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Nowadays, the use of Lithium Polymer (Li-Po) battery as powertrain for multirotor UAVs with capabilities of vertical take-off and landing (VTOL) has become a capable and economical power source, due to its high energy and power densities, discharge rate (C-rate), and zero emission of pollutants [START_REF] Donateo | A new approach to calculating endurance in electric flight and comparing fuel cells and batteries[END_REF]). By considering a new and fully charged battery, the flight endurance is between 10 to 30 minutes [START_REF] Roberts | Energy management for indoor hovering robots[END_REF]; [START_REF] Morbidi | Minimum-Energy Path Generation for a Quadrotor UAV[END_REF]; [START_REF] Chang | LiPo battery energy studies for improved flight performance of unmanned aerial systems[END_REF], where 85% of the energy is consumed by the propulsion system. The remaining consumption is caused by the sensors, (such as GPS, accelerometers, compass, gyroscope [START_REF] Aleksandrov | Energy consumption of mini UAV helicopters with different number of rotors[END_REF])), the flight control computer, and for some payload (gimbal system, cameras, and other kind of sensors). However, the flight endurance is gradually reduced over timer due to aging of the battery. The effect of aging is characterized by a capacity loss and immediately power fade. The aging is caused by several factors such as highrate cycling, overdischarge and overcharge, and drastically changes of operation temperature [START_REF] Watrin | Review of adaptive systems for lithium batteries State-of-Charge and State-of-Health estimation[END_REF]). To avoid damages and reduce the aging rate during the This work was supported by CONACYT (Consejo Nacional de Ciencia y Tecnología) charge/discharge cycles of the battery, it is necessary to monitor the State of Charge (SoC) and to establish safety limits around the End of Discharge (EoD) (also called cutoff voltage). At a given time, the SoC is the proportion of the available charge, compared to the total charge available when the battery is fully charged, it is analog to a car gas fuel gauge. On the other hand, the EoD indicates that the battery is fully discharged. In the literature of Electrical Cars, such concepts are the main criterion in the design of Battery Manage Systems (BMS) [START_REF] Saha | Battery health management system for electric UAVs[END_REF], where the main objective is to define adequate operation regimes to extend the life of the battery and maximize the energy supplied. In the case of UAVs, the monitoring of SoC battery during the development of a mission will allow to establish a voltage safety limit before reaching the EoD to ensure the fulfillment of the mission, safeguard the integrity of the battery, and have an adequate use of the energy supplied to maximize the flight endurance. Several researches have addressed the problem of flight endurance for different types of UAV considering mainly three types of powertrains such as batteries, fuel cells, and solar cells [START_REF] Meyer | Design considerations for a low altitude long endurance solar powered unmanned aerial vehicle[END_REF]; [START_REF] Saha | Battery health management system for electric UAVs[END_REF][START_REF] Swider-Lyons | Hydrogen fuel cell propulsion for long endurance small uavs[END_REF][START_REF] Traub | Range and endurance estimates for batterypowered aircraft[END_REF]). The main objectives of such researches were the development of methodologies and strategies to increase the flight endurance taking into account the geometry of the UAV, disturbance as the wind, the type of trajectory, the maximum altitude and the power requirement to perform a mission. In the specific case of multirotor UAVs powered by Li-Po batteries, the efforts have been focused to generate strategies to ensure the fulfillment of a mission and increase flight time, e.g. [START_REF] Souza Cândido | Control and energy management for quadrotor[END_REF]) are presented an integrated planning and control approach to increase the probability of completion of fly-by missions by batterypowered UAV quadrotor. The authors in (Abdilla et al. (2015a)) proposed a technique to extend the endurance of battery-powered rotorcraft by sub-diving the monolithic battery into multiple smaller capacity batteries which are sequentially discharged and released. Also, in [START_REF] Abdilla | Power and endurance modelling of battery-powered rotorcraft[END_REF]) the authors characterized the power consumption of multirotors and derived an endurance estimation model. [START_REF] Morbidi | Minimum-Energy Path Generation for a Quadrotor UAV[END_REF]) presented two optimal control problems with respect to the angular accelerations of four electrical motors of an UAV quadrotor to improve its flight endurance. More recently [START_REF] Dietrich | An empirical study on generic multicopter energy consumption profiles[END_REF]) are presented experimental results of an analysis of the energy consumption and derivation and validation of empirical formulas to estimate the power consumption and the remaining flight time. The works mentioned above were mainly engaged in developing strategies to improve the consumption of the energy supply, which allows the battery to extend the power consumption for UAV applications, to extend the flight endurance and to ensure the fulfillment of a mission. The main contribution of this work is to present a methodology to predict the flight endurance in the context of Prognosis & Health Management through a Model-based Prognosis algorithm based on the mathematical model of the propulsion system of an UAV multirotor. The prediction of flight endurance is developed in three sequential steps: 1) the estimation of the battery SoC through an Extended Kalman Filter, followed by 2) the propagation of the estimated SoC in the future until reaching a safety threshold value before the EoD, and the 3) update of the prediction. The proposed methodology is applied to an UAV hexarotor to demonstrate: i) the fulfillment of the UAV mission, ii) avoiding overdischarges in the battery, and iii) to be able to take decisions over the mission during the flight endurance prediction. Such considerations must be taken into account to perform routines of mission planning or trajectory reconfiguration. The remaining of the paper is organized as follows: The mathematical model of the propulsion system of an UAV multirotor is presented in the next section. The main concepts around Prognosis & Health Management and the Model-based Prognosis algorithm to predict the flight endurance are explained in Section 3. The development of the flight endurance is detailed in Section 4. The simulation results and the discussion are described in Section 5. Finally, the conclusion and perspectives of the future work are defined in the last Section.

