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de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The main reason behind such a situation is that their application can lead to significant production effectiveness improvements. They allow to relief the personnel from time-consuming routine work and they can increase the efficiency and accuracy of production and service activities. AGVs can be used in hazardous environments and can reduce the risk of explosions and contaminations in certain environments such as coal mines or pharmaceutical production. In service applications, AGVs can enhance the availability, safety and security of industrial sites and infrastructure systems. However, in many potential applications AGVs are not yet used or the their possible potential in terms of flexibility and efficiency is not yet realized exploited. The causes for this non-satisfying situation are manifold. One of them is the limited maneuvering capability of AGVs with conventional steering systems such as classical Ackermann steering. Another one is the high cost of sensors on AGVs. Further causes also arise from the sensors of an AGV: very often sensor data filtering, sensor data plausibility assessment and sensor fusion are important challenges for developers and operators of AGVs. Finally, causes can also be a consequence of a less than sufficient flexibility, availability and reliability of current AGV designs.

This paper combines two main approaches to address this causes: the innovative AGV design described allows unlimited maneuvering capabilities and the virtual diagnostic sensor design enhance reliable sensor information without additional expenditures. The design of virtual sensors is one of the emerging streams in the area on Fault-Tolerant Control (FTC) and Fault Diagnosis (FD) [START_REF] Mahmoud | Active Fault Tolerant Control Systems: Stochastic Analysis and Synthesis[END_REF]; [START_REF] Witczak | Fault diagnosis and fault-tolerant control strategies for non-linear systems[END_REF]; [START_REF] Ding | Model-based fault diagnosis techniques: design schemes, algorithms and tools[END_REF]; [START_REF] Chen | Robust Model-based Fault Diagnosis for Dynamic Systems[END_REF]; [START_REF] Seybold | Towards robust predictive fault-tolerant control for a battery assembly system[END_REF]; [START_REF] Pazera | Robust multiple sensor fault-tolerant control for dynamic non-linear systems: application to the aerodynamical twin-rotor system[END_REF]. Many approaches have been reported to design virtual diagnostic sensor: observer-based [START_REF] Aouaouda | Discrete-time H / H-inf sensor fault detection observer design for nonlinear systems with parameter uncertainty[END_REF], Kalman filter-based [START_REF] Foo | A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended Kalman filter[END_REF]; [START_REF] Pourbabaee | Sensor fault detection, isolation, and identification using multiple-model-based hybrid Kalman filter for gas turbine engines[END_REF], parameter identification-based [START_REF] Cai | Modelbased fault detection, estimation, and prediction for a class of linear distributed parameter systems[END_REF].

This paper proposes a novel approach to virtual sensor design of longitudinal forces as well as torques acting onto an AGV using a quadratic boundedness (QB) [START_REF] Alessandri | Design of state estimators for uncertain linear systems using quadratic boundedness[END_REF] approach, which makes it possible to include bounded disturbances acting onto the AGV. Another advantage is that it avoids unnecessary state estimation, which is fully available via measurements. From the mathematical AGV description viewpoint, the main profit is that the proposed approach makes it possible to exclude sophisticated tire models, which usually impair the performance of the approaches presented in the literature [START_REF] Kiencke | Automotive control systems[END_REF]; [START_REF] Rajamani | Algorithms for real-time estimation of individual wheel tire-road friction coefficients[END_REF]. Finally, the design procedure of the proposed approach is expressed in the form of Linear Matrix inequalities (LMIs), which can be solved using widely available computational packages.

The paper is organized as follows. Section 2 introduces essential preliminaries, which are necessary to undertake the problem being investigated. Section 3 describes AGV, which will be used in this the work. Section 3.1 presents its mathematical. Section 4 proposes a strategy for design virtual diagnostic sensor. Section presents application of the proposed strategy to AGV. Finally, the last section concludes the paper.

PRELIMINARIES

Let us consider the following discrete-time system

x k+1 = Ax k + Bu k + Bd k + W w k , (1) where x k ∈ X ⊂ R n is the state vector, u k ∈ U ⊂ R r stands for the input, d k ∈ R n
d is an unknown input, and w k ∈ E ⊂ R nw is an exogenous disturbance vector. Let V k = x T k P x k denote a Lyaponov candidate function. For an unforced u k = 0 and unknown input-free d k = 0 system (1), the following definitions are recalled: Definition 1. The system (1) is strictly quadratically bounded for all allowable

w k ∈ E, k ≥ 0, if V k > 1 ⇒ V k+1 -V k < 0, (2) 
for any w k ∈ E. Definition 2. A set E x is a robust invariant set for the system (1) for all allowable w k ∈ E if

x k ∈ E x ⇒ x k+1 ∈ E x ,
(3) for any w k ∈ E.

