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INTRODUCTION

The growing requirements for reliability and safety of contemporary complex processes and systems are the inspiration for researchers to develop newer and newer approaches concerning the Fault Diagnosis (FD) [START_REF] Blanke | Diagnosis and fault-tolerant control[END_REF][START_REF] Chen | Robust Model-Based Fault Diagnosis for Dynamic Systems[END_REF][START_REF] Isermann | Fault-diagnosis applications: modelbased condition monitoring: actuators, drives, machinery, plants, sensors, and fault-tolerant systems[END_REF][START_REF] Korbicz | Fault diagnosis. models, artificial intelligence, applications[END_REF][START_REF] Patton | Issues of fault diagnosis for dynamic systems[END_REF]. Significant attention for the latest few decades is dedicated to robust Fault-Tolerant Control (FTC) approaches which can be divided into active and passive ones. Contrarily to the passive FTC, which is designed in such a way to be robust against some predefined faults treated in the same fashion as disturbances, the active one is especially attractive. It allows changing the control action according to occurring faults to compensate their impact effect on the controlled system and as a consequence to guide the system correctly and safely even in a faulty case. In order to achieve such a goal, it is necessary to obtain an information about faults in every instances of time. In the literature, there are plenty methods of identification and estimation to acquire the knowledge about faults. Among them in [START_REF] Foo | A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended kalman filter[END_REF][START_REF] Keller | Two-stage kalman estimator with unknown exogenous inputs[END_REF] a Kalman filterbased schemes are considered. A sliding mode observer and an high-gain observer are presented in [START_REF] Brahim | An h ∞ sliding mode observer for Takagi-Sugeno nonlinear systems with simultaneous actuator and sensor faults[END_REF][START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF]. In the works [START_REF] Zhang | Fault diagnosis of a class of nonlinear uncertain systems with lipschitz nonlinearities using adaptive estimation[END_REF][START_REF] López-Estrada | Robust sensor fault estimation for descriptor-lpv systems with unmeasurable gain scheduling functions: Application to an anaerobic bioreactor[END_REF] adaptive estimators are proposed. Moreover, a minimum-variance estimator is considered in [START_REF] Gillijns | Unbiased minimumvariance input and state estimation for linear discretetime systems[END_REF] while in [START_REF] Chen | Robust fault estimation using an lpv reference model: Addsafe benchmark case study[END_REF][START_REF] Nobrega | Robust fault estimation of uncertain systems using an lmi-based approach[END_REF][START_REF] Zhang | Robust H ∞ adaptive descriptor observer design for fault estimation of uncertain nonlinear systems[END_REF] an H ∞ approach is used.

Having in mind the fact that modern control systems can be split into actuators, sensors and process dynamics [START_REF] Chen | Robust Model-Based Fault Diagnosis for Dynamic Systems[END_REF][START_REF] Ducard | Fault-tolerant flight control and guidance systems: Practical methods for small unmanned aerial vehicles[END_REF], the three classes of faults may be taken into consideration: actuator faults, sensor faults and process (or component) faults. However, most of the listed strategies are dedicated to the one of them only. In the other words, they can be used to either actuator or sensor fault estimation, exclusively.

The main objective of the paper is to deal with the problem of simultaneous estimation of the process and sensor faults. The proposed strategy is robust against the process and measurement uncertainties and it is based on the H ∞ approach. The proposed estimator is able to estimate the process and sensor faults and as a consequence it gives a state estimate free from sensor faults. Indeed, it is very important to take into account simultaneous estimation of the process and sensor faults because in the real environmental conditions both of them might appear at the same time.

The paper is organised as follows: Firstly, section 2 presents preliminaries regarding the class of considered systems. Subsequently, section 3 shows the robust design procedure for the estimator able to estimate the state as well as sensor and process faults. Section 4 concerns an illustrative example with application to the twin-rotor aerodynamical MIMO system and finally, Section 5 concludes the paper.

