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Abstract: The design of a novel sensor fault detection scheme for discrete-time linear time-
invariant systems with unknown but bounded uncertainties is proposed in the paper. To make
the residual sensitive to fault and robust against the unknown disturbance and measurement
noise, we propose a multi-objective fault detection observer method based on the criteria of H−

index and P-radius and further present an iterative LMI method to solve the observer design
problem. In the design of residual evaluation, we propose a threshold computation method via
the interval hull approximation of the residual reachable set. The merit of the proposed method
is that its threshold computation exhibits less conservatism and higher computational efficiency
than the zonotope-based method. Simulations are conducted to demonstrate the superiority of
the proposed method.
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1. INTRODUCTION

In the past decades, model-based fault diagnosis tech-
niques have been extensively studied, see e.g. Ding (2008),
Chen and Patton (2012) and the references therein. One
of the challenges in model-based fault diagnosis is how
to handle model uncertainties including the unknown dis-
turbance and measurement noise. H−/H∞ robust fault
detection observer which is sensitive to faults and robust to
model uncertainties was first proposed by Hou and Patton
(1996) and has attracted many researchers’ attention see
in Liu, Wang, and Yang (2005), Wang and Yang (2008)
, Ding and Yang (2010) and Chadli, Abdo, and Ding
(2013). In Wang, Rodrigues, Theilliol, and Shen (2015),
H∞ design is used for robust fault detection of descriptor
systems. In H∞ design, it is required that the energy of
disturbance over entire time domain is bounded, which
is seldom satisfied. Although H∞ norm is widely used in
control analysis and synthesis, it is not a suitable measure
for residual evaluation (Wang et al., 2017b).

Different from H∞ design, set-membership estimation,
which assumes that the uncertainties are unknown but
bounded, provides a natural way to compute threshold
for fault detection. Recently, the zonotope-based method
has received much attention due to its flexibility and
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simplicity. Some zonotope size criteria including P-radius
(Le et al., 2013) and F-radius (Combastel, 2015b) have
been used to design the set-membership observers robust
against disturbance and noise. In recent years, zonotope-
based set-membership estimation methods have been used
for fault detection (Guerra et al., 2006; Combastel and
Zhang, 2006; Puig, 2010). In Xu, Puig, Ocampo-Martinez,
Stoican, and Olaru (2014), the zonotope-based method is
also used for fault isolation. Combastel (2015a) combines
Kalman filtering and zonotope-based method for robust
fault detection.

Note that most of existing results on zonotopic fault
detection only consider the robustness to disturbance and
noise. Wang et al. (2017a) first combines the H− analysis
and the zonotopic analysis to achieve zonotopic fault
detection with H− performance. However, a reduction
operator is required in the zonotopic fault detection and
may cause conservatism.

The main contribution of this paper consists in two as-
pects. First, the fault detection observer design based on
H− and the P-radius is solved by iterative LMI method.
The designed observer is sensitive to sensor faults and
robust to disturbance and noise. Second, compared with
the zonotope-based method, a more accurate threshold for
residual evaluation is obtained by computing the interval
hull of the residual reachable set. The proposed threshold
computation method is inspired by Girard et al. (2006)
and has high computational efficiency, which only involves
simple calculations of low dimensional matrices and can
get rid of the reduction operation.



2. PRELIMINARIES

A zonotope Z ⊂ R
n is the affine image of an unit

hypercube Bm = [−1, 1]m, m ≥ n. Given the center
vector p ∈ R

n and the generator matrix H ∈ R
n×m, the

zonotope Z is defined as follows

Z = 〈p,H〉 = {p+Hz, z ∈ Bm} (1)

The Minkowski sum of two sets X and Y is defined as

X ⊕ Y = {x+ y : x ∈ X , y ∈ Y} (2)

And for sets S1, . . . , Sn,
n

⊕

i=1

Si = S1 ⊕ · · · ⊕ Sn (3)

which denotes the Minkowski sum of a group of sets.

The linear image of a set X ⊂ R
n by a matrix L ∈ Rm×n

is defined as
LX = {Lx : x ∈ X} (4)

For zonotopes, the following properties hold:

〈p1, H1〉 ⊕ 〈p2, H2〉 = 〈p1 + p2, [H1 H2]〉 (5)

L〈p,H〉 = 〈Lp,LH〉

For a vector x ∈ R
n and a symmetric matrix P ∈

R
n×n, ‖x‖2P = xTPx, where the superscript T denotes

transposition, and ‖x‖2 = xTx. In a symmetric block
matrix, we use ∗ to represent a term that can be induced
by symmetry. For a discrete-time signal zk, its L2 norm is

defined as ‖z‖2 =
√

∑

∞

k=0
zTk zk.

