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Abstract: In this work, a Model-based Prognosis algorithm to predict the Flight Endurance
(FE) and the Remaining Mission Time (RMT) for a class of multirotor UAVs powered by
Lithium Polymer (Li-Po) batteries is presented. A Safety Voltage Threshold (SVT) in the State
of Charge (SoC) of the battery is established before reaching of End of Discharge (EoD), and
the SVT is defined taking into account the existing relationship between the voltage and the
SoC of the battery. The FE is predicted by forecasting when the SVT is reached and the RMT
is computed as the difference between the FE and the actual time. The prediction is developed
in three sequential steps: 1) estimation of the battery SoC, 2) propagation and prediction of the
estimated SoC in the future to reach the SVT, and 3) updating the prediction. The Model-based
Prognosis algorithm is based on the mathematical model of the UAV propulsion system, which
is made up by a set of BrushLess DC motors and a Li-Po battery. The effectiveness of the
proposed algorithm was tested in simulation and the results obtained demonstrate the efficacy
of the proposed method to accurately predict the FE and RMT during the development of a
mission.

Keywords: Prediction methods, Extended Kalman Filters, Mobile robots, Threshold voltage,

Energy dependence

1. INTRODUCTION

Nowadays, the use of Lithium Polymer (Li-Po) battery as
powertrain for multirotor UAVs with capabilities of verti-
cal take-off and landing (VTOL) has become a capable and
economical power source, due to its high energy and power
densities, discharge rate (C-rate), and zero emission of pol-
lutants (Donateo et al. (2017)). By considering a new and
fully charged battery, the flight endurance is between 10
to 30 minutes (Roberts et al. (2008); Morbidi et al. (2016);
Chang et al. (2016)), where 85% of the energy is consumed
by the propulsion system. The remaining consumption
is caused by the sensors, (such as GPS, accelerometers,
compass, gyroscope (Aleksandrov and Penkov (2012))),
the flight control computer, and for some payload (gimbal
system, cameras, and other kind of sensors).

However, the flight endurance is gradually reduced over
timer due to aging of the battery. The effect of aging is
characterized by a capacity loss and immediately power
fade. The aging is caused by several factors such as high-
rate cycling, overdischarge and overcharge, and drastically
changes of operation temperature (Watrin et al. (2012)).
To avoid damages and reduce the aging rate during the
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charge/discharge cycles of the battery, it is necessary to
monitor the State of Charge (SoC) and to establish safety
limits around the End of Discharge (EoD) (also called cut-
off voltage). At a given time, the SoC is the proportion of
the available charge, compared to the total charge available
when the battery is fully charged, it is analog to a car gas
fuel gauge. On the other hand, the EoD indicates that the
battery is fully discharged. In the literature of Electrical
Cars, such concepts are the main criterion in the design
of Battery Manage Systems (BMS) (Saha et al. (2011)),
where the main objective is to define adequate operation
regimes to extend the life of the battery and maximize
the energy supplied. In the case of UAVs, the monitoring
of SoC battery during the development of a mission will
allow to establish a voltage safety limit before reaching the
EoD to ensure the fulfillment of the mission, safeguard the
integrity of the battery, and have an adequate use of the
energy supplied to maximize the flight endurance.

Several researches have addressed the problem of flight
endurance for different types of UAV considering mainly
three types of powertrains such as batteries, fuel cells, and
solar cells (Meyer et al. (2007); Saha et al. (2011); Swider-
Lyons et al. (2011); Traub (2011)). The main objectives
of such researches were the development of methodologies
and strategies to increase the flight endurance taking into



account the geometry of the UAV, disturbance as the wind,
the type of trajectory, the maximum altitude and the
power requirement to perform a mission. In the specific
case of multirotor UAVs powered by Li-Po batteries, the
efforts have been focused to generate strategies to ensure
the fulfillment of a mission and increase flight time, e.g.
(De Souza Céandido et al. (2014)) are presented an in-
tegrated planning and control approach to increase the
probability of completion of fly-by missions by battery-
powered UAV quadrotor. The authors in (Abdilla et al.
(2015a)) proposed a technique to extend the endurance of
battery-powered rotorcraft by sub-diving the monolithic
battery into multiple smaller capacity batteries which are
sequentially discharged and released. Also, in (Abdilla
et al. (2015b)) the authors characterized the power con-
sumption of multirotors and derived an endurance estima-
tion model. (Morbidi et al. (2016)) presented two optimal
control problems with respect to the angular accelerations
of four electrical motors of an UAV quadrotor to improve
its flight endurance. More recently (Dietrich et al. (2017))
are presented experimental results of an analysis of the
energy consumption and derivation and validation of em-
pirical formulas to estimate the power consumption and
the remaining flight time. The works mentioned above
were mainly engaged in developing strategies to improve
the consumption of the energy supply, which allows the
battery to extend the power consumption for UAV appli-
cations, to extend the flight endurance and to ensure the
fulfillment of a mission.

