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INTRODUCTION

Wind turbines constitute an interesting part of the renewable energy production. Reliability, safety and fault tolerant wind turbine control are highly required. To increase system reliability, the design of fault tolerant control (FTC) becomes necessary. These systems are control systems that assure tolerating potential faults in the system in order to improve its reliability and safety while maintaining a desirable performance. In other words, they are closed-loop control systems which compensate for fault and provide a desirable performance. Recently, FTC techniques have attracted the attention of several researchers- [START_REF] Gao | A survey of fault diagnosis and fault-tolerant techniquespart i: Fault diagnosis with model-based and signal-based approaches[END_REF] and [START_REF] Cecati | A survey of fault diagnosis and fault-tolerant techniquespart ii: fault diagnosis with knowledge-based and hybrid/active approaches[END_REF].

One of the categories of faults is that leading to a large variation in system parameters. As noted in [START_REF] Noura | Fault-tolerant control in dynamic systems: Application to a winding machine[END_REF]), the occurrence of these faults causes a drastic change in system dynamics and can lead to an abnormal operation of the system. Significant research and numerous strategies have been developed in order to design a specific FTC for that type of faults. A fault reconfiguration approach is proposed in [START_REF] Steffen | Control reconfiguration of dynamical systems: linear approaches and structural tests[END_REF]), based on the change of the control structure in response to the fault. Furthermore, data-driven FTC techniques focus on the problem of the output feedback FTC for a system affected by a fault that changes system dynamics [START_REF] Kulcsár | Modelfree fault tolerant control approach for linear parameter varying system[END_REF], [START_REF] Dong | Data driven fault tolerant control: a subspace approach[END_REF], [START_REF] Yin | Real-time implementation of fault-tolerant control systems with performance optimization[END_REF], [START_REF] Ding | Datadriven realizations of kernel and image representations and their application to fault detection and control system design[END_REF] and [START_REF] Wang | Data-driven outputfeedback fault-tolerant control for unknown dynamic systems with faults changing system dynamics[END_REF]). A data-driven output feedback FTC problem considering optimal performance is studied in [15]. Moreover, a projection-based FTC design for pitch systems is presented in [START_REF] Ding | Data-driven design of fault-tolerant control systems[END_REF]). Using a new form of extended state observer, a reconfigurable control based on LPV system modeling is proposed in [START_REF] Jain | A novel approach to real-time fault accommodation in nrel's 5-mw wind turbine systems[END_REF]).

The sliding mode approach is also used for the FTC issue to compensate for the mentioned faults. The sliding mode observer [START_REF] Edwards | Sliding mode observers for fault detection and isolation[END_REF]and [START_REF] Patel | A sliding mode observer for tyre friction estimation during braking[END_REF]) is used to achieve fault estimation that has been applied to substitute the fault detection and isolation (FDI) approach. Also, a Takagi-Sugeno Sliding Mode Observer (T-S SMO) is proposed in [START_REF] Jiang | Fault estimation in nonlinear uncertain systems using robust/sliding-mode observers[END_REF]) in order to estimate system actuator parameter faults. A novel FTC allocation schema with output integral sliding mode is proposed in [START_REF] Hamayun | A fault tolerant control allocation scheme with output integral sliding modes[END_REF]), when only the system outputs are measured. Recently, an adaptive step by step sliding mode observer has been used in fault tolerant control based on state system estimation and fault indicator [START_REF] Lan | Fault-tolerant wind turbine pitch control using adaptive sliding mode estimation[END_REF]).

In this work, we present a novel technique for compensating for the actuator fault. The new strategy consists in designing a resilient controller using the synergetic theory. The synergetic control allows to drive the system trajectories to operate on the designed manifolds. This approach has been developed by Kolesnikov and Coworkers (Kolesnikov et al. [2000]). The connection and comparison between the synergetic performance and those of sliding mode control have been detailed in [START_REF] Nusawardhana | Nonlinear synergetic optimal controllers[END_REF]. Recently, the synergetic control has been applied in many fields [START_REF] Ju | Nonlinear synergetic governor controllers for steam turbine generators to enhance power system stability[END_REF], [START_REF] Shokouhandeh | An enhanced and auto-tuned power system stabilizer based on optimized interval type-2 fuzzy pid scheme[END_REF] and [START_REF] Bouchama | Reaching phase free adaptive fuzzy synergetic power system stabilizer[END_REF]). The main advantages of this approach are global stability, order reduction and insensitivity to parameter variation. Here, this theory will be used to design a resilient control able to compensate for the dynamic faults and to recover the initial performance.