MATHEMATICAL MODEL OF PROPULSION SYSTEM OF UAV MULTIROTOR

The propulsion system of a UAV multirotor is composed by a set of BrushLess DC Motors (BLDCM) powered by a Lithium Polymer battery as it can be seen in Fig. 1, where i denotes the i-th ESC-BLDCM. The connection between each motor and the battery is realized through an Electronic Speed Control (ESC). In Fig. 2 the connection between the Li-Po battery -ESC -BLDCM is detailed for one motor. The ESC adjusts the angular velocity of the BLDCM through a control signal which is a PWM signal.

In this study the dynamic around the ESC is neglected and it is assumed that the voltage supply by the battery and the generated current by the motors are averaged with respect to the duty cycle value produced by the control signal. 

Lithium

SoC (t) = SoC (t o ) - 1 3600 • C T t to I batt (t)dt, (1) 
where t o represents the initial time, C T is the total capacity of the battery expressed in (Ah). The mathematical model, describing the dynamic behavior of the voltage in a Li-Po battery or a single cell, is based on an Equivalent Circuit Representation (ECR) according to Fig. 3. The ECR was presented in [START_REF] Chen | Accurate electrical battery model capable of predicting runtime and IV performance[END_REF]). In The mathematical model of the battery is given by:

VSoC (t) = - I batt (t) 3600 • C T Vd (t) = - V d (t) R d • C d + I batt (t) C d V Batt (t) = V OCV (V SoC (t)) -V d (t) -R int I batt (t), (2) 
where, the V OCV (V SoC (t)) is defined experimentally as:

V OCV (V SoC (t)) = n i=0 λ i V SoC (t) i + ln(V SoC )V SoC (t) (3)
It can be noted that, the nonlinear function ( 3 2013)). In Fig. 6, the aging effect in the voltage of a battery cell is shown. The battery cell was submitted to 150 charge/discharge cycles (N cycle ) [START_REF] Saha | Battery data set[END_REF]). The EoD was established at 2.6 V, and as it can be observed, the time to reach the EoD is reduced according to the number of charge/discharge cycles denoted by (N cycle ). The evolution of the numerical value of C T , is plotted in Fig. 7. It can be noted that this evolution depends on the number of charge/discharge cycles (N cycle ), and the SoH can be defined as