The main contribution of this work is to present a method-
ology to predict the flight endurance in the context of
Prognosis & Health Management through a Model-based
Prognosis algorithm based on the mathematical model of
the propulsion system of an UAV multirotor. The predic-
tion of flight endurance is developed in three sequential
steps: 1) the estimation of the battery SoC through an
Extended Kalman Filter, followed by 2) the propagation
of the estimated SoC in the future until reaching a safety
threshold value before the EoD, and the 3) update of the
prediction. The proposed methodology is applied to an
UAV hexarotor to demonstrate: i) the fulfillment of the
UAV mission, ii) avoiding overdischarges in the battery,
and iii) to be able to take decisions over the mission dur-
ing the flight endurance prediction. Such considerations
must be taken into account to perform routines of mission
planning or trajectory reconfiguration. The remaining of
the paper is organized as follows: The mathematical model
of the propulsion system of an UAV multirotor is presented
in the next section. The main concepts around Prognosis
& Health Management and the Model-based Prognosis
algorithm to predict the flight endurance are explained
in Section 3. The development of the flight endurance is
detailed in Section 4. The simulation results and the dis-
cussion are described in Section 5. Finally, the conclusion
and perspectives of the future work are defined in the last
Section.

2. MATHEMATICAL MODEL OF PROPULSION
SYSTEM OF UAV MULTIROTOR

The propulsion system of a UAV multirotor is composed
by a set of BrushLess DC Motors (BLDCM) powered by
a Lithium Polymer battery as it can be seen in Fig. 1,
where ¢ denotes the i-th ESC-BLDCM. The connection
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Fig. 1. Propulsion system of UAV multirotor.
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Fig. 2. Connexion of Li-Po battery - ESC - BLDCM.

between each motor and the battery is realized through an
Electronic Speed Control (ESC). In Fig. 2 the connection
between the Li-Po battery - ESC - BLDCM is detailed for
one motor. The ESC adjusts the angular velocity of the
BLDCM through a control signal which is a PWM signal.
In this study the dynamic around the ESC is neglected and
it is assumed that the voltage supply by the battery and
the generated current by the motors are averaged with
respect to the duty cycle value produced by the control
signal.

2.1 Lithium Polymer battery model

Lithium Polymer (Li-Po) Batteries are devices converting
the energy released by spontaneous chemical reaction to
electricity work. Due to its rechargeable capability they
belong to the Secondary Lithium batteries family and
possess properties such as high discharge rate (C-rate),
high energy and power densities (Julien et al. (2016)).
A Li-Po battery is made up of several individual cells
connected to each other in series (to have a high voltage
value) or parallel (to have a high capacity in Ah). The
battery model describes the mathematical relationship and
evolution of voltage and State of Charge (SoC), which
is in a given time the proportion of the charge available
compared to the total charge available when it is fully
charged. The range of the SoC is SoC € [0 1], where 1
corresponds to 100 % of the charge, i.e the battery is fully
charged, and 0 indicates that the battery is fully discharge,
i.e. the End of Discharge (EoD) or cut-off voltage value
has been reached. The most used method to compute the
SoC is the so called Ampere Hour Counting or Coulomb
Counting (Gholizadeh and Salmasi (2014)):

t
1
SoC (t) = SoC (t,) — 3600 O / Tpaue(t)dt, (1)
to

where t, represents the initial time, Cp is the total capac-
ity of the battery expressed in (Ah). The mathematical
model, describing the dynamic behavior of the voltage in
a Li-Po battery or a single cell, is based on an Equivalent
Circuit Representation (ECR) according to Fig. 3. The
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Fig. 3. Electrical equivalent circuit of a Lithium battery.