3. PROBLEM FORMULATION

Consider the following system:
{

xk+1 = Axk +Buk +Dwwk

yk = Cxk +Dvvk + Efk
(6)

where xk ∈ R
nx , uk ∈ R

nu and yk ∈ R
ny denote the

vectors of state, control input and measurement output,
respectively. wk ∈ R

nw is the unknown disturbance, vk ∈
R

nv is the measurement noise and fk ∈ R
nf denotes the

sensor fault. A ∈ R
nx×nx , B ∈ R

nx×nu , C ∈ R
ny×nx ,

Dw ∈ R
nx×nw , Dv ∈ R

ny×nv and E ∈ R
ny×nf are known

constant matrices.

Without loss of generality, we assume wk, vk and x0 to be
unknown but bounded as follows

wk ∈ W = 〈0, Inw
〉 (7)

vk ∈ V = 〈0, Inv
〉 (8)

x0 ∈ X0 = 〈p0, H0〉 (9)

where Inw
and Inv

denote identity matrices, p0 and H0 are
known constant vector and matrix.

For system (6), an observer-based residual generator is
proposed as

{

x̂k+1 = Ax̂k +Buk + L(yk − Cx̂k)
rk = M(yk − Cx̂k)

(10)

where x̂k and rk are the state estimation and residual,
respectively. L ∈ R

nx×ny is the observer gain and M ∈
R

ny×ny denotes the weighting matrix to provide more
design freedom. And the initial state estimation is set as

x̂0 = p0 (11)

The state estimation error is defined as

ek = xk − x̂k (12)

Subtracting (10) from (6), the error dynamic system is
obtained by
{

ek+1 = (A− LC)ek +Dwwk − LDvvk − LEfk
rk = MCek +MDvvk +MEfk

(13)

From (9) and (12), we have

e0 ∈ Ω0 = 〈0, H0〉 (14)

In this paper, we first design the fault detection observer
in (10) to generate the residual that is sensitive to the
sensor fault and robust against the unknown disturbance
and measurement noise. Following the fault detection
observer design, we propose a residual evaluation method
via computing the interval hull approximation.

4. RESIDUAL GENERATION BY FAULT
DETECTION OBSERVER

The task of fault detection observer design is to find
an observer gain L such that the residual is sensitive
to sensor faults and robust against model uncertainties
simultaneously. The design conditions can be converted
into solving a multi-objective optimization problem.

4.1 Fault sensitivity condition

Consider the following error system which is only affected
by sensor faults.

{

ek+1 = (A− LC)ek − LEfk
rk = MCek +MEfk

(15)

where the initial error e0 = 0.

The following theorem is proposed to design L such that
the residual is sensitive to the sensor fault.

Theorem 1. For the system (15), given a scalar β > 0,
if there exists a positive definite matrix Q such that the
following inequality holds.





−Q QA−QLC −QLE
∗ −Q− CTY C −CTY E
∗ ∗ −ETY E + β2Inf



 < 0, (16)

where Y = MTM . Then the following inequality holds
such that rk is sensitive to fk.

‖r‖2 > β‖f‖2 (17)

Proof. By using the Schur complement, (16) is equivalent
[

Φ11 Φ12

∗ Φ22

]

< 0 (18)

where

Φ11 = −CTMTMC + (A− LC)TQ(A− LC)−Q
Φ12 = (A− LC)TQ(−LE)− CTMTME
Φ22 = β2Inf

− ETMTME + (LE)TQ(LE)
(19)

Define the following Lyapunov function

Vk = eTkQek (20)

where Q ∈ R
nx×nx is a positive definite matrix.