SoH(N cycle ) = C a (N cycle ) C int C T = C 0 • SoH(N cycle ), ( 4 
)
where SoH(N cycle ) is the SoH as an effect of capacity loss, C a (N cycle ) is the value of the capacity in a specific charge/discharge cycle, and C 0 is the value of the capacity when the battery is new. Similar to SoC, the SoH is in a range of SoH ∈ [ 0 1 ], i.e the SoH is 1 when the battery is new, and according to the use, damage, and other factors the SoH will be reduced. It can be noted that the decrease of the capacity affects directly the SoC and consequently the battery voltage (as it can be seen in equation ( 3)). This relationship is plotted in Fig. 8, where the dependence between the SoC and the battery voltage is shown. In that sense, the time when the EoD is reached can be determinate when the SoC reaches 0. It should be mentioned that one characteristic in the dynamic associated to the battery voltage during a discharge is the exponential fall of the voltage before reaching the EoD. The voltage fall can be seen in Fig. 8, which occurs after the SoC reach the 0.1 %.

BrushLess DC Motor

The mathematical model of the BrushLess DC Motor (BLDCM) is divided into the electrical and the mechanical sub-models described by the following equations [START_REF] Moseler | Application of model-based fault detection to a brushless DC motor[END_REF]):

vbatt (t) = R ībatt (t) + K E ω(t), ω(t) = K E J T P ībatt (t) - d J T P ω 2 (t) + D f J T P ω(t) - T f ric J T P , (5) 
where

R = 2 3 ( 3 i=1 R i )
is the equivalent electric resistance of each coil, K E is the back electromotive force, ω(t) is the angular velocity, T f ric is the motor friction torque, D f is the viscous damping coefficient of the motor, d is the drag constant, associated to the geometry of the propeller, and J T P is the inertia of the motor. The average voltage vbatt (t) and current ībatt (t) are the voltage and current generated by the ESC and they are computed as follows:

vbatt (t) = V batt (t) • D cycle I batt (t) = ībatt (t) • D cycle , (6) 
where V batt (t) is the battery voltage, I batt (t) is the current generated by the motors, and D cycle is the duty cycle of Pulse-Width Modulation (PWM) signal, which corresponds to control signal of the motor speed. D cycle can be defined as a function of the square of the angular velocity of the motors and it is determined through experimental correlations, such as D cycle = f (ω(t) 2 ).

PROGNOSIS & HEALTH MANAGEMENT

According to [START_REF] Goebel | Stateof-Charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved Thevenin model[END_REF]; [START_REF] Kim | Prognostics and Health Management of Engineering Systems[END_REF]) the Prognosis & Health Management (PHM) is a novel engineering approach which enables the health assessment of a system according to its actual operating conditions, as well as the prediction of its future condition based on up to date information. One of the main objectives of the PHM is to predict how the system will behave in the future in order to know if more stress or changes in the nominal operation on the system will likely cause an acceleration towards a certain undesirable event or failure condition, and the time when such event will occurs. In order to illustrate how Fig. 9. Evolution of the system behavior.

the prognosis is performed, let us consider Fig. 9. The solid dark blue line represents the past evolution of the system behavior until present time t a , and the brown area is the Safety Zone (SZ) or the nominal operational limit.

According to different factors such as the inputs of the system, aging, or even external disturbances, the system behavior could be progress until reach values outside of its nominal operation. In that sense, if such factors are known, the future trajectory of the system behavior can be predicted until reaching the SZ (segmented blue lines). In the prognosis literature, the End of Life (EoL) is reached, when the system behavior reaches or exceed the upper limit of the SZ at some time t fi , and the Remaining Useful Time (RUL) until reach the EoL is computed as

RU L i = t fi (EoL i ) -t a .
(7) In this work, the system under study is the propulsion system of an UAV multirotor. In that sense, several characteristics of the system behavior could be predicted, such as: i) the battery SoC in a given time. ii) the fulfillment of a mission before to reach the EoD, iii) the flight endurance of the UAV and the Remaining Mission Time. In this work the RUL is considered as the RMT of the UAV.