PRELIMINARIES

Let us consider a discrete-time system:

x k+1 = Ax k + Bu k + n i=1 D i f i,k x i,k + g (x k ) + W 1 w k , (1) 
y k = Cx k + f s,k + W 2 w k ,
(2) where x k ∈ X ⊂ R n is the state vector, u k ∈ R r stands for the control input, y k ∈ R m is the output and g (x k ) describes the non-linear behaviour of the system. It is assumed that g (x k ) is differentable and has bounded derivatives. Moreover f s,k ∈ F s ⊂ R m is the sensor fault vector and w k express the exogenous disturbance vector obeying

l 2 = {w ∈ R n | w l2 < +∞}, (3) 
w l2 = ∞ k=0 w k 2 1 2 . ( 4 
)
Note that, it can be easily shown that the disturbance vector can be spilt in such a way

w k = w T 1,k , w T 2,k
T which represent the process and measurement uncertainties, respectively. Furthermore, W 1 and W 2 denote the noise distribution matrices. Moreover, D stands for the process fault distribution matrix, in other words, it describes the way in which the fault influences the system. It can be observed that the problem of estimating f i,k directly is non-linear because of multiplication, even for the linear system. To tackle this problem, throughout the paper, the system (1)-( 2) is transformed into the following form:

x k+1 = Ax k + Bu k + Dz k + g (x k ) + W 1 w k , (5) 
y k = Cx k + f s,k + W 2 w k , (6) 
where the vector z k ∈ R n is composed with a multiplication of the fault f k and state x k in such a way as

z k =     f 1,k • x 1,k f 2,k • x 2,k . . . f n,k • x n,k     . (7) 
For further deliberations, let us call the vector z k a process fault. The idea is to estimate z k instead of estimating f i,k directly.

JOINT SENSOR AND PROCESS FAULTS ESTIMATOR DESIGN

The main goal of the section is to design the estimator, which will be able to estimate the state as well as the process and all the sensor faults, simultaneously. To cope with such requirements, the estimator of the following form is proposed:

xk+1 = Ax k + Bu k + Dẑ k + g (x k ) + K x y k -C xk -f s,k , (8) ẑk+1 
= ẑk + K z y k -C xk -f s,k , (9) 
f s,k+1 = f s,k + K s y k -C xk -f s,k , (10) 
where K x , K z and K s are the estimator gain matrices for the state, process fault and sensor fault, respectively. Having regard ( 5)-( 6) as well as ( 8)-( 10) the state estimation error is given

e k+1 = x k+1 -xk+1 = Ax k + Bu k + Dz k + g (x k ) + W 1 w k -Ax k -Bu k -Dẑ k -g (x k ) -K x Cx k -K x f s,k -K x W 2 w k + K x C xk + K x f s,k = [A -K x C] e k + g (x k ) -g (x k ) -De z,k -K x e s,k -K x W 2 w k , (11) 
with e z,k = z k -ẑk and e s,k = f s,k -f s,k . In a similar way, the process fault estimation error is defined

e z,k+1 = z k+1 -ẑk+1 = z k+1 + z k -z k -ẑk -K z Cx k -K z f s,k -K z W 2 w k + K z C xk + K z f s,k = ε z,k + e z,k -K z Ce k -K z e s,k -K z W 2 w k , (12) 
while the sensor fault estimation error is governed by

e s,k+1 = f s,k+1 -f s,k+1 = f s,k+1 + f s,k -f s,k -f s,k -K s Cx k -K s f s,k -K s W 2 w k + K s C xk + K s f s,k = ε s,k + [I -K s C] e s,k -K s Ce k -K s W 2 w k .
(13) Subsequently, using Differential Mean Value Theorem (DMVT) [START_REF] Zemouche | Observer design for Lipschitz non-linear systems: the discrete time case[END_REF], it can be shown that

g (x k , u k ) -g (x k , u k ) = M k (x k -xk ) , (14) with 
M k =       ∂g 1 ∂x (c 1 , u k ) . . . ∂g n ∂x (c n , u k )       , (15) 
where c 1 , . . . ,

c n ∈ Co(x k , xk ), c i = x k , c i = xk , i = 1, . . . , n.
Having regard the fact that all states are bounded in real system, x k ∈ X let

x i,j ≤ ∂g i (x) ∂x j ≤ xi,j , i = 1, . . . , n, j = 1, . . . , n, (16) 
it is clear that there exist