The remainder of the paper is organized as follows. Section 2 presents the problem formulation. Section 3 introduces briefly the synergetic control and the adaptive observer and presents the proposed resilient synergetic control. A numerical example is simulated in section 4. Finally, some conclusions are drawn in section 5.

PROBLEM FORMULATION

This work focuses on the low pressure fault that affects pitch system of wind turbines. The faulty system is modeled by: ẋ

= Ax + Bu + ∆Af x y = Cx (1)
Where,

A = 0 1 -ω 2 n -2ξ n ω n , B = 0 ω 2 n , C = [ 0 1 ] ∆A = 0 0 ω 2 f -ω 2 n 2ξ f ω f -2ξ n ω n
where f denotes the indicator fault, f ∈ [ 0 1 ]. ω n and ξ n denote respectively the natural frequency and the damping factor, while ω f and ξ f denote their values at low pressure. This work aims to design a resilient synergetic control as an FTC technique to recover the desired performance when an actuator fault occurs. Fig. 1 shows the general structure of the FTC system: Our goal is to use the synergetic theory to design a resilient control in order to compensate for the effect of the fault and ensure stability for a closed loop system.

Synergetic Theory

The design of the synergetic controller is similar to that of the sliding mode controller. The main steps of the procedure can be itemized as follows:

• Design of manifold The manifold s(x) = 0 can be a linear or nonlinear function of the state variables.

It is selected according to the desired performance.

Consider the following dynamical system of a single pitch system in fault-free case: ẋ = Ax + Bu (2) The manifold has the form:

M = s(x) = 0 (3)
It is constructed so that det ∂M ∂x B = 0.

• Design of synergetic control law The synergetic controller is synthesized by solving the first order differential equation:

T Ṁ + M = 0 (4) with T = T T > 0 is a diagonal positive definite matrix, presenting the convergence parameter. Solving the above differential equation for u yields a controller that forces the variables state to lie on the manifold s(x). Note that:

dM dt = ∂M ∂x ∂x ∂t = ∂ ∂x s(x) T ẋ = s x (x) ẋ (5)
Then, solving the above differential equation gives:

T Ṁ + M = T s x (x) ẋ + M = T s x (x)(Ax + Bu syn ) + M = 0 (6) Thus, u syn = -(T s x (x)B) -1 (T s x (x)Ax + M ) = u eq + u s (7)
where (s x (x)B) is invertible. u eq = -(T s x B) -1 T s x Ax denotes the equivalent control law that drives the state trajectories to converge toward the manifold and u s = -(T s x B) -1 s(x) is the smooth component that maintains the system dynamics along the manifolds.

The system dynamics along the manifold M = 0 is given by two equations as follows:

M = 0 ẋ = Ax + Bu syn = (I -B(T s x (x)B) -1 T s x (x))Ax- B(T s x (x)B) -1 M = 0 (8)
These equations prove the advantage of the order reduction of the synergetic control. It provides a reduced-order, n -m-dimensional dynamical system.

Theorem 1. Consider linear system (2) and diagonal positive definite matrix T . Using the control law that satisfies (4), the state trajectories will converge to the manifold and the convergence speed depends on the designated parameterT .

Proof 1. Consider the Lyapunov function defined as

V (s(x)) = s T (x)s(x). Derivation of V (s(x)) gives: V (s(x)) = 2s T (x) ṡ(x) (9) 
From (4) we have ṡ

(x) = -T -1 s(x) (10) Hence, V (s(x)) = -2s T (x)T -1 s(x) < 0 , f or T > 0 (11)
Thus, the stability condition is guaranteed for such synergetic control law and the rate of convergence of the system state to the manifold depends on T . It is clear from (7) that the synergetic control depends on the dynamic matrix A . Therefore, if the synergetic control is used when a fault that can change the system dynamics occurs, the system adapts easily to this change and compensates for the effect of the fault. This feature can be considered as an advantage used for designing resilient control when the fault caused by the system dynamics changes.

In what follows we will estimate the fault indicator using the adaptive observer.

Fault Estimation

For designing the resilient synergetic control, we need the fault indicator estimation. To this end, we will use an adaptive observer to get both the state and the fault estimations. Consider the pitch system in faulty case with a disturbance signals d described by

ẋ = Ax + Bu + ∆Af x + Ed y = Cx (12)
where f the fault indicator is a bounded unknown scalar. We assume that (A + ∆Af, C) is observable for all f . E is the distribution matrix of the disturbance. The adaptive observer is given by

ẋ = Ax + Bu + ∆A f x + K (y -ŷ) ˙f = xT ∆A T N (y -ŷ) ŷ = C x (13) 
Let e x = x-x and e f = f -f be the error state estimations and the error fault estimation, respectively. It follows from ( 12) and ( 13) that the estimation error system is ėx

= (A -KC + ∆Af )e x + ∆Axe f + Ed ˙f = xT ∆A T N Ce x ( 14 
)
Now it is necessary to verify the stability condition of the observer. The linear matrix inequality (LMI) approach is used here to show the existence of the mentioned observer and to guarantee the estimations performance.