The time difference of Vk is

∆Vk = Vk+1 − Vk

= eTk [(A− LC)TQ(A− LC)−Q]ek

+ eTk (A− LC)TQ(−LE)fk

+ fT
k (−LE)TQ(A− LC)ek

+ fT
k (LE)TQ(LE)fk

(21)

Then, pre-multiply and post-multiply (18) with
[

eTk fT
k

]T

and its transpose, we have

rTk rk − β2fT
k fk −∆Vk > 0. (22)

It follows that

‖r‖22 − β2‖f‖22 − V∞ + V0 > 0 (23)

Since V0 = 0 and V∞ ≥ 0, we have

‖r‖22 − β2‖f‖22 > 0 (24)

which is equivalent to (17). �

4.2 Disturbance attenuation condition

To design the observer gain L such that the residual is
robust against the system uncertainties, the error system
only affected by disturbance and noise is considered as
follows

{

ek+1 = (A− LC)ek +Dwwk − LDvvk
rk = MCek +MDvvk

(25)

For system (25), the reachable set of ek+1 can be obtained
from those of ek, wk and vk recursively by using the
properties of zonotopes, (5). Since wk, vk and e0 are
bounded in centered zonotopes, ek can be bounded in the
zonotope denoted as Ωk = 〈0, Hk〉, where Hk ∈ R

nx×s.

According to (25), the generator matrix of Ωk+1 = 〈0,
Hk+1〉 can be obtained by

Hk+1 = [(A− LC)Hk Dw −LDv] (26)

To minimize the system uncertainties effects on the estima-
tion error and the residual, the observer gain L is designed
such that the size of Ωk is minimized. A zonotope size
criterion named P-radius is proposed in Le et al. (2013).
The P-radius of 〈0, Hk〉 is defined as

lk = max
z∈Bs

‖Hkz‖
2
P (27)

If there exists a scalar γ ∈ (0, 1) such that lk+1 < γlk,
the size of Ωk(i.e. lk) is decreasing. Due to the disturbance
and noise, this condition is hard to verify. A relaxation of
this condition can be

lk+1 < γlk + ǫ (28)

where ǫ is a positive constant that represents the max
influence of unknown disturbance and measurement noise
as follows

ǫ = max
s1∈Bnw

‖Dws1‖
2 + max

s2∈Bnv
‖Dvs2‖

2 (29)

Under the condition (28), lk is bounded. If γ is smaller or
P is bigger, the size of Ωk is smaller.

Theorem 2. Given a scalar γ ∈ (0, 1), (28) holds if there
exists a positive definite matrix P ∈ R

nx×nx such that the
following inequality holds









−γP 0 0 (A− LC)TPT

∗ −DT
wDw 0 DT

wP
T

∗ ∗ −DT
v Dv (−LDv)

TPT

∗ ∗ ∗ −P









< 0 (30)

Proof. Using (27) and (29), (28) can be rewritten as

max
ẑ∈Bs+nw+nv

‖Hk+1ẑ‖
2
P ≤ max

z∈Bnx
‖Hkz‖

2
P + max

s1∈Bnw
‖Dws1‖

2

+ max
s2∈Bnv

‖Dvs2‖
2

(31)

A sufficient condition of (31) is that ∀z1, z, s1, s2, the
following inequality holds.

‖Hk+1z1‖
2
P − γ‖Hkz‖

2
P − ‖Dws1‖

2 − ‖Dvs2‖
2 < 0 (32)

where z1 =
[

zT sT1 sT2
]T

. The explicit form of the previous
inequality is

[

z
s1
s2

]T

HT
k+1PHk+1

[

z
s1
s2

]

− zTHT
k γPHkz

−sT1 D
T
wDws1 − sT2 D

T
v Dvs2 < 0

(33)

Denoting θ = Hkz and substituting (26) into (33), the
inequality above can be written as
[

θ
s1
s2

]T

[A− LC Dw −LDv]
T
P [A− LC Dw −LDv]

[

θ
s1
s2

]

−

[

θ
s1
s2

]T




γP 0 0
∗ DT

wDw 0
∗ ∗ DT

v Dv





[

θ
s1
s2

]

< 0

.

(34)

Based on the definition of the negative definite matrix and
Schur complement, (34) is equivalent to (30). �

4.3 Fault detection observer design using iterative LMI

The fault detection observer is required to be sensitive to
the sensor fault and robust against the uncertainties, which
is a multi-objective optimization problem. Since there exist
coupling terms PL and QL, (16) and (30) are not LMIs.

