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Abstract: The paper deals with the problem of simultaneous estimation of sensor and process
faults. For that purpose, a novel scheme is proposed and its complete design procedure is
described. The approach results in a robust estimation strategy with guaranteed convergence. In
particular, apart from simultaneous estimation ability the proposed approach makes it possible
to attenuate the exogenous disturbances up to the predefined level. Finally, the design procedure
boils down to solving a set of linear matrix inequalities. The last part of the paper shows an
illustrative example with the application dedicated to the laboratory twin-rotor aero-dynamical
MIMO system.
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1. INTRODUCTION

The growing requirements for reliability and safety of
contemporary complex processes and systems are the
inspiration for researchers to develop newer and newer
approaches concerning the Fault Diagnosis (FD) (Blanke
et al., 2006; Chen and Patton, 1999; Isermann, 2011;
Korbicz et al., 2004; Patton et al., 2013). Significant
attention for the latest few decades is dedicated to robust
Fault-Tolerant Control (FTC) approaches which can be
divided into active and passive ones. Contrarily to the
passive FTC, which is designed in such a way to be robust
against some predefined faults treated in the same fashion
as disturbances, the active one is especially attractive. It
allows changing the control action according to occurring
faults to compensate their impact effect on the controlled
system and as a consequence to guide the system correctly
and safely even in a faulty case. In order to achieve such
a goal, it is necessary to obtain an information about
faults in every instances of time. In the literature, there
are plenty methods of identification and estimation to
acquire the knowledge about faults. Among them in (Foo
et al., 2013; Keller and Darouach, 1999) a Kalman filter-
based schemes are considered. A sliding mode observer
and an high-gain observer are presented in (Brahim et al.,
2015; Khalil and Praly, 2014). In the works (Zhang et al.,
2010; López-Estrada et al., 2015) adaptive estimators
are proposed. Moreover, a minimum-variance estimator is
considered in (Gillijns and De Moor, 2007) while in (Chen
et al., 2016; Nobrega et al., 2008; Zhang et al., 2014) an
H∞ approach is used.

Having in mind the fact that modern control systems
can be split into actuators, sensors and process dynamics
(Chen and Patton, 1999; Ducard, 2009), the three classes
of faults may be taken into consideration: actuator faults,
sensor faults and process (or component) faults. However,
most of the listed strategies are dedicated to the one of
them only. In the other words, they can be used to either
actuator or sensor fault estimation, exclusively.

The main objective of the paper is to deal with the problem
of simultaneous estimation of the process and sensor faults.
The proposed strategy is robust against the process and
measurement uncertainties and it is based on the H∞

approach. The proposed estimator is able to estimate
the process and sensor faults and as a consequence it
gives a state estimate free from sensor faults. Indeed,
it is very important to take into account simultaneous
estimation of the process and sensor faults because in the
real environmental conditions both of them might appear
at the same time.

The paper is organised as follows: Firstly, section 2
presents preliminaries regarding the class of considered
systems. Subsequently, section 3 shows the robust design
procedure for the estimator able to estimate the state as
well as sensor and process faults. Section 4 concerns an il-
lustrative example with application to the twin-rotor aero-
dynamical MIMO system and finally, Section 5 concludes
the paper.

2. PRELIMINARIES

Let us consider a discrete-time system:



xk+1 = Axk +Buk +

n
∑

i=1

Difi,kxi,k

+ g (xk) +W 1wk,

(1)

yk = Cxk + fs,k +W 2wk, (2)

where xk ∈ X ⊂ R
n is the state vector, uk ∈ R

r

stands for the control input, yk ∈ R
m is the output and

g (xk) describes the non-linear behaviour of the system.
It is assumed that g (xk) is differentable and has bounded
derivatives. Moreover fs,k ∈ Fs ⊂ R

m is the sensor fault
vector and wk express the exogenous disturbance vector
obeying

l2 = {w ∈ R
n| ‖w‖l2 < +∞}, (3)

‖w‖l2 =

(

∞
∑

k=0

‖wk‖
2

)
1

2

. (4)

Note that, it can be easily shown that the disturbance vec-

tor can be spilt in such a way wk =
[

wT
1,k,w

T
2,k

]T

which

represent the process and measurement uncertainties, re-
spectively. Furthermore, W 1 and W 2 denote the noise
distribution matrices. Moreover, D stands for the process
fault distribution matrix, in other words, it describes the
way in which the fault influences the system. It can be
observed that the problem of estimating f i,k directly is
non-linear because of multiplication, even for the linear
system. To tackle this problem, throughout the paper, the
system (1)–(2) is transformed into the following form:

xk+1 = Axk +Buk +Dzk + g (xk) +W 1wk, (5)

yk = Cxk + fs,k +W 2wk, (6)

where the vector zk ∈ R
n is composed with a multiplica-

tion of the fault fk and state xk in such a way as

zk =









f1,k · x1,k

f2,k · x2,k

...
fn,k · xn,k









. (7)

For further deliberations, let us call the vector zk a process
fault. The idea is to estimate zk instead of estimating f i,k

directly.