ECR was presented in (Chen and Rincon-Mora (2006)). In
Fig. 3, (on the left-side of the circuit), the voltage Voo (%)
models the state of charge SoC(t) of the battery from the
capacity Cr. The voltage Vocv (Vsoc) is the Open Circuit
Voltage (OCV), i.e. it is the effective voltage in the termi-
nals of battery, and it is modeled as a function of the state
of charge of the battery. The voltage Vg,,, (t) characterizes
the ohmic over-potential due to the internal resistance of
the battery R;n:. Va(t) represents the transitory response
of the voltage when a current is demanding to the battery.
It is characterized by a first order response and its time
constant depends on the value of parameters Ry and Cjy.
The mathematical model of the battery is given by:

”(t)

att

Iy

.  Tpane(t)

Vsoc(t) = ~3500- Cr
o Vil D) 2)
Va(t) = Ry Cy + c,

VBatt(t) = Voov (Vsec (t)) — Va(t) — Rint Ipase(t),

where, the Vocv(VSoc( )) is defined experimentally as:

Z AiVsoc(t

It can be noted that7 the nonlinear function (3) is not
unique and its definition depends on the evolution of the
battery dynamics and the magnitude of the discharge
current. It is usually formulate using a polynomial func-
tion (Schacht-Rodriguez et al. (2017)), however in this
work a logarithm term was added to model the final
evolution of the battery voltage. To illustrate the voltage
drop described previously, lets consider Fig. 4, where the
demanded current and voltage of a new and fully charged
Li-Po battery made up of four series-connected cells are
shown. The battery was discharged before to reach the
EoD value (established at 12 V) at room temperature.
In Fig. 5 when the first current pulse is applied an im-
mediately voltage drop caused by Vg, ,(t) occurs due to
the internal resistance R;,;. When the pulse is off, the
voltage recovers by itself with a dynamic associated to
Va(t) until reaching the open circuit voltage Vocov (Vsoc)-
As mentioned previously, the End of Discharge (EoD)

Vocv (Vsoc (t )"+ In(Vsoc)Vsoc () (3)

t(h)

Fig. 4. Demanded Current and battery voltage at 25°C.
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Fig. 5. Characteristics of the battery voltage.

is the cut-off voltage and it indicates that the battery
is fully discharged. If this value is reached and the dis-
charge continues, an irreversible damage is generated to
the battery. One way to quantify the aging is to consider
the State of Health (SoH). The SoH represents the actual
conditions of a battery, in comparison with its nominal
conditions. The main phenomena that characterizes the
battery SoH is the capacity loss or capacity fade, which is
caused by the reduction of the capacity value Cp accord-
ing to the number of charge/discharge cycles (Cordoba-
Arenas et al. (2013)). In Fig. 6, the aging effect in the
voltage of a battery cell is shown. The battery cell was
submitted to 150 charge/discharge cycles (Ngyere) (Saha
and Goebel (2007)). The EoD was established at 2.6 V,
and as it can be observed, the time to reach the EoD
is reduced according to the number of charge/discharge
cycles denoted by ( (ycle) The evolution of the numerical
value of Crp, is plotted in Fig. 7. It can be noted that
this evolution depends on the number of charge/discharge
cycles (Neyele), and the SoH can be defined as

Ca(Ncycle)

SOH( cycle) - Cznt (4)

CT _CO SOH( cycle)

where SoH ( Cycle) is the SoH as an effect of capacity
loss, Co(Neyere) is the value of the capacity in a specific
charge/ discharge cycle, and CY is the value of the capacity
when the battery is new. Similar to SoC, the SoH is in a
range of SoH € [0 1], i.e the SoH is 1 when the battery is
new, and according to the use, damage, and other factors
the SoH will be reduced.

2220
t(s)

0 740 2960 3700

Fig. 6. Variation of voltage of a battery cell subject to 160
charge/discharge cycles (Saha and Goebel (2007)).

It can be noted that the decrease of the capacity affects
directly the SoC and consequently the battery voltage (as
it can be seen in equation (3)). This relationship is plotted
in Fig. 8, where the dependence between the SoC and the
battery voltage is shown. In that sense, the time when
the EoD is reached can be determinate when the SoC
reaches 0. It should be mentioned that one characteristic
in the dynamic associated to the battery voltage during
a discharge is the exponential fall of the voltage before
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Fig. 8. Relationship between battery voltage and SoC.

reaching the EoD. The voltage fall can be seen in Fig. 8,
which occurs after the SoC reach the 0.1 %.