In Wang et al. (2017a), by letting W = PL and Q =
αP , (30) and (16) are reformulated as LMIs. Then the
observer gain L can be obtained by solving the following
optimization problem:

min
β,P,W,Y

−tr(P )− β2 (35a)

subject to








−γP 0 0 ATP − CTWT

∗ −DT
wDw 0 DT

wP
T

∗ ∗ −DT
v Dv −DT

v W
T

∗ ∗ ∗ −P









< 0 (35b)





−αP αPA− αWC −αWE
∗ −αP − CTY C −CTY E
∗ ∗ −ETY E + β2Inf



 < 0 (35c)

Nevertheless, this method may cause some conservatism
due to the linearization of PL and QL. To deal with the
coupling terms, P and Q are obtained by solving LMIs
as L given. Next, using the P and Q obtained in the last



step, L is also obtained by solving LMIs. The two steps
continues until the termination condition is satisfied.

The iterative method can achieve less conservatism. The
overall process of the proposed method can be denoted as
algorithm 1.

Algorithm 1

Give the parameters of system (6):A, Dw, C, Dv, E and
set a termination constant ε.
1.Given γ ∈ (0, 1), solve the optimization problem (35)
and obtain the matrix L.
2.Fix L as obtained at last step, solve the following
optimization problem and denote the solution of β2 as
β1.

min
P,Q,β,Y

−tr(P )− β2

s.t. (30), (16)

3.Fix P and Q as obtained at last step, solve the
following optimization problem and denote the solution
of β2 as β2.

min
P,Q,β,Y

−β2

s.t. (30), (16)

If |β2−β1| < ε is satisfied, terminate the algorithm and
output L. If not, go back to the step 2.

5. THRESHOLD COMPUTATION FOR RESIDUAL
EVALUATION

In this section, the threshold for residual evaluation is
obtained by a recursive algorithm to compute the interval
hull approximation of the residual reachable set.

Denote the reachable sets of ek and rk as Ωk and Rk.
According to (25), Ωk+1 and Rk in fault-free case can be
obtained by the following equations.

{

Ωk+1 = (A− LC)Ωk ⊕DwW ⊕ (−LDv)V
Rk = MCΩk ⊕MDvV

(36)

According to (36), Ωk+1 can be obtained by

Ωk+1 = (A− LC)kΩ0 ⊕
k−1
⊕

i=0

(A− LC)iDwW

⊕

k−1
⊕

i=0

(A− LC)i(−LDv)V

(37)

Then the reachable set of rk+1 can be obtained by

Rk+1 = MC(A− LC)kΩ0 ⊕

k−1
⊕

i=0

MC(A− LC)iDwW

⊕
k−1
⊕

i=0

MC(A− LC)i(−LDv)V ⊕MDvV

(38)

The equation (38) indicates that Rk+1 can be separated
into four parts. The boundaries of Rk+1 can be easily
obtained by a recursive algorithm.

The boundaries of a set S ∈ R
n can be formulated as an

interval hull as follows

Box(S) = ([a1, b1], . . . , [ai, bi], . . . , [an, bn]) (39)

where [ai, bi] is an interval, ai and bi are the lower and
upper boundary of the i-th element of any vector variable
s ∈ S. For simplicity, define a = [a1, . . . , an] and b =
[b1, . . . , bn], then the interval hull of S can be denoted as
Box(S) = [a, b].

For a zonotope Z = 〈p,H〉 ∈ R
n, where H ∈ R

n×s, the
components of Box(Z) = [a, b] can be obtained by























ai = pi −
s

∑

j=0

|Hi,j |, i = 1, . . . , n

bi = pi +

s
∑

j=0

|Hi,j |, i = 1, . . . , n

(40)

For interval hulls Box(S1) = [a, b], Box(S2) = [c, d], the
following property holds.

Box(S1 ⊕ S2) = Box(S1)⊕ Box(S2)
= [a, b]⊕ [c, d] = [a+ c, b+ d]

(41)

Using (38) and (41), Box(Rk+1) can be obtained by

Box(Rk+1) = Box
(

MC(A− LC)kΩ0

)

⊕

k−1
⊕

i=0

Box
(

MC(A− LC)iDwW
)

⊕

k−1
⊕

i=0

Box
(

MC(A− LC)i(−LDv)V
)

⊕ Box
(

MDvV
)

(42)

According to the structures of the components of (42),
Box(Rk+1) can be obtained by the recursive algorithm as
follows.

