which are subject to either large conformational
disorder or extreme mobility, preventing their detection in
CP-based experiments. Interestingly, signals from all residues in
the BC-, EF- (encompassing position 76) and FG-loops are
present in the spectra, showing that these portions of the
molecule are sufficiently rigid and ordered, probably as a result of
a network of strong interactions within the loops and/or with the
neighboring side chains. Signals from residues 51–53 are missing
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from the spectra, consistent with the fact that this portion of the
molecule has been shown to be particularly dynamic in solution,
and to display different secondary structures in different PDB
structures18.

Site-specific 15N spin–lattice relaxation rates in the laboratory
(R1) and rotating frame (R1ρ)9 were measured for the two
molecules (pulse sequences and typical decay curves are shown in
Supplementary Fig. 3), and are depicted in Fig. 1c, d (see also
Supplementary Data 2). These rates are mainly determined by the
fluctuation of the 15N chemical shift anisotropy (CSA) and of the
15N–1H dipole coupling. These data were interpreted using the
simple model-free approach19, determining order parameters (S2)
and correlation times (τ) for all visible amide groups, which
respectively report on the amplitude and on the timescale of local
motions (Fig. 2e, f and Supplementary Data 3). For most of the
residues, the obtained order parameters are close to 0.9, and
extremely similar for the two variants. These results indicate that
the two proteins are overall very rigid, as expected for a beta-
sandwich fold and that the rigidity of the beta-sheet core of the
protein is not affected by the mutation. The residues in the EF-
loop (containing residue 76) display lower order parameters.
While this is in principle not surprising, as loops may feature

significant mobility also in the presence of crystal packing, it is
intriguing to observe that the fitted order parameters are
consistently lower in D76N than in wt β2m, reflecting an increase
in flexibility upon mutation. Small differences in the order
parameters were also observed for residues 11 and 12 at the end
of the A-strand. To better compare these data with crystal-
lographic data, the crystal structures of wt and D76N were
determined from diffraction data collected at room temperature
(RT) rather than at 100 K. The RT structures are highly
comparable in terms of conformation and B factors with
structures from frozen crystals (Supplementary Fig. 2 and
Supplementary Table 2).

Molecular dynamics (MD) simulation offers a mechanistic
description of fast protein dynamics20. We compare the
experimental order parameters with those calculated from two
50 ns MD runs (Fig. 2e) of both wt and D76N β2m in a water
box. Overall, the simulation reproduced the experimental
sequence dependence with good accuracy. In the simulation,
the AB loop and the C-terminal region are predicted to be highly
flexible, more so in the D76N mutant than in the wt, in
agreement with the fact that these regions are not visible in CP-
based experiments. The high-quality reproduction of dynamics
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observed throughout the two proteins experimentally and via
simulation suggests that the observed motions are intrinsic to the
protein and are essentially independent of immediate environ-
ment (solution and crystalline forms). It is noteworthy that the
timescale of the motions detected here are in the tens of
nanoseconds, which falls in the time range that is especially
difficult to detect by spin relaxation in solution due to protein
rotational diffusion. Reduced flexibility is found in the EF loop in
both D76N and wt, possibly due to additional slower motions
that are not captured by the 50 ns simulations.

Slow protein dynamics. The contribution of conformational
exchange on microsecond to millisecond timescales to transverse
spin relaxation can be characterized by measuring 15N R1ρ rates
as a function of the amplitude of the spin-lock RF field in so
called relaxation dispersion experiments. R1ρ was measured for all
residues of wt and D76N β2m, using 15N spin-lock RF amplitudes
ranging from 3 to 20 kHz. For several residues, mainly located
within the β-sheet core, the relaxation rates are independent of
the applied RF field. Interestingly, however, the rates of a non-
negligible fraction of the signals feature ample dispersion profiles
as the RF field is varied (Supplementary Fig. 4). Figure 3a shows
selected dispersion profiles for residues located at the end of the
A-strand and on the BC- and EF-loops. These data are indicative
of conformational exchange in the microsecond to millisecond
range21.