2.2 BrushLess DC Motor

The mathematical model of the BrushLess DC Motor
(BLDCM) is divided into the electrical and the mechanical
sub-models described by the following equations (Moseler
and Isermann (2000)):

Dbatt (t) = Ripare(t) + Kpw(t),

. Kg -
w(t) = ﬁzbatt(t)
2

_ Tfric(5)

?

w3 (t) +

w(t)

where R = 2 (Z?Zl R;) is the equivalent electric resistance
of each coil, Kg is the back electromotive force, w(t) is
the angular velocity, T, is the motor friction torque, Dy
is the viscous damping coefficient of the motor, d is the
drag constant, associated to the geometry of the propeller,
and Jrp is the inertia of the motor. The average voltage
Upatt (t) and current ipqy (t) are the voltage and current
generated by the ESC and they are computed as follows:

Ubatt (t) - %att (t) . Dcycle (6)
Ibatt(t) = {batt (t) . Dcycle7

where Vyqi:(t) is the battery voltage, Ipqt:(t) is the current
generated by the motors, and Dcyee is the duty cycle
of Pulse-Width Modulation (PWM) signal, which corre-
sponds to control signal of the motor speed. D¢y can be
defined as a function of the square of the angular velocity
of the motors and it is determined through experimental
correlations, such as Deyere = f(w(t)?).

3. PROGNOSIS & HEALTH MANAGEMENT

According to (Goebel et al. (2017); Kim et al. (2017))
the Prognosis & Health Management (PHM) is a novel
engineering approach which enables the health assessment
of a system according to its actual operating conditions, as
well as the prediction of its future condition based on up to
date information. One of the main objectives of the PHM is
to predict how the system will behave in the future in order

 Jrp Jrp Jrp

to know if more stress or changes in the nominal operation
on the system will likely cause an acceleration towards a
certain undesirable event or failure condition, and the time
when such event will occurs. In order to illustrate how

RUL,

N

Past
Behavior

Evolution of the system

Future
Behavior

T (EoL) 1 (EoL)

Time z,

Fig. 9. Evolution of the system behavior.

the prognosis is performed, let us consider Fig. 9. The
solid dark blue line represents the past evolution of the
system behavior until present time t¢,, and the brown area
is the Safety Zone (SZ) or the nominal operational limit.
According to different factors such as the inputs of the
system, aging, or even external disturbances, the system
behavior could be progress until reach values outside of
its nominal operation. In that sense, if such factors are
known, the future trajectory of the system behavior can be
predicted until reaching the SZ (segmented blue lines). In
the prognosis literature, the End of Life (EoL) is reached,
when the system behavior reaches or exceed the upper
limit of the SZ at some time ty,, and the Remaining Useful
Time (RUL) until reach the EoL is computed as

RUL; = ts,(EoL;) — t,. (7)

In this work, the system under study is the propulsion
system of an UAV multirotor. In that sense, several char-
acteristics of the system behavior could be predicted, such
as: 1) the battery SoC in a given time. ii) the fulfillment of
a mission before to reach the EoD, iii) the flight endurance
of the UAV and the Remaining Mission Time. In this work
the RUL is considered as the RMT of the UAV.

8.1 Model-based Prognosis

Depending on the accuracy level of the prediction and the
complexity of the system behavior, different approaches
have been used to perform prognosis (Goebel et al. (2017);
Coble (2010)). The Model-based Prognosis or Condition-
based Prediction assess the behavior of individual com-
ponents of a system as well as the entire system based
on a mathematical model that describe the evolution of
some system variables (i.e temperature, voltage, position,
speed) over time. If such mathematical model exists, the
future behavior of the system can be determinate by
propagating the mathematical model in the future time.
However, to determinate a mathematical model of the
interested system in order to perform a prediction of its
future behavior is not a trivial task. First, it is necessary
to define which system variables are necessary to evaluate
the entire system behavior, and determine if such vari-
ables are directly measured or not. If such variables are
measured, a mathematical model can be defined and used
to perform the prediction in the future time. Otherwise, if
such variables are unmeasured, they must be estimated.
In that sense, this work presents in Fig. 10 a Model-
based Prognosis methodology based on an estimation of
the battery SoC in order to predict the flight endurance of



the UAV. The prediction is developed in three sequential
steps: 1) estimation of unmeasured states of the system,
2) propagation and prediction of the estimated state, and
3) update of the prediction.