Model-based Prognosis

Depending on the accuracy level of the prediction and the complexity of the system behavior, different approaches have been used to perform prognosis [START_REF] Goebel | Stateof-Charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved Thevenin model[END_REF]; [START_REF] Coble | Mergin data sources to predict remaining useful life -an automated method to identify prognostic parameters[END_REF]). The Model-based Prognosis or Conditionbased Prediction assess the behavior of individual components of a system as well as the entire system based on a mathematical model that describe the evolution of some system variables (i.e temperature, voltage, position, speed) over time. If such mathematical model exists, the future behavior of the system can be determinate by propagating the mathematical model in the future time. However, to determinate a mathematical model of the interested system in order to perform a prediction of its future behavior is not a trivial task. First, it is necessary to define which system variables are necessary to evaluate the entire system behavior, and determine if such variables are directly measured or not. If such variables are measured, a mathematical model can be defined and used to perform the prediction in the future time. Otherwise, if such variables are unmeasured, they must be estimated. In that sense, this work presents in Fig. 10 a Modelbased Prognosis methodology based on an estimation of the battery SoC in order to predict the flight endurance of the UAV. The prediction in three sequential steps: 1) estimation of unmeasured states of the system, 2) propagation and prediction of the estimated state, and 3) update of the prediction. 

State Estimation.

In several dynamic systems, not all state variables can be measured. For such cases, an observer needs to be designed in order to estimate the unmeasured states considering the system model and the available input-output signals. In this work an Extended Kalman Filter (EKF) is used to estimate the battery SoC. The EKF has demonstrated to be an adequately tool to estimate the battery states as well as parameters in battery systems [START_REF] Plett | Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation[END_REF]; He et al. ( 2011)). In this work the EKF is developed considering a simplified mathematical model where the unique nonlinear term is the Open Circuit Voltage. The EKF addressed the general problem of state estimation of a nonlinear system, expressed in discrete time as:

x k+1 = f (x k , u k ) + w k y k = g(x k , u k ) + v k , (8) 
where f (x k , u k ) and g(x k , u k ) are the nonlinear state transition function and nonlinear measurement function, respectively, and they are assumed to be differentiable at each operating point. The random variables w(t) and v(t) are the process and measurement noise. They are assumed to be independent, white, and with normal probability distributions:

p(w) ∼ N (0, Q) p(v) ∼ N (0, R). ( 9 
)
The matrices Q and R are the process noise covariance and measurement noise covariance, respectively. At each sample time, f (x k , u k ) and g(x k , u k ) are linearized through a first-order Taylor-series developed as

A = ∂f (x k , u k ) ∂x k-1 x k-1 =x - k-1 (10) C = ∂g(x k , u k ) ∂x k x k =x - k (11)
The completed equations of the EKF are resumed in Algorithm (1).

Algorithm 1 Extended Kalman Filter algorithm [START_REF] Plett | Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation[END_REF].

Initial values of x-

k-1 and P k-1 To compute:

A k = ∂f (x k , u k ) ∂x k-1 x k-1 =x - k-1 C k = ∂g(x k , u k ) ∂x k x k =x - k State estimate update: x- k = f (x k-1 , u k-1
), Error covariance matrix:

P - k = A k P k A T k + Q, Kalman gain: K k = P - k C T k (C k P - k C T k + R) -1 , State estimate measurement update: xk = x- k + K k (y k -g(x - k , u k )
), Error covariance matrix update:

P k = (I -K k C k )P - k .
Propagation and Prediction of estimated states.