Figure 3b reports the amplitude of the dispersion of the R1ρ
rates (ΔRex). For the wt, the residues showing the highest
dispersion are located in the BC-loop, comprising Pro32, as well
as residues located in the nearby N-terminus of the protein. These
residues display a very similar dispersion also in the D76N

mutant, as it could be expected given the large distance with
respect to the mutation site. However, in D76N, major changes
are clearly observed in the EF-loop, as well as for the residues at
the end of the A-strand. In the case of residues 75–76 in D76N,
15N R1ρ rates were so large for low spin-lock fields that the signals
disappeared within the shortest relaxation delay, indicating
extensive exchange contribution for these two residues.

These results reveal the presence of significant conformational
exchange, consistent with two global processes. A first mode,
common to wt and to D76N variant, involves the residues in
spatial proximity to Pro32. A second mode affects the EF-loop
and remote residues at the end of the A-strand, and produces a
clear experimental signature only for D76N β2m.

Replica-averaged metadynamics (RAM) ensemble simulations.
In order to gain further insights into the conformational exchange
process and its consequences for the amyloid fibril formation,
RAM simulations were performed22,23. RAM is used to integrate
experimental data, in this case ssNMR chemical shifts, in mole-
cular force fields to accurately explore the conformational space
over timescales longer than those accessible during conventional
MD runs.

On the basis of 1HN, 15N, 13Cα, 13Cβ, and 13C′ chemical shifts,
converged (Supplementary Figs. 5 and 6) ensembles of structures
were calculated for both the wt and the D76N mutant. Free
energy surfaces were generated (Fig. 4a, b) as a function of the
side-chain rotamer distribution (AlphaBeta collective variable
(CV), AB, see Methods) and the antiparallel β-structure content
(AntiBetaRMSD CV, anti-β, see Methods). In both cases, the
calculated structures clustered around two bundles, describing a
major populated substate close to the crystal structure (less than
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2 Å full backbone average RMSD) and a minor populated
substate, which features significant differences in secondary
structural content (Fig. 4c, e) and chemical shifts differences
qualitatively in agreement with those measured (Supplementary
Fig. 5). The major substate (85 and 95% populated for the wt and
D76N, respectively) is characterized by a high β-sheet content
(~48% for both ensembles) while the minor substates are
characterized by a significantly lower β-sheet content (~38 and
30% for wt and D76N, respectively).

An analysis of the predicted solubility of the two ensembles
performed with CamSol24 shows that the D76N mutation in the
sequence causes a small reduction of the solubility for residues
74–77 (Supplementary Fig. 7). The solubility profiles corrected for
the structure and averaged over the ensembles show more
distributed differences (Fig. 4d, f, black shades), with a general
trend of reduced solubility for the D76N mutation but with no
significant changes. The same analysis performed instead only on
the minor substates (Fig. 4d, f, light blue shades), reveals a loss of
solubility for the D76N variant. In particular, the number of
residues below the aggregation prone threshold increases from
one to four for the D76N minor substate and all the aggregation-
prone sites belong to regions (around residues 65 and 85) that
have been recently shown to be crucial for modulating the
aggregation properties of the protein25. Comparison of the
secondary structure content and the solubility profiles in the
minor substates shows how the larger loss of beta structure in the
A-strand for the D76N variant with respect to the wt corresponds
to a decrease of solubility for B-strand region that is left more
exposed to the solvent.

Interaction network analysis. The RAM results provide a
molecular framework for understanding the dramatic increase in
the aggregation propensity of the D76N mutant, but do not
explain why the mutation is also reducing the overall stability of
the protein.

In order to understand the energetic contribution of the D76
mutation, we calculated the nonbonded interaction energies for
each pair of residues, averaged over the ensemble, thus resulting
in two interaction matrices. By subtracting the wt matrix from the
D76N matrix, we identified the largest energy gap in the
distribution of the elements. We then performed a network
analysis based only on the residue pairs for which the energy
difference was larger than the gap, i.e., on residue pairs
experiencing large differences in their interaction energy between
the two ensembles. Figure 5a shows the result of this network
analysis in the form of a graph.