M k ∈ M such that M = M k ∈ R n×n |x i,j ≤ m k,i,j ≤ xi,j , i, j = 1, . . . , n, . (17) 
Indeed, now the state estimation error can be rewritten without the non-linear part into the following form

e k+1 = x k+1 -xk+1 [A + M k -K x C] e k -De z,k -K x e s,k -K x W 2 w k . ( 18 
)
By constructing the following super-vectors:

ēk+1 = e k+1 e z,k+1 e s,k+1 , (19) 
v k = w k ε z,k ε s,k , (20) 
let us to present the state as well as process and sensor faults estimation error in a compact form ēk+1 = X k ēk + Zv k , (21) with:

X k = Āk -K C , (22) Z = W -K V , (23) 
where:

Āk = A + M k D 0 0 I 0 0 0 I , C = [C 0 I] , W = W 1 0 0 0 I 0 0 0 I , V = [W 2 0 0] , K = K x K z K s . (24) 
Based on the aforementioned estimation error for the state and faults, the following theorem can be defined: Theorem 1. For a prescribed disturbance attenuation level µ > 0 for the state and fault estimation error (21), the estimator ( 8) -( 10) design problem for the system ( 5)-( 6) and estimator ( 8)-( 10) is solvable if there exist matrices P , U and N such that the following inequality is satisfied

   I -P 0 ĀT k U - CT N T 0 -µ 2 I W U - V T N T U Āk -N C U W -N V P -U -U T    ≺ 0. (25)
Proof. The problem of the designing the H ∞ observer [START_REF] Li | A linear matrix inequality approach to robust H ∞ filtering[END_REF][START_REF] Zemouche | Observers for a class of lipschitz systems with extension to H ∞ performance analysis[END_REF] is to obtain matrices N , U and P such that

lim k→∞ ēk = 0 for v k = 0, (26) 
ēk l2 < µ v k l2 for v k = 0, ē0 = 0. (27) 
To solve such a problem, it is satisfactory to find a Lyapunov function of the following form

∆V k + ēT k ēk -µ 2 v T k v k < 0, (28) 
where: 

∆V k = V k+1 -V k , V k =
(∆V k ) = V s,∞ -V s,0 , V s,∞ = V s,0 = 0, then (28) yields: ∞ k=0 (∆V k ) + ∞ k=0 ēT k ēk -µ 2 ∞ k=0 v T k v k < 0 =⇒ V 0 + ∞ k=0 ēT k ēk -µ 2 ∞ k=0 v T k v k < 0 =⇒ ∞ k=0 ēT k ēk -µ 2 ∞ k=0 v T k v k < 0 =⇒ ∞ k=0 ēT k ēk < µ 2 ∞ k=0 v T k v k =⇒ ēk l2 < µ v k l2 ,
which leads to (27). As a consequence by using (21) it is easy to show that

∆V k + ēT k ēk -µ 2 v T k v k = ēT k X T k P X k + I -P ēk + ēT k X T k P Z v k + v T k Z T P X k ēk + v T k Z T P Z -µ 2 I v k < 0, (30) 
and by introducing

vk = ēk v k , (31) 
it can be shown that (30) can be rewritten into the following form

vT k X T k P X k + I -P X T k P Z Z T P X k Z T P Z -µ 2 I vk ≺ 0, (32) 
which is equivalent to

X T k Z T P [X k Z] + I -P 0 0 -µ 2 I ≺ 0. ( 33 
)
Now, let us recall the following Lemma: Lemma 1. The following statements are equivalent:

(1) There exists X k ≻ 0 such that

V T X k V -W ≺ 0. ( 34 
)
(2) There exist

X k ≻ 0 such that -W V T U T U V X k -U -U T ≺ 0. ( 35 
)
Applying lemma 1 to (33) gives

  I -P 0 X T k U T 0 -µ 2 I Z T U T U X k U Z P -U -U T   ≺ 0, ( 36 
)
and then substituting:

U X k = U Āk -U K C = U Āk -N C , ( 37 
) U Z = U W -U K V = U W -N V , (38) 
completes the proof.