Model-based Prognosis

| Reference (constant, trajectory) |

Controller

System

—0| Actuators H System H Sensors |—

Estimation of
unmeasured states

1

Propagation and prediction until

“Safety Zone”
RUL prediction and Update of

Prediction

Fig. 10. Model-based Prognosis methodology.

State FEstimation. In several dynamic systems, not
all state variables can be measured. For such cases, an
observer needs to be designed in order to estimate the
unmeasured states considering the system model and the
available input-output signals. In this work an Extended
Kalman Filter (EKF) is used to estimate the battery SoC.
The EKF has demonstrated to be an adequately tool to
estimate the battery states as well as parameters in battery
systems (Plett (2004); He et al. (2011)). In this work the
EKF is developed considering a simplified mathematical
model where the unique nonlinear term is the Open Circuit
Voltage. The EKF addressed the general problem of state
estimation of a nonlinear system, expressed in discrete
time as:

Tpy1 = fag, up) + wi
B (8)
Yk = g(Tk, ur) + v,

where f(zg,ur) and g(xzg,ur) are the nonlinear state
transition function and nonlinear measurement function,
respectively, and they are assumed to be differentiable at
each operating point. The random variables w(t) and v(¢)
are the process and measurement noise. They are assumed
to be independent, white, and with normal probability
distributions:

p(w) ~ N(0,Q) (©)
p(v) ~ N(0,R).
The matrices @ and R are the process noise covariance
and measurement noise covariance, respectively. At each

sample time, f(zx, ux) and g(z, ux) are linearized through
a first-order Taylor-series developed as

Of (xg, ur)
A= ——"-= 10
aﬂfk_l xk—lzi;71 ( )
- 59(11%,7«%)
C=—0u . (11)

The completed equations of the EKF are resumed in
Algorithm (1).

Algorithm 1 Extended Kalman Filter algorithm Plett
(2004).

Initial values of £, _; and Py
To compute:

Ak _ af(xkvuk)
01 Th-1=Tp_y
_ Og(xy,ur)
Cr = B -

State estimate update:
Ty = f(@r-1,uk—1),
Error covariance matrix:
P, = AP AL +Q,
Kalman gain:
Ky = P;C}(CLP; CF + R)™,
State estimate measurement update:
T =2, + Ki(ye — 9(2, , wr)),
Error covariance matrix update:
P, = (I - Ki,Cy)P,, .

Propagation and Prediction of estimated states.
As mentioned previously, if a mathematical model that
describes the evolution of system behavior as a function of
the time exists, the prediction of future behavior can be
determined by propagating the model in the future time.
However if the system involves unmeasured variables, they
must be estimated first, and the prediction of its future
behavior is based on the propagation of the estimated
variables in the future. In order to illustrate how the
propagation and prediction are performed, let us consider
Fig. 9 where the trend of the past evolution of system
behavior at time t, is known. It is possible to define a
function that approximate the trend with the time, and
propagate the function in the future until reaches the
SZ. This function is called prediction function, and the
accuracy of the prediction will depend on the amount
of past data measure. On the other hand, the prediction
function can be updated by using new data of the system.
Due to the fact that there are no abrupt changes or
discontinuities in the evolution of estimation SoC, the
prediction function is defined as a polynomial function of
the time, such as:

m
n(t, o) = Zaj.tj =aptar-t+-tay-t" (12)
j=0
where 7)(t) represents the predicted variable, ¢ is the time,
«; are identified parameters associated to measured data
trend and m is the order of the polynomial function. The
method of Weighted Least Squares (WLS) is considered to
estimate the parameters (o) of (12). The WLS is defined
as:

H=[1¢t.---t™"],

a = [H'R™'H'HTR Y,
where H contains the information of the relationship
between the time and the polynomial order, & is the vector
with the estimated parameters a;, R is the measurement

covariance matrix, and Y is the vector of the measured
data (variable to be identified). The approximation is

(13)



evaluated according to the coefficient of determination R?,
which is limited as R? € [0.9 1] in this study, and the
polynomial order depends on the accuracy between the
data and the identified function. The iterative sequence of
propagation and prediction is given in the Algorithm 2.

Algorithm 2 Propagation and prediction algorithm.