Not surprisingly, it is evident that the largest differences in
nonbonded interaction energies between wt and D76N are related
to the interactions of residue 76 with the neighboring residues
(Fig. 5a). Mutation of D76 to N weakens a number of interactions
with charged residues. In particular a salt-bridge with K41 is lost
and the interaction with the R97 side chain that mediates an
interaction between the C- and the N-termini of the protein
disappears. Overall this explains the higher loss of β structure at
the N- and C-termini in D76N minor substate, thus linking the
lower fold stability with the increased aggregation propensity in
such minor substate.

The analysis of the ensembles suggests that D76 is in a key
position with respect to the electrostatic interactions among
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surface residues. In order to confirm the role of the long-range
interaction between R97 and D76, the R97Q mutant was
prepared: in keeping with the above considerations, the mutant
protein presents a significantly lower Tm value and intriguingly
Q97 side chain is disordered in the structure (Fig. 5b, c). Finally,
to further strengthen the hypothesis about the importance of
surface electrostatic interactions centered around D76 in
determining the stability of β2m, the nonbonded energy was
recalculated from the RAM simulation of the wt by modifying
one-by-one the charge state for all the D–N mutants previously
reported17, as well as for R97Q. The resulting energies were then
compared with the corresponding melting temperatures (Fig. 5d)
showing a remarkable correlation. Particularly relevant is the
agreement between the prediction of the increased stability for the
D98N mutant and the effect of the R97 mutation: this shows an
energy increase higher than any of the D–N mutations but lower
than the N76 mutant in agreement with the hypothesis that the
interaction between the EF loop and the C-terminal residues have
an important role for the stability of the protein.

Structural investigation of D76N β2m fibrils by ssNMR. In
order to link our observations to the mechanism of aggregation,
we investigated amyloid fibrils grown in vitro by ssNMR. Reso-
nance assignment was performed using the same 1H-detected
correlation experiments as for the resonance assignment of the

microcrystalline form ref. 26 (Fig. 6a). Sequential resonance
assignment was obtained for 53 residues, suggesting that this
portion of the molecule corresponds to the most rigid and
ordered core of the fibrils. The secondary structure of β2m in the
fibrils was determined with TALOS-N software27 on the basis of
1HN, 13CA, 13CB, 13CO, and 15N chemical shifts (Fig. 6b, c). Five
β-strands are predicted to be present in the fibrils. Interestingly,
the native B-strand is shortened at the N-terminal side upon fibril
formation. Residues corresponding to the C′-strand are not
observed, indicating disorder or substantial backbone flexibility.
The D-strand is extended toward the N-terminus, the E-strand is
subject to an important rearrangement and the EF-loop is
involved in β structure. The 13CA and 13CB chemical shifts of
C25 (55.6 and 39.3 p.p.m., respectively) are indicative of an oxi-
dized state as in the native monomer28. This is in agreement with
previous data showing that the disulfide bond is necessary for the
growth of wt β2m fibrils29.

We next aimed at characterizing the tertiary/quaternary
structure, defined as the arrangement of the intermolecular β-
strands in fibrils30. We thus performed 1H–1H through-space
correlations31, using radio frequency-driven recoupling mixing32.
These experiments were acquired as 3D or 4D datasets, where the
contacts between amide protons were encoded with the chemical
shifts of the 1H and/or 15N atoms of starting and/or landing
amide groups. These experiments revealed contacts between
residues spaced in sequence by less than five residues. This
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pattern is strongly indicative of a parallel, in register β-sheet
intermolecular arrangement, where each residue faces its
homologous residue in a neighboring molecule.

Discussion
In 2012 the β2m D76N mutant was reported to be responsible for
an aggressive form of systemic amyloidosis with large fibrillar
deposits in internal organs. Exceptional D76N aggregation pro-
pensity was also verified in vitro: this variant abundantly aggre-
gates under native conditions in the absence of seeds2. While in
principle it is unexpected that a D–N mutation on an exposed
loop should trigger such a dramatic effect, the D76N mutant also
displays a dramatic decrease in thermodynamic stability4. In
contrast, the mutation of one Asp to Asn—with the consequent
loss of a negative charge—in different parts of the protein did not
result in any marked effects in terms of fold stability or aggre-
gation propensity2,17.