Theorem 2. If there exist symmetric positive definite matrix P and a full matrix X which satisfy the following condition that holds for all slow variations of f .

P ∆A = C T N T ∆A ( 15 
) P A -XC + P ∆Af + * P E E T P -µ < 0 ( 16 
)
There exists an adaptive observer whose estimation errors converge to the origin via the calculation of the observer gains. Note that X = P K and thus the observer gain K is obtained as follows:

K = P -1 X (17)
To minimize the estimation error [ e x e f ] the scalar µ has to be minimized. Proof 2. Let the Lyapunov function be as follows:

V (t) = e T x P e x + e T f e f > 0 (18) 
Its derivative with respect to time can be given by V = 2e 

For all slowly varying f , we have ḟ = 0, thus

2e T f ėf = -2e T f xT ∆A T N Ce x (21) 
From ( 15), we can deduce

P ∆Ax = xT A T f N C T ( 22 
)
We define a matrix R and scalar µ such as:

R = P (A -KC + ∆Af ) + (A -KC + ∆Af ) T P + 1 µ P EE T P (23)
Suppose that the scalar µ and the matrix P justify the following inequality:

2e 

It follows that V ≤ 0. This proves that the estimation error converges to a small set according to Lyapunov stability approach. Using the the Schur complement in the case of R < 0 can be given otherwise.

P (A -KC + ∆Af ) + * P E E T P -µ < 0 ( 26 
)
where * denotes the symmetric component. Substituting P K by X and thus, the proof of the theorem is finished.

There are some difficulties in solving ( 15) and ( 16) simultaneously to extract P and X. So, we can transform (15) into the following optimization problem: Define the scalar η, such as

η = inf η : ηI P ∆A -C T N T ∆A ηI < 0 (27)
where * means a symmetric component. Now it remains to design the resilient synergetic controller.

Resilient Synergetic Control

The main purpose of resilient control is to compensate for the dynamics change induced by low pressure faults in the pitch systems, so that the stability and overall closed-loop system performance can be maintained. To this purpose, we exploit the feature of the synergetic control law that depends on the system dynamics matrix A and we integrate the fault value in the system dynamics matrix. Consider the fault-free dynamics model

ẋ = Ax + Bu nom + Ed y = Cx (28)
After obtaining the fault indicator estimation f , this estimation can be used to define a modified faulty model as follows

ẋ = Ax + Bu r + ∆A f x + Ed y = Cx (29)
where u r is the control in faulty case and u nom is the nominal control. Combining ( 28) and ( 29), the pitch system switches between two models according to fault occurrence. Thus, the pitch system can be modelled as follows: ẋ = A s x + Bu s + Ed y = Cx (30) with,

A s = A, u s = u nom if f < f th A s = A + ∆A f , u s = u r if f ≥ f th (31)
where f th is the threshold value of the fault indicator. Many methods of selecting the threshold have been developed [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF]). u nom is the baseline controller used to achieve pitch angle control in nominal case and u r is the control used to compensate for the low pressure fault. Both controllers are designed using the synergetic control approach.

Our objective now is to construct a control strategy that not only drives the closed-loop system trajectory approaches to get the manifold s(x) = 0 but also adapts to the system dynamics change. Firstly we design the manifold using the procedure of [START_REF] Slotine | Applied nonlinear control[END_REF]) as follows:

s(x) = ( d dt + λ)(x 1 -x 1ref ) ( 32 
)
With λ is selected by the constructer so that det ∂M ∂x B = 0 and x 1ref is a constant value representing the reference value of the first variable state x 1 . This manifold leads the trajectory of the variable state x 1 to converge to the reference value x 1ref . The resilient synergetic control is obtained by solving the first-order differential equation T ṡ(x) + s(x) = 0 that is controlled by appropriately choosing the convergence parameter T . To proceed, note that ṡ

(x) = λ ẋ1 + ẋ2 = S ẋ (33) 
where S = [ λ 1 ], This variable is designed so that (SB) is invertible. The resilient control is derived from the differential equation using the faulty model ( 29) when f ≥ f th as follows:

T ṡ(x) + s(x) = T S ẋ + s(x) = T S((A + ∆A f )x + Bu r + Ed) +s(x) = 0 (34)
Thus, we obtain the synergetic control law

u r = -(T SB) -1 T S(A + ∆A f )x + T SEd + s(x) (35)
Hence, the obtained synergetic control comprises two terms given by

u r = -(T SB) -1 (T SAx + T SEd + s(x)) -(T SB) -1 ∆A f x = u nom + u resilient (36) 
with,

u resilient = -(T SB) -1 ∆A f x (37) 
It can be seen that the resilient control depends on the additive term that represents the fault which allows to compensate for the effect of the considered fault. In fact, the designed resilient controller drives system dynamics A s that includes dynamics variation ∆A to converge towards the desired performances.

The stability of the obtained controller as mentioned in the previous subsection has the simplest form T > 0.

Theorem 3. The obtained controller (36) can compensate for the fault f and recover the nominal pitch dynamics. Proof 3. The dynamics of the pitch system along the manifold in presence of fault is obtained by substituting (36) in ( 29) yielding

ẋ = Ax -B((T SB) -1 (T SAx + T S∆A f x +T SEd + s(x))) + ∆A f x + Ed = -(T S) -1 s(x) (38) 
It is clear that the pitch system dynamics along the manifold is independent of the fault, which proves that the resilient controller can compensate for the fault.

NUMERICAL EXAMPLE

In this section, the pitch system is used to prove the effectiveness of the proposed resilient synergetic control.

In the nominal case, we have ω n = 11.11 rad/s and ξ n = 0.6 rad/s and under actuator fault, we have ω f = 3.42 rad/s and ξ f = 0.9 rad/s. We suppose that there exists a measurement noise modeled by a zero mean white Gaussian noise. In this work we aim to drive the pitch angle β to converge to the reference pitch angle β ref = 6 . The synergetic control is characterized by T = 1 and λ = 6. The pitch angle β is shown in fig. 2. Then, we aim to study the effect of the variation of the synergetic parameter T on the variable state evolutions (Fig. 3). The effect of variation of the design parameter T on the pitch system dynamics is illustrated in Fig. 3. We can see from this figure that the increase of T gives a lower rate of state variable convergence toward the desired value. So, the convergence of the system trajectories toward the manifold is inversely proportional to the value of T . This is explained by the fact that the increase of T is correlated with the decrease of the synergetic control law gains. Parameters T and λ can affect stability and performance of the pitch system, thus they must be well chosen.

Resilient synergetic control

In the time period t ∈ [200; 300] s , the pitch system is affected by a drop in pressure. The fault estimation is carried out by an adaptive observer (see Fig. 4). The simulation results are shown in the following figures. As Remark: We observe that the value of the synergetic parameter λ affects the fault estimation. When we increase the value of λ from 2 to 6, the fault estimation becomes more accurate and approaches the real fault. Therefore, an appropriate value of gives an adequate fault estimation. [200; 300] s. In order to demonstrate the resilient control performance, the pitch angle, before and after using the synergetic resilient control, is plotted in Fig. 7 and Fig. 8. It can be seen from Fig. 7 that the proposed resilient synergetic control succeeded in compensating for the considered fault and recovering the pitch angle to the desired value. The resilient control increased from 6 to 12 when the fault occurs which maintains the pitch system in the desired performance.

CONCLUSIONS

In this work, a fault tolerant control (FTC) system was proposed for system with fault changing system dynamics to recover the nominal operation and the desired performance. The FTC system included an adaptive observer to detect and estimate the fault and a synergetic resilient control to compensate for parameter faults. The proposed synergetic resilient control based on the synergetic theory taking into consideration the feature of dependence of the system dynamics. Finally, a numerical example proved the effectiveness of the proposed synergetic resilient control
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 1 Fig. 1. General structure of the FTC system

  Fig. 2. Pitch angleAs expected, the closed loop trajectory generated by the synergetic control law converges to the manifold. In fact, the pitch angle converges to the reference value 6.
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 3 Fig. 3. The effect of T on the evolution of the pitch angle

  Fig. 4. Fault estimation can be seen from Fig 4, the adaptive observer allows satisfactory fault estimation in spite of a light difference between real and estimate fault due to the noise applied to the pitch system.Remark: We observe that the value of the synergetic parameter λ affects the fault estimation. When we increase the value of λ from 2 to 6, the fault estimation becomes more accurate and approaches the real fault. Therefore, an appropriate value of gives an adequate fault estimation.

  Fig. 5. Fault estimation according to the value of λ
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  Fig. 7. Pitch angle