3. JOINT SENSOR AND PROCESS FAULTS
ESTIMATOR DESIGN

The main goal of the section is to design the estimator,
which will be able to estimate the state as well as the
process and all the sensor faults, simultaneously. To cope
with such requirements, the estimator of the following form
is proposed:

x̂k+1 = Ax̂k +Buk +Dẑk + g (x̂k)

+Kx

(

yk −Cx̂k − f̂s,k

)

,
(8)

ẑk+1 = ẑk +Kz

(

yk −Cx̂k − f̂s,k

)

, (9)

f̂s,k+1 = f̂s,k +Ks

(

yk −Cx̂k − f̂s,k

)

, (10)

where Kx, Kz and Ks are the estimator gain matrices for
the state, process fault and sensor fault, respectively. Hav-
ing regard (5)–(6) as well as (8)–(10) the state estimation
error is given

ek+1 = xk+1 − x̂k+1 = Axk +Buk +Dzk + g (xk)

+W 1wk −Ax̂k −Buk −Dẑk − g (x̂k)

−KxCxk −Kxfs,k −KxW 2wk +KxCx̂k

+Kxf̂s,k = [A−KxC] ek + g (xk)− g (x̂k)

−Dez,k −Kxes,k −KxW 2wk,

(11)

with ez,k = zk − ẑk and es,k = fs,k − f̂s,k. In a similar
way, the process fault estimation error is defined

ez,k+1 = zk+1 − ẑk+1 = zk+1 + zk − zk − ẑk

−KzCxk −Kzfs,k −KzW 2wk +KzCx̂k

+Kzf̂ s,k = εz,k + ez,k −KzCek −Kzes,k

−KzW 2wk,

(12)

while the sensor fault estimation error is governed by

es,k+1 = fs,k+1 − f̂s,k+1 = fs,k+1 + f s,k − fs,k

− f̂s,k −KsCxk −Ksfs,k −KsW 2wk

+KsCx̂k +Ksf̂s,k = εs,k + [I −KsC] es,k

−KsCek −KsW 2wk.

(13)

Subsequently, using Differential Mean Value Theorem
(DMVT) (Zemouche and Boutayeb, 2006), it can be shown
that

g (xk,uk)− g (x̂k,uk) = Mk (xk − x̂k) , (14)

with

Mk =













∂g1

∂x
(c1,uk)

...
∂gn

∂x
(cn,uk)













, (15)

where c1, . . . , cn ∈ Co(xk, x̂k), ci 6= xk, ci 6= x̂k, i =
1, . . . , n. Having regard the fact that all states are bounded
in real system, xk ∈ X let

xi,j ≤
∂gi(x)

∂xj

≤ x̄i,j , i = 1, . . . , n, j = 1, . . . , n, (16)

it is clear that there exist Mk ∈ M such that

M =
{

Mk ∈ R
n×n|xi,j ≤ mk,i,j ≤ x̄i,j , i, j = 1, . . . , n,

}

.

(17)
Indeed, now the state estimation error can be rewritten
without the non-linear part into the following form

ek+1 = xk+1 − x̂k+1 [A+Mk −KxC] ek
−Dez,k −Kxes,k −KxW 2wk.

(18)

By constructing the following super-vectors:

ēk+1 =

[

ek+1

ez,k+1

es,k+1

]

, (19)

vk =

[

wk

εz,k
εs,k

]

, (20)

let us to present the state as well as process and sensor
faults estimation error in a compact form

ēk+1 = Xkēk +Zvk, (21)

with:

Xk = Āk − K̄C̄ , (22)

Z = W̄ − K̄ V̄ , (23)



where:

Āk =

[

A+Mk D 0
0 I 0
0 0 I

]

, C̄ = [C 0 I] ,

W̄ =

[

W 1 0 0
0 I 0
0 0 I

]

, V̄ = [W 2 0 0] ,

K̄ =

[

Kx

Kz

Ks

]

.

(24)

Based on the aforementioned estimation error for the state
and faults, the following theorem can be defined:

Theorem 1. For a prescribed disturbance attenuation level
µ > 0 for the state and fault estimation error (21), the
estimator (8) – (10) design problem for the system (5)–(6)
and estimator (8)–(10) is solvable if there exist matrices
P , U and N such that the following inequality is satisfied






I − P 0 Ā
T

kU − C̄
T
NT

0 −µ2I W̄ U − V̄
T
NT

UĀk −NC̄ UW̄ −NV̄ P −U −UT






≺ 0. (25)

Proof. The problem of the designing the H∞ observer (Li
and Fu, 1997; Zemouche et al., 2008) is to obtain matrices
N , U and P such that

lim
k→∞

ēk = 0 for vk = 0, (26)