A saturation site mutagenesis (D76 to E, H, and A) allowed us
to show here how position 76 is indeed crucial in the β2m fold,
any mutation at this position results in a notable decrease in
thermal stability and a remarkable increase in aggregation pro-
pensity as observed for D76N. Intriguingly, the crystal structures
suggest that D76 is an important node in a network of H-bond
within the EF loop. We then used ssNMR to detect the change in
dynamics upon mutation. One of the advantages of ssNMR,
specific to the particular case of aggregation-prone proteins,
consists in studying protein dynamics in crystallo, where the
crystal lattice plays a “shielding role” preserving an overall native
conformation. We are therefore able to exclusively probe intrinsic
dynamics of individual protein molecules and decouple them
from intermolecular interactions.

A comparison of fast (sub-microsecond) timescale dynamics
measured using relaxation reveals similar motional characteristics
in the wt and D76N mutant, with slightly higher levels of flex-
ibility in the mutant. The position and amplitude of the dynamic
modes observed in the crystalline lattice are well reproduced by
fully solvated MD simulation, suggesting that the observed
dynamics are intrinsic to the protein. Remarkably, ssNMR 15N
R1ρ relaxation dispersion experiments in crystalline β2m11,33–35,
reveal the existence of excited states that exchange with the
ground state on the micro to millisecond timescale for both the
wt and the D76N variant. The D76N excited state displays more
extensive exchange phenomena than wt β2m, with seven sites
exhibiting markedly high relaxation dispersion effects. Such sites
are almost all located in the protein region neighboring the
mutation: in the EF-loop, in the E-strand and at the end of the A-
strand.

In keeping with these observations, ensembles resulting from
RAM simulations showed that β2m displays two distinct con-
formational states in both mutant and wt. As sketched in Fig. 7,
while globally wt β2m excited state resembles very closely the
ground state, D76N populates a conformational ensemble,
which is less structured. In the excited state the D and the N-
terminal A-strands lose their beta structure and the C-terminus
is partially detached from protein core. As a result, the
aggregation-prone core strands (B, E, and F) lose the protection
of the aggregation resistant edge strands (A, C, D, and G).
Remarkably all the data indicate an increased level of dynamics
in D76N N-terminal region that is reminiscent of the ΔN6 β2m
mutant, which is known for a strong aggregation pro-
pensity36,37. While our data clarify the differences in aggrega-
tion propensity between D76N and wt, which likely yield to
different aggregation behaviors both in vitro and in vivo,
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however, they do not provide specific insights on the aggrega-
tion pathways for the two β2m variants.

Furthermore, the conformational ensembles suggest a link
between the differences in the excited states and the differences in
the thermal stabilities where the mutation in position 76 breaks a
large network of electrostatic interactions distributed over a large
number of residues including the C- and the N-termini. RAM
simulations indicate that the hydrophobic core around the

evolutionary conserved W95 is not optimally shielded from the
solvent. A specifically designed R97Q mutant next to the
C-terminus allowed us to further test this hypothesis showing
that the weakening of the interaction between positions 76 and
97 significantly decreases β2m thermal stability.

Moving perspective, we complemented the analysis of the
native state of D76N β2m with ssNMR characterization of
amyloid fibrils grown in vitro. Interestingly, as shown in Fig. 6b,
we find a progressive evolution of structural elements between the
starting, native conformation derived from the crystal structure,
the ensemble representing the excited state derived by RAM
simulations, and the final fibrillar state. Notably, the A and G
edge strands of β2m, which are destabilized by the point muta-
tion, are not part of the cross β-structure. Additionally, the N-
terminal portion of the B-strand loses secondary structure both in
the excited state (native*) and in the fibrils. While these data do
not represent an evidence for a particular aggregation pathway,
we note that the rearrangement of the secondary structure ele-
ments in the core of the fibrils may be facilitated by the loss of
structure of the corresponding native β-elements. This is parti-
cularly evident for the region encompassing residues 44–56 where
the C′ and D strands are absent in the excited state while they
appear to form a unique strand in the fibrillar state. A similar
observation can be made for the E-strand and EF-loop region.
The loss of interaction between EF-and C′D-loops, as evidenced
by the network analysis, may therefore be related to their reor-
ganization in β-structures within the fibrils.