It should be pointed out that the strict quadratic boundedness enables decreasing the value of Lyapunov function V k , i.e, it means that V k+1 < V k for any 1) is quadratically bounded as well as there exists at least one vector W w k = 0, then such quadratic boundedness is always strict [START_REF] Alessandri | Design of state estimators for uncertain linear systems using quadratic boundedness[END_REF]. Moreover, the notation of the quadratic boundedness can be expressed using the theory of invariant sets [START_REF] Alessandri | Design of state estimators for uncertain linear systems using quadratic boundedness[END_REF].

w k ∈ E when V k > 1. If (
The set E x = {x :

x T P x ≤ 1} is an invariant set for any w k ∈ E iff x k ∈ E x implies x k+1 ∈ E x . Thus, if V k > 1 then x k is outside an invariant set, and hence, by Definition 1 V k+1 < V k . This means that V k decreases until x k is outside E x .

ROBOT DESCRIPTION

This section describes the AGV developed at the University of Applied Sciences Ravensburg-Weingarten, which will be used in this the work (Fig. 1). It consists of four drive motors which are fastened on arms that may freely rotate. Each arm has an angular velocity encoder of each wheel, which allows independent use of each motor. The ability to use four independent motors results from a steering system that is already registered as a patent and is based on the concept to use the torque differences between wheels to steer four independent axles of a vehicle.

The developed AGV is able to turn around its own center and to drive directly in any direction without time-and space-consuming turning maneuvers. This characteristic is very important from the practical viewpoint while operating in small spaces. The semi-autonomous vehicle is controlled by a small PC-ALIX that it is connected to 4 EPOS motor controllers, one per wheel. For the communication between the controllers it uses the CANopen protocol. Each of the wheel contains a suspension to absorb possible different heights of the terrain and the impacts against the ground. The movement from the motor to the wheel is transmitted using two two belt driven pulleys. This transmission is a reduction system, because the torque required by the vehicle is more than the torque produced by the motor. The control of the vehicle occurs on different levels: manual driving, manual driving, autonomous driving mode. The control system implemented in AVG send the speed command to the drive motors as well as desired angles for the wheels to move AVG for to the desired position. Apart from the above mentioned angular velocity sensors, the robot is equipped with acceleration, velocity and yaw rate sensors, which are available via Bluetooth protocol. The principal steering system of AGV 

F x = cos(δ f )(F x,f l + F x,f r ) + cos(δ r )(F x,rl + F x,rr )+ -sin(δ f )F y,f -sin(δ r )F y,r . (4) 
Analogously, the lateral forces can be anlysed:

F y = sin(δ f )(F x,f l + F x,f r ) + sin(δ r )(F x,rl + F x,rr )+ + cos(δ f )F y,f + cos(δ r )F y,r , (5) 
where the longitudinal wheel forces obey:

I xw ωfl = p f,l T -F x,f l R e , (6) 
I xw ωfr = p f,r T -F x,f r R e , (7) 
I xw ωrl = p r,l T -F x,rl R e , (8) 
I xw ωrr = p r,r T -F x,rr R e , (9) 
with the torque distribution coefficients p i,j ≥ 0 satisfying:

p f,l + p f,r + p r,l + p r,r = 1. ( 10 
)
It should be also noticed that p i,j are assumed to be known parameters. Finally, the yaw rate dynamics is given by

I z ṙ = L f (sin(δ f )(F x,f l + F x,f r ) + cos(δ f )F y,f )+ + L a cos(δ f )(F x,f r -F x,f l ) + L r (sin(δ r )(F x,rl + F x,rr ) -cos(δ r )F y,r ) + L a cos(δ r )(F x,rr -F x,rl ). ( 11 
)
Having a mathematical description of AGV, the objective of the subsequent part of this paper is to develop a set of virtual sensors enabling estimation of F x,f r , F x,f l , F x,rr , F x,rl and T based on the available measurement vector:

y = [r, ω f l , ω f r , ω rl , ω rr ] T , (12) 
as well as lateral and longitudinal accelerations a x and a y .