Note that, M specified by ( 17) can be equivalently expressed by

M = M (α) : M (α) = N i=1 α i M k , N i=1 α i = 1, α i ≥ 0 , ( 39 
)
where N = 2 n 2 . Note that, this is a general description, which does not take into account that some elements of M may be constant. In such cases, N is given by N = 2 (n-c) 2 , where c stands for the number of constant elements of M . Thus, the system can be described in a Linear Parameter Varying (LPV) form. Solving ( 25) is equivalent to (for i = 1, . . . , N )   

I -P 0 ĀT i U T - CT N T 0 -µ 2 I W T U T - V T N T U Āi -N C U W -N V P -U -U T    0.
(40) As a result, the gain matrices are obtained as follows

K = K x K z K s = U -1 N . ( 41 
)
The purpose of the subsequent section is to show the correctness of the proposed approach by its application to the twin-rotor MIMO system.

ILLUSTRATIVE EXAMPLE

Results

The performance of the proposed approach can be efficiently shown by its implementation to the non-linear twin-rotor MIMO system. The considered system is depicted in Fig. 1. Such a system has been designed to simulate the flight object in laboratory conditions. The system can be described by a highly non-linear model with cross coupled axes using the following equations:

dω v dt = k b k 2 J mr R b u v - B mr J mr + k 2 b J mr R b ω v - g 4 (ω v ) J mr , ( 42 
)
dΩ v dt = l m g 5 (ω v ) + kgΩ h g 5 (ω v ) cos(θ v ) -k ov Ω v J v + g ((K A -K B ) cos(θ v ) -K C sin(θ v )) J v - Ω 2 h K H sin(θ v ) cos(θ v ) J v + k t kak1 Ra u h -B tr + k 2 a Ra ω h -g 1 (ω h ) J v J tr , ( 43 
)
dθ v dt = Ω v , (44) 
dω h dt = k a k 1 J tr R a u h - B tr J tr + k 2 a J tr R a ω h - g 1 (ω h ) J tr , ( 45 
)
dΩ h dt = k oh g 2 (ω h ) cos(θ v ) -k oh Ω h -g 3 (θ h ) + g 6 (θ v ) Φ + k m ω v sin(θ v )Ω v -Φ -2K E cos 2 (θ v ) (Φ) 2 + k m sin(θ v ) k b k2 R b u v -B mr + k 2 b R b ω v -g 4 (ω v ) J mr Φ , ( 46 
) dθ h dt = Ω h , (47) 
where

Φ = K D cos 2 (θ v ) + K E sin 2 (θ v ) + K F , ω v , Ω v , θ v , ω h
, Ω h and θ h are the rotational velocity of the main rotor, angular velocity around horizontal axes, pitch angle of the beam, rotational velocity of the tail rotor, angular velocity around vertical axes and yaw angle of the beam, respectively. For more information the reader is referred to [START_REF] Rotondo | Quasilpv modeling, identification and control of a twin rotor mimo system[END_REF]. The system state vector is

x = ω T v , Ω T v , θ T v , ω T h , Ω T h , θ T h T and the system input vector is u = u T v , u T h
T where u v and u h are the voltages of the main and tail rotors. The rest of the parameters are inherited from [START_REF] Rotondo | Quasilpv modeling, identification and control of a twin rotor mimo system[END_REF].