The secondary structure of wt β2m fibrils has previously been
characterized by 13C-detected ssNMR38-40. We note common
structural and dynamical features in both wt and D76N fibrils,
namely the position of the rigid core, a parallel in register beta
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arrangement, the preservation of the disulfide bridge and flexible
termini, but also differences can be observed in the fine details of
the secondary structures, namely the positions of the β-strands.
This may indicate comparable fibril architecture even in the
presence of likely different aggregation pathways.

In summary, in the present work, by using a combination of X-
ray crystallography, ssNMR and MD simulations, we have been
able to determine the impact of the highly pathogenic D76N
mutation on the native state of β2m. Thermodynamic stability of
the native fold is lowered due to the weakening of a set of elec-
trostatic interactions and to the diminished interaction between
the C-terminal residues and the β2m hydrophobic core.
Enhanced aggregation propensity in D76N appears to be corre-
lated with the existence of a high-energy state characterized by a
loss of structure in the protective edge β-strands. Previous
observations that low energetic contributions, e.g., the friction in
extracellular space in vivo or the shear forces at the interface air/
liquid in vitro are sufficient to trigger amyloid aggregation2,4, are
well rationalized by the presence of an amyloid-competent state
under native conditions. In conclusion, our observations provide
a molecular explanation for the biophysical properties leading to
D76N pathogenicity, while showing the effectiveness of our
integrated approach to investigate the molecular bases of amyloid
aggregation propensity, a method that may well be applied to
other amyloidogenic folded proteins.

Methods
Protein production. β2m mutants (D76E, D76A, D76H, D76K, and R97Q) were
produced using the Phusion Site-Directed Mutagenesis Kit (lifetechnologies), fol-
lowing the manufacturer protocol. Forward primers used for mutagenesis are
available in Supplementary Table 3. Any attempt to obtain amount of the D76K
mutant suitable for structural and biophysical characterization failed. All other
variants together with wt and D76N proteins were instead expressed and purified
using standard protocols36.

Crystallization structure determination and analysis. All the proteins were
crystallized under the standard conditions as used for most of the β2m monomeric
variants: protein concentration 8–10 mg/ml, 21–27% w/v PEG 4000, 15% v/v
glycerol, 0.2 M ammonium acetate, 0.1 M sodium acetate, pH 5.0–5.5.

Crystals were flash-frozen to 100 K in liquid nitrogen without supplementation
of additional cryoprotectants. Diffraction data were collected at the European
Synchrotron Radiation Facility (Grenoble France) at the ID29, ID23-2, and ID23-1
beamlines41–43.

Data collection at RT was performed as follows. Beta2-microglobulin crystals
were mounted on a microRT Room Temperature kit (MiTeGen), sealed with a
MicroRT polyester capillary, filled at the extremity with 5 µl mother liquor. RT X-
ray diffraction data were collected at beamline ID29 at ESRF using Pilatus3 6M
detector in a shutterless mode at 0.9840 Å wavelength. Data collection strategy
were calculated using BEST44 from two images collected with a 50 × 30 µm2

Gaussian beam and a flux limited to 5.58 × 1010 photons/s (corresponding to 5% of
the full beam) to limit radiation damage. Strategy was calculated using a
susceptibility factor of 40 to take into account the faster decay rate that occurs at
RT. For the wt crystal, 880 images were collected with 0.02 s exposure time and
0.15° oscillation angle, with a flux of 1.12 × 1010 photons/s (corresponding to
1.35% of full beam). For the D76N mutant, 1800 images were collected with 0.02 s
exposure time and 0.1° oscillation angle, with a flux of 8.30 × 109 photons/s (1% of
full beam).

Data were processed with MOSFLM45 and either SCALA or AIMLESS46 and
structures solved by molecular replacement using the program PHASER47 and wt
β2m as search model (pdb ID 2YXF). All the structures were refined with Phenix
refine48 and manual model building and structure analysis were performed with
COOT49. CCP4MG was used for the preparation of the figures50.

Thermal denaturation. Thermal unfolding was monitored at 202 nm in the 20–95
°C range using a JASCO J-810 spectropolarimeter equipped with a Peltier device
and a fluorescence detector (JASCO corporation, Tokyo, Japan). For all β2m
variants involved in this study ramps were carried out in 50 mM sodium phos-
phate, pH 7.4. Protein concentration was set to 0.1 mg/mL (cell path 0.1 cm), and
the temperature increase was 50 °C/h. Tm values were determined as the minima of
the first derivative of the unfolding profiles. Thermal unfolding experiments display
high reproducibility.