Algorithm 2

Give the parameters of system (13):A, Dw, C, Dv, L,
Ω0, W, V
1. Initialize the follow sets with the known sets:
X0 ← Ω0

M0 ← DwW
D0 ← {0}
S0 ← LDvV
N0 ← {0}
2.The interval hull of Rk+1 is obtained by the following
iteration process:
Xk+1 = (A− LC)Xk

Dk+1 = Dk ⊕ Box(MCMk)
Nk+1 = Nk ⊕ Box(MCSk)
Mk+1 = (A− LC)Mk

Sk+1 = (A− LC)Sk

Box(Rk+1) = Box(MCXk+1) ⊕ Dk+1 ⊕ Nk+1 ⊕
Box(MDvV)

Remark 1. A zonotopic fault detection procedure by test-
ing if the origin of coordinate is in the residual zonotope is
proposed in Wang et al. (2017a). However, this test suffers
a large computational burden. It is more practical to
calculate the boundaries of the components of the residual
as the threshold, which can be obtained by calculating the
interval hull of the residual zonotope. The recursive algo-
rithm proposed in this section can obtain more accurate
thresholds than those by the zonotope-based method and
has higher computational efficiency.



6. SIMULATIONS

In this section, a numerical example adapted from the
subsection 7.4 of Chen and Patton (1999) is used to
illustrate the effectiveness of the proposed method. The
system has the form of (6) with

A =







0.5 −0.7 0.7 0
0 0.8 0.09 0
−1.0 0 0 0.1
0 0 −0.15 0.4






, B =







0 0
1 0
0 1
0 0






,

C =

[

0 0 1 0
0 1 0 0
0 0 0 1

]

, Dw = 0.01I4,

Dv = 0.01I3, E = C

In the simulation study, the initial state x0, p0 and H0 are
set as

x0 = [0.09 0.07 0.08 0.06]
T
, p0 = [0 0 0 0]

T
,

H0 = 0.01I4

Given α = 10 and γ = 0.33, using the method in Wang
et al. (2017a) gives the solutions of L and M as follows.

L1 =







0.2208 −0.6049 −0.9884
0.0589 0.6541 −0.0445
0.1363 −0.0308 1.3849
−0.0163 0.0073 0.4723







M1 =

[

3.1761 0.0249 0.2025
0.0249 4.8651 −1.5145
0.2025 −1.5145 3.3654

]

The sensor faults are formulated as

fk =

{

[

0 0 0
]T

, k < 40, k > 60
[

0.05 −0.03 0.02
]T

, 40 ≤ k ≤ 60
(43)

The simulation results are shown in Figure 1-3. The
thresholds obtained by algorithm 2 are less conservative
than those by the zonotope-based method. But both the
two thresholds fail to detect the faults, which is due to the
conservatism introduced by the linearization of PL and
QL in (16) and (30), respectively.

Given the same α and γ, the solutions of L andM obtained
by algorithm 1 are as follows. And the sensor faults are still
set as (43).

L2 =







0.3481 −0.4923 −0.0509
0.0697 0.6446 0.0001
0.2424 0.0622 0.1088
−0.0745 −0.0415 0.3224







M2 =

[

3.1587 0.2973 −0.0395
0.2973 6.0840 −0.0423
−0.0395 −0.0423 1.6793

]

The simulation results are depicted by Figure 4-6. These
figures show that the threshold by the proposed method
has higher fault detection rate than that by Wang et al.
(2017a). Moreover, the method in Wang et al. (2017a) has
heavier computation burden since it involves operations
on high dimensional matrices and needs reduction opera-
tor. Algorithm 2 only involves simple calculations of low
dimensional matrices and thus has higher computational
efficiency.
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Fig. 1. rk(1) and its thresholds with L1 and M1.
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Fig. 2. rk(2) and its thresholds with L1 and M1.

0 10 20 30 40 50 60 70 80 90 100

k

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

r k(3
)

Fig. 3. rk(3) and its thresholds with L1 and M1.

7. CONCLUSION

In this paper, a fault detection observer is designed by
combining the H− index and the P-radius. The multi-
objective optimization problem is solved by iterative LMI
method. The designed observer is sensitive to the sensor
fault and robust to the unknown disturbance and mea-
surement noise. The threshold obtained by computing the
interval hull approximation of the residual reachable set
has less conservatism than that by the zonotope-based
method.
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Fig. 5. rk(2) and its thresholds with L2 and M2.
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