As mentioned previously, if a mathematical model that describes the evolution of system behavior as a function of the time exists, the prediction of future behavior can be determined by propagating the model in the future time. However if the system involves unmeasured variables, they must be estimated first, and the prediction of its future behavior is based on the propagation of the estimated variables in the future. In order to illustrate how the propagation and prediction are performed, let us consider Fig. 9 where the trend of the past evolution of system behavior at time t a is known. It is possible to define a function that approximate the trend with the time, and propagate the function in the future until reaches the SZ. This function is called prediction function, and the accuracy of the prediction will depend on the amount of past data measure. On the other hand, the prediction function can be updated by using new data of the system. Due to the fact that there are no abrupt changes or discontinuities in the evolution of estimation SoC, the prediction function is defined as a polynomial function of the time, such as:

η (t, α) = m j=0 α j• t j = α 0 + α 1 • t + • • • + α m • t m , (12) 
where η(t) represents the predicted variable, t is the time, α i are identified parameters associated to measured data trend and m is the order of the polynomial function. The method of Weighted Least Squares (WLS) is considered to estimate the parameters (α i ) of ( 12). The WLS is defined as:

H = [ 1 t • • • t m ] , α = [H T R -1 H] -1 H T R -1 Y, (13) 
where H contains the information of the relationship between the time and the polynomial order, α is the vector with the estimated parameters α i , R is the measurement covariance matrix, and Y is the vector of the measured data (variable to be identified). The approximation is evaluated the coefficient of determination R 2 , which is limited as R 2 ∈ [ 0.9 1 ] in this study, and the polynomial order depends on the accuracy between the data and the identified function. The iterative sequence of propagation and prediction is given in the Algorithm 2.

Algorithm 2 Propagation and prediction algorithm.

(1)

Delay (t p ) (2) Recollect data until Ŝ oC(t a ) (3) Define H and m for H = [ 1 t • • • t m ] and η (t, α) = m j=0 α j• t j = α 0 + α 1 • t + • • • + α m • t m (4) Estimate α with Y = Ŝ oC(t 0 : t a ) α = [H T R -1 H] -1 H T R -1 Y (5) Verify R 2 to Y = Ŝ oC(t 0 : t a ) with η (t 0 : t a , α) (6) Propagate η (t 0 : t a , α) until t(SV T ) to determinate the Flight Endurance (FE) F E = t(SV T ) (7) Compute Remaining mission Time (RMT) RM T = t(SV T ) -t a

PREDICTION OF FLIGHT ENDURANCE OF UAV MULTIROTOR

The methodology explained previously will be applied to predict the flight endurance of an UAV hexarotor. During the development of a mission of some UAV, the End of Discharge (EoD) must be taking into account to ensure the safety of the UAV, the fulfillment of the mission, and the maximization of flight endurance. In that sense, the total flight endurance is considered as the time between the beginning of the mission until reaches a Safety Voltage Threshold before EoD value. Several factors are implied in the flight endurance of the UAV, such as the total current demanded by the number of the BLDCM (I batt (t)), and C-Rate, the rate discharge (C), the initial charge SoC(t 0 ), and the State of Health SoH. Then, assuming a new and fully charged battery, the EoD is directly associated with the battery voltage. The time when EoD is reached can be computed considering the demanded current (I batt (t)) through relation of C-Rate discharge. However according to the number of charge/discharge, the capacity of the battery decreases and the discharge rate is modified as the aging of the battery increases. In that sense, the computing of EoD time should consider the effect of the aging to obtain the total flight endurance according to the battery SoH. As it can be observed from (2), the variation of C T affects directly the SoC and consequently the OCV(3). Then, considering the relationship between the battery voltage and the SoC shown in Fig. 8, the EoD can be directly associated to the SoC. Taking into account that the total current demanded by the set of BLDCM is known or measure, the SoC of the battery during the mission can be computed using equation (1) or estimated through EKF, and its future trajectory can be propagated and predicted in the future until reaching the EoD, leading to prediction of the flight endurance. The development of each step in the PHM architecture shown in Fig. 10 to predict the flight endurance of the UAV is explained in the next section.