Aggregation propensity. A volume of 100 μL of recombinant variants D76N,
D76A, D76H, D76E, and wt β2m at 40 μM (PBS pH 7.4) containing 10 μM
Thioflavin T (ThT) (SIGMA), were incubated at 37 °C in Costar 96-well black-wall
plates closed with clear sealing film (4TITUDE) and were subjected to 900 rpm
double-orbital shaking. ThT fluorescence was recorded every 15-min (BMG
LABTECH FLUOstar Omega). Experiments have been performed in triplicate.

Isotopically labeled sample preparation. Isotopically labeled D76N and wt β2m
were expressed in triple labeled (2H, 13C, 15N) M9 medium (D2O, d7-13C-glucose,
and 15N-ammonium chloride). The purification and refolding step were performed
as described above in non-deuterated water allowing proton back-exchange at
every amide site. Crystals were grown using the sitting drop vapor diffusion
technique (10 mg/mL protein concentration, crystallization solution: 22% w/v PEG,
20% v/v glycerol, 0.1 mol/L sodium acetate, pH 5.5). After 2 weeks, microcrystals of
D76N and wt β2m were filled into 1.3 mm NMR rotor by centrifugation (14,000 r.
p.m.).

NMR spectroscopy. NMR experiments were conducted on 18.8 or 23.5 T narrow-
bore Bruker Avance III spectrometers, corresponding respectively to 1H Larmor
frequency of 800MHz and 1 GHz at 60 kHz MAS. Sample temperature was
monitored by bulk-water chemical shift using the PEG line as a reference and set to
283 K.

Resonance assignment of D76N β2m was performed with the same procedure
that described51 using the whole set of experiments ((H)CANH, (H)(CO)CA(CO)
NH, (H)CONH, (H)CO(CA)NH, (H)(CA)CB(CA)NH, and (H)(CA)CB-(CA)
(CO)NH).

The pulse sequences used for 15N R1 and R1ρ relaxation rates measurement are
as described9 (Supplementary Fig. 1). Relaxation delays were set to 0, 0.5, 1, 2.5, 5,
10, 20, and 40 s for 15N R1 measurements and 1, 3, 8, 20, 45, 100, 180, and 300 ms
for 15N R1rho measurements. The 15N R1ρ relaxation dispersion curves were
obtained with 15N spin-lock frequency of 3, 4, 5, 6, 7, 10, 15, and 20 kHz. Examples
of decay curves are shown in Supplementary Fig. 3.

The NMR data processing was done with Topspin, the resonance assignment
with CARA and the analysis of the relaxation with Sparky.

Relaxation data fitting. All relaxation data fitting has been done using Matlab.
Amide 15N relaxation was assumed to be dominated by the dipolar coupling with
its bonded 1H and by its CSA. The relaxation rates can therefore be expressed as:

R1 ¼ d2

4
J0 ωH � ωNð Þ þ 3J1 ωNð Þ þ 6J2 ωH þ ωNð Þ½ � þ ω2

NΔσ
2

3
J1 ωNð Þ; ð1Þ

R1ρ ¼
d2

8
4J0 ωSLð Þ þ J0 ωH � ωNð Þ þ 3J1 ωNð Þ þ 6J1 ωHð Þ þ 6J2 ωH þ ωNð Þ½ �

þω2
NΔσ

2

18
4J0 ωSLð Þ þ 3J1 ωNð Þ½ �;

ð2Þ

where d ¼ μ0�hγNγH
4πr3NH

, µ0, the vacuum permittivity, γH and γN, respectively, the 1H and
15N gyromagnetic ratios, rNH the NH bond distance (1.02 Å), ωH and ωN,
respectively, the 1H and 15N Larmor-precession frequency, Δσ the 15N CSA (170 p.
p.m.), and ωSL the rf spin-lock frequency.

We applied the Lipari–Szabo model-free analysis. In this framework, the
spectral density function Jm(ω) is independent of the value of m and is given by:

JSMF ωð Þ ¼ 2
5

1� S2ð Þτeff
1þ ωτeffð Þ2

" #
; ð3Þ

where S2 is the order parameter and τeff the effective model-free timescale. This
approach does not account for the anisotropy. Intensity decay was therefore treated
as a mono-exponential process.