VIRTUAL SENSOR DESIGN

The proposed virtual sensor design strategy starts with extracting the lateral forces F y,f and F y,r from ( 5) and ( 11), which yields

F y,f = 1 cos(δ f )(L f + L r ) (I z ṙ + p f,f l F x,f l + +p f,f r F x,f r + p f,rl F x,rl + p f,rr F x,rr + +mL r a y ) , (13) 
F y,r = 1 cos(δ f )(L f + L r ) (-I z ṙ + p r,f l F x,f l + +p r,f r F x,f r + p r,rl F x,rl + p r,rr F x,rr +mL r a y ) , (14) 
where

p f,f l = -sin(δ f )L f -sin(δ f )L r + L a cos(δ f ), (15) p f,f r = -sin(δ f )L f -sin(δ f )L r -L a cos(δ f ), (16) p f,rl = -2 sin(δ r )L r + L a cos(δ r ), ( 17 
) p f,rr = -2 sin(δ r )L r -L a cos(δ r ), ( 18 
) p r,f l = L a cos(δ f ), (19) p r,f r = L a cos(δ f ) (20) p r,rl = sin(δ r )L f -sin(δ r )L r + L a cos(δ r ), (21) p r,rr = sin(δ r )L f -sin(δ r )L r -L a cos(δ r ).
(22) Bearing in mind the fact that F x = ma x and then substituting ( 13) and ( 14) into (3.1) yield:

p r ṙ = F x,f l p x,f l + F x,f r p x,f r + + F x,rl p x,rl + F x,rr p x,rr + a x p x + a y p y (23) 
where 30) Finally, the state space model of AGV is is given by is given by ( 6)-( 9) and ( 13)-( 14)

p r = I z sin(δ f -δ r ), (24) 
p x,f l = - 1 2 L a sin(-δ r + 2δ f ) + 1 2 sin(δ r )L a + + cos(δ r )(L f + L r ), (25) 
p x,f r = 1 2 L a sin(-δ r + 2δ f ) - 1 2 sin(δ r )L a + + cos(δ r )(L f + L r ), (26) 
p x,rl = - 1 2 L a sin(δ f -2δ r ) - 1 2 sin(δ f )L a + L r cos(δ f -2δ r ) + cos(δ f )L f , (27) 
p x,rr = 1 2 L a sin(δ f -2δ r ) + 1 2 sin(δ f )L a + + L r cos(δ f -2δ r ) + cos(δ f )L f , (28) 
p x = -(L f + L r ) cos(δ f ) cos(δ r )m, ( 29 
) p y = -m(sin(δ f ) cos(δ r )L r + cos(δ f ) sin(δ r )L f ). (
G ẋ = Bu + Ed, (31) 
where

x = [r, ω f l , ω f r , ω rl , ω rr ] T , (32) with u = [a x , a y ] T .
(33) Finally, the unknown input, which has to be estimated by the virtual sensor is given by:

d = [F x,f l , F x,f r , F x,rl , F x,rr , T ] T ,
(34) Additionally, the system matrices are:

B =      p x p y 0 0 0 0 0 0 0 0      , ( 35 
) E =      0 -p x,f l -p x,f r -p x,rl -p x,rr -p f,l R e 0 0 0 -p f,r 0 R e 0 0 -p r,l 0 0 R e 0 -p r,r 0 0 0 R e      . (36) G = diag(p r , 1, 1, 1, 1). ( 37 
)
Finally, while all state variables [r, ω f l , ω f r , ω rl , ω rr ] T are measured, the output equation is given by

y = Cx, (38) 
with C = I. To facilitate the implementation on an onboard device, the system (31) was discretized with the sampling time T s = 0.01[s] using the Euler methods, which leads to:

G k x k+1 = G k x k + B k u k + E k d k + W w k , (39) 
with

G k = G(δ f,k , δ r,k ), B k = T s B(δ f,k , δ r,k ), ( 40 
) E k = T s E(δ f,k , δ r,k ) (41)
where w k stands for an exogenous disturbance vector (which includes the discretization error) with known distribution matrix W , while

G(δ f,k , δ r,k ), B(δ f,k , δ r,k
) and E(δ f,k , δ r,k ) are obtained by substituting δ f,k and δ r,k into ( 35)-( 37), respectively.