The non-linear model, which describes the behaviour of the system has been discretized with a sampling time 5)-( 6). It is worth to emphasize that the angular velocity around both, vertical and horizontal axes, were not measured directly during the experiment, which implies the output equation expressed by

C =    1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1    . (48) 
Moreover, let us consider following fault scenarios for the sensor fault

f s,k = f s,1,k , f s,3,k , f s,4,k , f s,6,k with: f s,1,k = 0 f s,3,k = y 2,k -0.2, 60[s] ≤ t ≤ 80[s], 0, otherwise, f s,4,k = y 3,k + 77, 70[s] ≤ t ≤ 90[s], 0, otherwise, f s,6,k = 0 (49)
and for the process fault

f k f 1,k = -0.01, 58[s] ≤ t ≤ 72[s], 0, otherwise, (50) 
with the process fault distribution matrix

D =       
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

       . ( 51 
)
The fault distribution matrix D indicates that the process fault acts directly onto the rotational velocity of the main rotor ω v . Moreover, the rest of the process faults influencing directly onto variables Ω v , θ v , ω h , Ω h , θ h are equal to 0. The number describing the sensor fault is adequate to the state of the system. By analysing the above scenarios, it can be concluded that the intermittent faults occur in two sensors. At some time instances the sensor faults overlap each other. This means that they give wrong measurements, simultaneously. Moreover, at the same time, as it is for the sensor faults, the process fault occurs. Such a dangerous situation might happen in real industrial system and could cause its incorrect operation. As a consequence, it even might be a reason of a total failure of the system. Summarising, in the above scenarios it is considered that two sensor faults and the process fault are occurring simultaneously.

Let us assume that the initial state for the system and for the estimator are x 0 = [0, 0, 0.001, 0, 0, 0.001] and x0 = [1, 0, 0.01, 1, 0, 0.01], respectively. The sensor faults as well as the process fault are initialised by f s,0 = [0, 0, 0, 0] and f 1,0 = 0, respectively.

By solving a set of LMIs (25) described in previous section, the following gain matrices for the state as well as for the sensor and process faults have been obtained:

K x =       
0.0012 0.0000 0.0000 -0.0000 -0.0001 0.0003 -0.0001 -0.0001 0.0000 -0.0010 0.0000 0.0001 0.0000 -0.0001 0.0003 -0.0004 0.0001 0.0001 -0.0001 0.0002 -0.0000 0.0001 0.0001 -0.0003

       , (52) 
K z =       
0.5930 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000

       , (53) 
K s =   
0.9907 -0.0001 0.0003 -0.0007 -0.0001 0.9750 -0.0014 0.0035 0.0002 -0.0017 0.9858 0.0052 -0.0002 0.0002 -0.0055 0.9843

   . ( 54 
)

Discussion

Figures 2-4 present the exemplary response of the system in the open-loop without the control feedback. In those pictures, a black solid line represent the real state of the system. A red dashed line stands for the estimate and a dash-dotted blue line is the measured output. The state estimate for the ω v has been following the real state during the experiment in spite of the process fault occurrence. Meanwhile, the other two states have been measured incorrectly. This means that the sensor faults occurred. However, despite the sensor faults the state estimates have not been following the measured, faulty output but they have been estimating the real state with a very good accuracy. The real sensor faults (red dashed The paper deals with the simultaneous estimation problem for the state as well as for the sensor and process faults.

The proposed estimator was able to estimate the sensor and process faults, simultaneously. Having a knowledge concerning the sensor faults, provided by the fault estimator, it was possible to estimate the real state of the system, instead of the faulty output, which gives a sensor fault-free results. To cope with the process and measurement uncertainties the proposed strategy is based on H ∞ approach. It provides a convergence analysis for the proposed estimator and guaranties a predefined disturbance attenuation level.

The design procedure brings down to solve a set of LMIs.

The final part of the paper showed an illustrative example with an application to the twin-rotor aero-dynamical system. The achieved results confirm the correctness and performances of the proposed approach. The future work will be focused on the problem of compensating the simultaneous sensor and process faults. The controller design strategy will be proposed to cope with the stated problem for the considered system.
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