(1) Delay (tp)

(2) Recollect data until SoC(t,)

(3) Define H and m for
H=[1¢t---

t™]
and
m .
n(t, o) ZZ%’-# =aptar-t+ta,-t"

j=0

(4) Estimate & with Y = SoC(to : t,)
&= [H'R™'H'H'RY

(5) Verify R2 to Y = SoC(tg : t4) with 7 (to : tq, &)

(6) Propagate 1 (to : tq, &) until t(SVT) to determinate
the Flight Endurance (FE)

FE =t(SVT)
(7) Compute Remaining mission Time (RMT)

RMT = t(SVT) — t,

4. PREDICTION OF FLIGHT ENDURANCE OF UAV
MULTIROTOR

The methodology explained previously will be applied to
predict the flight endurance of an UAV hexarotor. During
the development of a mission of some UAV, the End of
Discharge (EoD) must be taking into account to ensure
the safety of the UAV, the fulfillment of the mission, and
the maximization of flight endurance. In that sense, the
total flight endurance is considered as the time between
the beginning of the mission until reaches a Safety Voltage
Threshold before EoD value. Several factors are implied in
the flight endurance of the UAV, such as the total current
demanded by the number of the BLDCM (Ipq:(t)), and
C-Rate, the rate discharge (C'), the initial charge SoC (o),
and the State of Health SoH. Then, assuming a new and
fully charged battery, the EoD is directly associated with
the battery voltage. The time when EoD is reached can
be computed considering the demanded current (Ipq:(t))
through relation of C-Rate discharge. However according
to the number of charge/discharge, the capacity of the
battery decreases and the discharge rate is modified as the
aging of the battery increases. In that sense, the computing
of EoD time should consider the effect of the aging to
obtain the total flight endurance according to the battery
SoH. As it can be observed from (2), the variation of Cr
affects directly the SoC and consequently the OCV(3).
Then, considering the relationship between the battery
voltage and the SoC shown in Fig. 8, the EoD can be
directly associated to the SoC. Taking into account that
the total current demanded by the set of BLDCM is known
or measure, the SoC of the battery during the mission
can be computed using equation (1) or estimated through
EKF, and its future trajectory can be propagated and

predicted in the future until reaching the EoD, leading
to prediction of the flight endurance. The development of
each step in the PHM architecture shown in Fig. 10 to
predict the flight endurance of the UAV is explained in
the next section.

4.1 SoC estimation

The prediction of the flight endurance is based on the
computation or estimation the battery SoC during the
UAV mission. In that sense, two cases are considered in
this work: 1) the direct computation of the SoC using the
Amper counting method, and 2) the estimation of the SoC
using a EKF'. In the first case, the SoC is computed directly
using equation (1). However, this method accumulates
errors in measurements and may lead to large SoC errors in
real-world applications (Gholizadeh and Salmasi (2014)).
In that sense, the estimation of SoC is considered based
on the design of an Extended Kalman Filter applied on
system (2).

EKF of Li-Po battery. The estimation of SoC is
developed according to Algorithm 1. System (2) is dis-

cretized through forward Euler method, and rewriting in
state space:

1 0 — g“”
Th41 = [0 1_ Ts T + TST Up + Wk
RaCq c. (14)

MVocv (Vsoc)
Yk = [8‘/‘0 =1 |z — Rinsus, + vk,
SoC
where the discrete state space vector is zx = [ Vsoc Va ]T,

the input ug = Ipatt, the output yr = Visr, and T is the
sampling time. The nonlinear term is the OCV shown in
equation (1), which is in the matrix C. The variation in the
measurement and process noise are established at 0.1V,
and £0.01 V and the process and measurement covariance
matrices are defined using experimental data from a real
battery (Schacht-Rodriguez et al. (2017)) as:

1x107* 0

@= 0 1x1072

R=10.1].
The propagation and prediction of the estimated SoC is
developed according to Algorithm (2). It is important to
mention that the methodology shown in Fig. 10, considers
two types of sampling time during its implementation, i.e.
whiles the state estimation stage is subject to the sampling
time of the system in order of milliseconds, the propagation
and evaluation could be performed in a sampling time in
the order of seconds, or even minutes.

5. RESULTS AND DISCUSSION

(15)

The methodology introduced in this paper to predict the
flight endurance was tested in simulation considering the
propulsion system of an UAV hexarotor. A Li-Po battery
of four cells was considered as powertrain and the param-
eters were obtained using experimental data considering
the methodology presented in (Schacht-Rodriguez et al.
(2017)). Considering the relationship between the battery
voltage and the SoC, the SVT is defined according to
Fig. 11. As it can be observed, before the voltage reaches
the EoD, there is an abrupt exponential fall of voltage.