The relaxation decay curves were fitted by minimizing the chi-square function:

χ2 ¼ 1
N

XN
k¼1

IX;exp tkð Þ � IX;calc tkð Þ
� �2

σ2X;exp
; ð4Þ

X stands for 15N R1 or 15N R1ρ, N is the number of points of the curve, and σ is the
experimental error calculated as the spectrum RMSD.

Error estimate was done with 1000 Monte Carlo simulations. In these
simulations, synthetic datasets are produced by adding Gaussian random noise to
the back-calculated decay curves. The error was then defined as the standard
deviation of the ensemble of dynamical parameters obtained by fitting the synthetic
datasets.

MD simulations. The simulation system consists of either wt or D76N β2m in a
dodecahedron box. Na+ and Cl− ions were added to neutralize charges. Two 50-ns
independent simulations were seeded from both the wt (PDB code 2YXF) and
mutant (4FXL) crystal structures. GROMACS52 was used to calculate the
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trajectories. Prior to the production runs of 50 ns with an integration step of 2 fs in
the NPT ensemble, energy minimization with the steepest-descent minimization
algorithm is performed, followed by 2-ns equilibration steps in the NPT ensemble.
Amber ff99SB-ILDN53 is used as force field with TIP4P/200554 water model.
Holonomic constraints are applied on all hydrogen-heavy atom bond terms to
remove fast modes of oscillation. A cutoff of 10 Å is used for the Lennard-Jones
and electrostatic interactions. Particle-mesh Ewald summation with a grid spacing
of 16 Å is used to calculate long-range electrostatic interactions. A modified
Berendsen thermostat with a damping constant of 0.1 ps is used to keep the
temperature of the system at 298 K. A Berendsen barostat with a relaxation time of
2 ps is used to control the pressure at the target value of 1.01325 bar.

RAM simulations. The simulations were carried out using GROMACS52 and
PLUMED55. The system was described using the Amber03W56 force field in
explicit TIP4P05 water at 278 K. The starting conformations were taken from the
2YXF and 4FXL X-ray structures for the wt and D76N mutant, respectively. The
structures were protonated and solvated with ~8200 water molecules in a dode-
cahedron box of ~260 nm3 of volume. The RAM protocol was applied using
chemical shifts as replica-averaged restraints54 and bias-exchange metady-
namics23,57,58. Four replicas of the system were simulated in parallel with a
restraint applied on the average value of the back-calculated NMR chemical shifts
with a force constant of 24 kJ/(mol p.p.m.2).

Each of the four replica is biased along one of the following four CVs: the
antiparallel β content (the “anti-β” CV), the parallel β-sheet content (the “Para-β”
CV), the AlphaBeta CV defined over all the chi-1 angles for the hydrophobic side-
chains (the “AB” CV), and the AlphaBeta CV defined over all the phi and psi
backbone dihedral angles of the protein (the “bbAB” CV). Definition of the CVs
are available in the PLUMED manual and publication. Gaussians deposition was
performed with σ values set to 0.1, 0.04, 0.16, and 0.25, for β, Pβ, AB, and bbAB,
respectively; an initial energy deposition rate of 0.125 kJ/mol/ps and a bias-factor of
8. Each replica has been run for a nominal time of 700 ns, with exchange trials
every 50 ps.

The cumulative sampling of the four replicas was used to generate a free energy
landscape as a function of the before mentioned CVs. A set of microstates is
identified by dividing the four-dimensional CV-space into a homogeneous grid of
small dimensional hypercubes and their free energy is obtained using a standard
weighted histogram analysis59. Lower-dimensional FESes are obtained integrating
out the CVs not showed.

Data availability. Coordinates and structure factors for D76E, D76A, D76H,
R97Q, wt RT, and D76N RT have been deposited in the Protein Data Bank under
accession codes 4RMU, 4RMW, 4RMV, 5CSG, 5CS7, and 5CSB, respectively. The
datasets generated and/or analyzed during the current study are available from the
corresponding authors upon reasonable request.
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