SoC estimation

The prediction of the flight endurance is based on the computation or estimation the battery SoC during the UAV mission. In that sense, two cases are considered in this work: 1) the direct computation of the SoC using the Amper counting method, and 2) the estimation of the SoC using a EKF. In the first case, the SoC is computed directly using equation ( 1). However, this method accumulates errors in measurements and may lead to large SoC errors in real-world applications [START_REF] Gholizadeh | Estimation of state of charge, unknown nonlinearities, and state of health of a lithiumion battery based on a comprehensive unobservable model[END_REF]).

In that sense, the estimation of SoC is considered based on the design of an Extended Kalman Filter applied on system (2).

EKF of Li-Po battery.

The estimation of SoC is developed according to Algorithm 1. System (2) is discretized through forward Euler method, and rewriting in state space:

x k+1 = 1 0 0 1 - T s R d C d x k +    - T s C T T s C d    u k + w k y k = ∂V OCV (V SoC ) ∂V - SoC -1 x k -R int u k + v k , (14) 
where the discrete state space vector is

x k = [ V SoC V d ]
T , the input u k = I batt , the output y k = V batt , and T s is the sampling time. The nonlinear term is the OCV shown in equation ( 1), which is in the matrix C. The variation in the measurement and process noise are established at ±0.1 V , and ±0.01 V and the process and measurement covariance matrices are defined using experimental data from a real battery [START_REF] Schacht-Rodriguez | SoC estimation using an Extended Kalman filter for UAV applications[END_REF]) as:

Q = 1 × 10 -2 0 0 1 × 10 -2 R = [ 0.1 ] . (15) 
The propagation and prediction of the estimated SoC is developed according to Algorithm (2). It is important to mention that the methodology shown in Fig. 10, considers two types of sampling time during its implementation, i.e. whiles the state estimation stage is subject to the sampling time of the system in order of milliseconds, the propagation and evaluation could be performed in a sampling time in the order of seconds, or even minutes.

RESULTS AND DISCUSSION

The methodology introduced in this paper to predict the flight endurance was tested in simulation considering the propulsion system of an UAV hexarotor. A Li-Po battery of four cells was considered as powertrain and the parameters were obtained using experimental data considering the methodology presented in [START_REF] Schacht-Rodriguez | SoC estimation using an Extended Kalman filter for UAV applications[END_REF]). Considering the relationship between the battery voltage and the SoC, the SVT is defined according to Fig. 11. As it can be observed, before the voltage reaches the EoD, there is an abrupt exponential fall of voltage.

Taking into account this SVT is defined before the voltage reaches the EoD. The UAV was sub- The propagation and prediction was developed over sampling time of 1 minute, and the SoC estimation each 10 milliseconds to collect enough data to estimate the parameters of the prediction function ( 12). Two 1 st and 2 nd order polynomials were considered for the prediction function. The predictions of the total flight endurance for both prediction functions are plotted in Fig. 15. The blue marks correspond to the predicted flight endurance with the 1 st order polynomial, and the red marks with the 2 nd order polynomial. As it can be observed, the first predictions (1 -4 min) with the 1 st order polynomial are closer to the real flight endurance, whilst an approximation of the real flight endurance is displayed from 6 minute onwards with the 2 nd order polynomial. However the closest prediction of real flight endurance is obtained at time 8 min with the 2 nd order polynomial. In Fig. 16 and Fig. 17 SoC was propagate in the future time before reaching the EoD. The propagation and prediction algorithm presented can be applied on other type of electrically powered UAV. On the other hand, the prognosis methodology also enabled to define safe operating limits in the battery to avoid damages and guarantee the fulfillment of the UAV mission. The simulation results exhibited that it is possible to predict the total flight endurance and the remaining mission time before the end of the mission considering a Decision Threshold between the beginning of the mission and the time when the prediction is closest with the real value. The Decision Threshold is necessary in order to define a scheme of Decision Making for mission planning or trajectory planning. In that sense, the prediction of the flight endurance will be the core of a path planning and re-planning strategy to take actions over the evolution of a mission as future work.
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 1 Fig. 1. Propulsion system of UAV multirotor.
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 2 Fig. 2. Connexion of Li-Po battery -ESC -BLDCM.
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 3 Fig. 3. Electrical equivalent a Lithium battery.
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 3 (on the left-side of the circuit), the voltage V SoC (t) models the state of charge SoC(t) of the battery from the capacity C T . The voltage V OCV (V SoC ) is the Open Circuit Voltage (OCV), i.e. it is the effective voltage in the terminals of battery, and it is modeled as a function of the state of charge of the battery. The voltage V Rint (t) characterizes the ohmic over-potential due to the internal resistance of the battery R int . V d (t) represents the transitory response of the voltage when a current is demanding to the battery. It is characterized by a first order response and its time constant depends on the value of parameters R d and C d .