For the purpose of further deliberations, it is necessary to underline the fact that all state variables of (39) are measured. Thus, contrarily to the approaches present in the literature (see, e.g., [START_REF] Witczak | An lmi approach to robust fault estimation for a class of nonlinear systems[END_REF] and the references therein), the attention is focused on estimating d k only. Indeed, as the estimation of the state vector is unnecessary, it will simplify the proposed design procedure.

Finally, to tackle the virtual sensor design problem, the following novel adaptive estimator structure is proposed:

dk+1 = dk + L(G k x k+1 -G k x k -B k u k -E k dk ), ( 42 
)
where dk stands for an estimate of d k and L is the estimator gain matrix. Substituting (39) into (42) yields:

dk+1 = dk + L(E k e d,k -W w k ), ( 43 
)
where e d,k = d k -dk is an unknown input estimation error. While its dynamics is governed by:

e d,k+1 = d k+1 -d k + d k -dk -LE k e d,k -LW w k = (I -LE k ) e d,k + [I -LW ] wk , ( 44 
)
where 44) is transformed into a compact form:

ε k = d k+1 -d k and wk = ε k w k . Finally, equa- tion (
e d,k+1 = X k e d,k + Z wk , , (45) 
with

X k = I -LE k and Z = [I -LW ].
To make further deliberations tractable, it is assumed that wk is bounded within an ellipsoid

wk ∈ E w , E w = { w : wT Q w w ≤ 1}, ( 46 
)
This allows formulating the following theorem, which constitute the main result of this section. Theorem 1. The system (45) is strictly quadratically bounded for all E k and all allowable wk ∈ E w if there exist N , P 0 and 0 < α < 1, such the following conditions are satisfied

  -P + αP 0 P -E T k N T 0 -αQ w R T P -N E k R -P   ≺ 0, k = 0, 1, . . . (47) with R = [P -N W ].
Proof 1. Using Definition 1 and the fact that wT k Q wk ≤ 1 (cf. ( 46)) it can be concluded that

wT k Q wk < e T f,k P e f,k ⇒ e T f,k+1 P e f,k+1 -e T f,k P e f,k < 0. (48)
Consequently, using (45) and defining v k = e f,k wk it can be shown that

v T k X T P X X T P X Z T P X Z T P X v k < 0. (49) 
From ( 48) it is evident that for any α > 0

αv T k -P 0 0 Q w v k < 0. ( 50 
)
Thus, applying the S-procedure to ( 49) and ( 50) gives

v T k X T k P X k -P + αP X T k P Z Z T P X k Z T P Z -αQ w v k < 0, (51) 
which by implementing Schur complement yields

  -P + αP 0 X T k P 0 -αQ w Z T P P X k P Z -P   ≺ 0. (52) 
Finally, substituting 52) gives (47), which completes the proof.

P X k = P (I -LE k ) = P -P LE k = P -N E k (53) P Z = P [I -LW ] = [P -P LB] = [P -N W ] (54) into (
In spite of the incontestable appeal of the approach summarized by Theorem 1, it is impossible to use to obtain a solution of (47), which will be feasible for all k = 0, 1, . . .. To settle the design problem, the system (45) is transformed into Linear Parameter-Varying (LPV) form:

e d,k+1 = i={f,r},j={l,r} p x,i,j X i,j e d,k + Z wk , (55) 
where

X i,j = I -LE i,j (56) 
with

E f,l = Ts    0 -1 0 0 0 -p f,l Re 0 0 0 -p f,r 0 Re 0 0 -p r,l 0 0 Re 0 -pr,r 0 0 0 Re    , E f,r = Ts   0 0 -1 0 0 -p f,l Re 0 0 0 -p f,r 0 Re 0 0 -p r,l 0 0 Re 0 -pr,r 0 0 0 Re   , E r,l = Ts    0 0 0 -1 0 -p f,l Re 0 0 0 -p f,r 0 Re 0 0 -p r,l 0 0 Re 0 -pr,r 0 0 0 Re    , E r,r = Ts   0 0 0 0 -1 -p f,l Re 0 0 0 -p f,r 0 Re 0 0 -p r,l 0 0 Re 0 -pr,r 0 0 0 Re   .
Thus, Theorem (1), can be reformulated in the following fashion: Theorem 2. The system (55) is strictly quadratically bounded for all E k and all allowable wk ∈ E w if there exist N , P 0 and 0 < α < 1, such the following conditions are satisfied

  -P + αP 0 P -(E i,j ) T N T 0 -αQ w R T P -N E i,j R -P   ≺ 0, i = {f, r}, j = {l, r}, (57) 
with R = [P -N W ].