Taking into account this phenomena, the SVT is defined
before the voltage reaches the EoD. The UAV was sub-
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Fig. 11. Safety Voltage Threshold of the Li-Po battery.

jected to a mission which consisted in following circular
trajectory with an area of 785400 m? around z — y axis
and an altitude of 20 m (Fig. 12). Such trajectory was
developed considering the mathematical model of UAV
presented in (Arellano-Muro et al. (2013)). Considering
that the battery is fully charged and new, the initial SoC
and SoH were established in 1 respectively. The current

Reference Path
—Real Path

- 00 300
— 100
— 100
-500 -500 ~300

Y-axis (m)

X-axis (m)
Fig. 12. 3D Path of UAV hexarotor.

generated by the six motors is shown in Fig. 13-(a). The
variations in the current are due to velocity changes of the
motors caused by the UAV movement. The comparison
between the voltage battery and its estimation is observed
in Fig. 13-(b). As it can be seen, the mission is fulfilled in
20 minutes before to reach the SVT,and this avoided an
overdischarge in the battery. The comparison between the
estimated SoC through the EKF and the computed SoC by
Coulomb Counted is shown in Fig. 14. As it can be noted,
the SoC estimation through the EKF relates the SoC with
the dynamic of the battery discharge. This relationship
allows to predict the flight endurance from the estimated

SoC.
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Fig. 13. (a) Demanded current I+ and (b) comparison of
Viatt and Vpays.

The propagation and prediction was developed over sam-
pling time of 1 minute, and the SoC estimation each 10
milliseconds to collect enough data to estimate the param-
eters of the prediction function (12). Two 1°¢ and 2"? order
polynomials were considered for the prediction function.

——SoCcc—SoC—S8VT

0 | | | | . .
0 2 4 6 8 10 12 14 16 18 20

t (min)

Fig. 14. Comparison between SoCcc and SoC.

The predictions of the total flight endurance for both
prediction functions are plotted in Fig. 15. The blue marks
correspond to the predicted flight endurance with the 1%
order polynomial, and the red marks with the 2" order
polynomial. As it can be observed, the first predictions
(1 —4 min) with the 1°¢ order polynomial are closer to the
real flight endurance, whilst an approximation of the real
flight endurance is displayed from 6 minute onwards with
the 24 order polynomial. However the closest prediction
of real flight endurance is obtained at time 8 min with the
274 order polynomial. In Fig. 16 and Fig. 17 the results of
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2 o \ . . \ | \ . i ‘ ‘ s

8 10 12 14 16 18 20 22 24
Prediction time (min)

Fig. 15. Flight Endurance prediction.

the prediction for the 1%* and 2"? order polynomial at time
1, 6 and 8 min, and their comparison with the estimated
SoC are shown. A Decision Threshold (DT) at the 0.6% (at
time 10 min of the total flight endurance) of estimated SoC
was defined to determinate an operation range where the
predictions will be useful to take decisions on the progress
of the mission. The computation of Remaining Mission
Time (RMS) was made from the first prediction, and the
results are shown in Fig. 18. As it can be seen, it is possible
to predict the total flight endurance and the RMS from the
beginning of the mission considering the defined DT.
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Fig. 16. Prediction of FE with 1% order polynomial.

6. CONCLUSION AND FUTURE WORKS

In this paper, a methodology based on a Model-based
Prognosis was employed to predict the flight endurance
and remaining mission time of a class of multirotor UAVs.
Through an Extended Kalman Filter the battery SoC was
estimated, and using a polynomial function, the estimated
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Fig. 17. Prediction of FE with 2% order polynomial.
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Fig. 18. Evolution of Remaining Mission Time.

SoC was propagate in the future time before reaching the
EoD. The propagation and prediction algorithm presented
can be applied on other type of electrically powered
UAV. On the other hand, the prognosis methodology also
enabled to define safe operating limits in the battery to
avoid damages and guarantee the fulfillment of the UAV
mission. The simulation results exhibited that it is possible
to predict the total flight endurance and the remaining
mission time before the end of the mission considering a
Decision Threshold between the beginning of the mission
and the time when the prediction is closest with the real
value. The Decision Threshold is necessary in order to
define a scheme of Decision Making for mission planning
or trajectory planning. In that sense, the prediction of the
flight endurance will be the core of a path planning and
re-planning strategy to take actions over the evolution of
a mission as future work.
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