  Fig. 4. Demanded Current and battery voltage at 25 • C.

Fig. 5 .

 5 Fig. 5. Characteristics of the battery voltage.is the cut-off voltage and it indicates that the battery is fully discharged. If this value is reached and the discharge continues, an irreversible damage is generated to the battery. One way to quantify the aging is to consider the State of Health (SoH). The SoH represents the actual conditions of a battery, in comparison with its nominal conditions. The main phenomena that characterizes the battery SoH is the capacity loss or capacity fade, which is caused by the reduction of the capacity value C T according to the number of charge/discharge cycles (Cordoba-Arenas et al. (2013)). In Fig.6, the aging effect in the voltage of a battery cell is shown. The battery cell was submitted to 150 charge/discharge cycles (N cycle )[START_REF] Saha | Battery data set[END_REF]). The EoD was established at 2.6 V, and as it can be observed, the time to reach the EoD is reduced according to the number of charge/discharge cycles denoted by (N cycle ). The evolution of the numerical value of C T , is plotted in Fig.7. It can be noted that this evolution depends on the number of charge/discharge cycles (N cycle ), and the SoH can be defined as

Fig. 6 .

 6 Fig. 6. Variation of voltage of a battery cell subject to 160charge/discharge cycles[START_REF] Saha | Battery data set[END_REF]).

Fig

  Fig. loss and battery SoH[START_REF] Saha | Battery data set[END_REF]).

Fig. 8 .

 8 Fig. 8. Relationship between battery voltage and SoC.

Fig. 10 .

 10 Fig. 10. Model-based Prognosis methodology.

Fig. 11 .

 11 Fig. 11. Safety Voltage Threshold of the Li-Po battery.jected to a mission which consisted in following circular trajectory with an area of 785400 m 2 around x -y axis and an altitude of 20 m (Fig.12). Such trajectory was developed considering the mathematical model of UAV presented in (Arellano-Muro et al. (2013)). Considering that the battery is fully charged and new, the initial SoC and SoH were established in 1 respectively. The current

  Fig. 13. (a) Demanded current I batt and (b) comparison of V batt and Vbatt .

Fig. 14 .

 14 Fig. 14. Comparison between SoC CC and Ŝ oC.

  Fig. 15. Flight Endurance prediction.the prediction for the 1 st and 2 nd order polynomial at time 1, 6 and 8 min, and their comparison with the estimated SoC are shown. A Decision Threshold (DT) at the 0.6% (at time 10 min of the total flight endurance) of estimated SoC was defined to determinate an operation range where the predictions will be useful to take decisions on the progress of the mission. The computation of Remaining Mission Time (RMS) was made from the first prediction, and the results are shown in Fig.18. As it can be seen, it is possible to predict the total flight endurance and the RMS from the beginning of the mission considering the defined DT.

Fig. 16 .

 16 Fig. 16. Prediction of FE with 1 st order polynomial.

Fig. 18 .

 18 Fig. 18. Evolution of Remaining Mission Time.