Finally, the design procedure of virtual sensors boils down to:

Off-line:

(1) Select Q w in ( 46).

(2) Select 0 < α < 1 and obtain the gain matrix L of (42) by solving (57) and then substituting L = P -1 N . On-line:

(1) Set d0 and k = 0.

(2) Obtain dk+1 with ( 42).

(3) Set k = k + 1 and go to Step 1.

Diagnostic principles

As it was already mentioned in the introductory part of this paper, the main objective was to develop virtual sensors providing: dk = [ Fx,fl,k , Fx,fr , Fx,rl , Fx,rr , T ] T .

(58) Having the above estimates the primary residual signal is formed:

z T,k = T k -Tk , (59) 
which is used as a source of knowledge concerning desired torque distribution within AGV. The remaining set of residuals concerns longitudinal forces. The general idea starts with defining the longitudinal sleep ratio, which for all wheels is given by [START_REF] Rajamani | Algorithms for real-time estimation of individual wheel tire-road friction coefficients[END_REF]:

σ i,j = ω i,j R e v x -1. ( 60 
)
As can be be observed Fig. 1, apart from the fact that the wheels are identical they are made with metal and sealed with a thin gum strip. Moreover, it is assumed that the AGV is operating on a level stiff surface. Thus, without loss of generality it is possible to assume that σ i,j,k = 0. This leads to the following relation:

ω i,j = v x R e (61) 
Since the actual v x of AGV is available, it is to us (61) to calculate desired ω i,j . Subsequently, the desired ω i,j along with T are employed to calculate reference longitudinal forces F x,i,j,k using ( 6)-( 9). Note that both ω i,j and F x,i,j,k are perceived as fault-free as they are generated solely with the AGV model. While real AGV is exposed to various faults of mechanical nature as well as unexpected working conditions like sliding surface, which are also perceived as faults. As a result, the following set of residuals is formed z F,x,i,j,k = F x,i,j,k -Fx,i,j,k .

(62)

EXPERIMENTAL RESULTS

The objective of this section is to provide experimental results regarding application of the developed AGV virtual sensors and their application to fault diagnosis according to the principles detailed in Section 4.1. The experimental validation starts with describing the driving scenario: are consistent with the longitudinal forces obtained by the model and the forces are equally distributed among the wheels. Indeed, Figure 8 presents the residual z x,f l , which clearly indicates that it is close to zero for the faultfree case. However, it is not centered around zero, and hence, some bias in the estimates can be observed. The reason behind such a situation is manifold, e.g. sensor biases and/or modeling inaccuracies. The same situation occurs for the remaining wheels as well as the torque. However, due to the space limits they are omitted. If the Fig. 7. Residual z x,f l for the fault-free case virtual sensors operate properly in the fault-free case then their performance can be evaluated in the fault case. For that purpose, AGV was steered to the two overlapping surfaces in such a way as one of the wheels is hanging in the air. In particular, the front right wheel has no contact with the surface, and hence, it does not generate the longitudinal force appropriately. This unappealing phenomenon is immediately indicated by residual z x,f r which is shown in Fig. The main objective of this paper was to propose a set of diagnostics virtual sensors enabling continuous monitoring of longitudinal tire forces and torque. The proposed strategy was implemented on a prototype AGV, which was recently developed at the University of Applied Sciences Ravensburg-Weingarten. The main advantage of the proposed approach is that it avoids utilization of sophisticated and unreliable tire models, which impair the performance of the approaches presented in the literature and make the whole estimation problem a nonlinear one.
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 1 Fig. 1. Automated Guided Vehicle with all the forces considered is shown in Fig. 2. While its parameters are given in Tab. 2.

  Figures 3-6 present the longitudinal forces calculated with the model (nominal case) and their counterparts obtained with based on a set of measurements available from the AGV sensors.It can be observed that the estimates
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 8 Fig. 8. Residual z x,f r for the faulty case
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	Fig. 2. Steering system		
	3.1 Modeling AGV			
	From Fig. 2, it can be derived that the force causing
	longitudinal motion is given by