‖ēk‖l2 < µ‖vk‖l2 for vk 6= 0, ē0 = 0. (27)

To solve such a problem, it is satisfactory to find a
Lyapunov function of the following form

∆Vk + ēTk ēk − µ2vT
k vk < 0, (28)

where: ∆Vk = Vk+1 − Vk, Vk = ēTkP ēk and P ≻ 0.
If vk = 0, then the Lyapunov function (28) takes the
following simplified form

∆Vk + ēTk ēk < 0 (29)

and hence ∆Vk < 0, which leads to (26). If vk 6= 0 and
taking into account the fact that

∞
∑

k=0

(∆Vk) = Vs,∞ − Vs,0, Vs,∞ = Vs,0 = 0,

then (28) yields:

∞
∑

k=0

(∆Vk) +

∞
∑

k=0

(

ēTk ēk
)

− µ2
∞
∑

k=0

(

vT
k vk

)

< 0 =⇒

− V0 +

∞
∑

k=0

(

ēTk ēk
)

− µ2
∞
∑

k=0

(

vT
k vk

)

< 0 =⇒

∞
∑

k=0

(

ēTk ēk
)

− µ2
∞
∑

k=0

(

vT
k vk

)

< 0 =⇒

∞
∑

k=0

(

ēTk ēk
)

< µ2
∞
∑

k=0

(

vT
k vk

)

=⇒

‖ēk‖l2 < µ‖vk‖l2 ,

which leads to (27). As a consequence by using (21) it is
easy to show that

∆Vk + ēTk ēk − µ2vT
k vk =

ēTk

(

XT
kPXk + I − P

)

ēk

+ ēTk

(

XT
kPZ

)

vk + vT
k

(

ZTPXk

)

ēk

+ vT
k

(

ZTPZ − µ2I
)

vk < 0,

(30)

and by introducing

v̄k =

[

ēk
vk

]

, (31)

it can be shown that (30) can be rewritten into the
following form

v̄T
k

[

XT
k PXk + I − P XT

kPZ

ZTPXk ZTPZ − µ2I

]

v̄k ≺ 0, (32)

which is equivalent to
[

XT
k

ZT

]

P [Xk Z] +

[

I − P 0

0 −µ2I

]

≺ 0. (33)

Now, let us recall the following Lemma:

Lemma 1. The following statements are equivalent:

(1) There exists Xk ≻ 0 such that

V TXkV −W ≺ 0. (34)

(2) There exist Xk ≻ 0 such that
[

−W V TUT

UV Xk −U −UT

]

≺ 0. (35)

Applying lemma 1 to (33) gives




I − P 0 XT
kU

T

0 −µ2I ZTUT

UXk UZ P −U −UT



 ≺ 0, (36)

and then substituting:

UXk = UĀk −UK̄C̄ = UĀk −NC̄ , (37)

UZ = UW̄ −UK̄V̄ = UW̄ −NV̄ , (38)

completes the proof. �

Note that, M specified by (17) can be equivalently ex-
pressed by

M =

{

M (α) : M (α) =

N
∑

i=1

αiMk,

N
∑

i=1

αi = 1, αi ≥ 0

}

, (39)

where N = 2n
2

. Note that, this is a general description,
which does not take into account that some elements ofM
may be constant. In such cases,N is given byN = 2(n−c)2 ,
where c stands for the number of constant elements of M .
Thus, the system can be described in a Linear Parameter
Varying (LPV) form. Solving (25) is equivalent to (for
i = 1, . . . , N)






I − P 0 Ā
T

i U
T − C̄

T
NT

0 −µ2I W̄
T
UT − V̄

T
NT

UĀi −NC̄ UW̄ −NV̄ P −U −UT






� 0.

(40)
As a result, the gain matrices are obtained as follows

K̄ =

[

Kx

Kz

Ks

]

= U−1N . (41)



The purpose of the subsequent section is to show the
correctness of the proposed approach by its application
to the twin-rotor MIMO system.

4. ILLUSTRATIVE EXAMPLE

4.1 Results

The performance of the proposed approach can be ef-
ficiently shown by its implementation to the non-linear
twin-rotor MIMO system. The considered system is de-
picted in Fig. 1. Such a system has been designed to
simulate the flight object in laboratory conditions. The
system can be described by a highly non-linear model with
cross coupled axes using the following equations:

dωv

dt
=

kbk2

JmrRb

uv −

(

Bmr

Jmr

+
k 2
b

JmrRb

)

ωv

−
g4(ωv)

Jmr

,

(42)

dΩv

dt
=

lmg5 (ωv) + kgΩhg5 (ωv) cos(θv)− kovΩv

Jv

+
g ((KA −KB) cos(θv)−KC sin(θv))

Jv

−
Ω 2

h
KH sin(θv) cos(θv)

Jv

+
kt

(

kak1

Ra

uh −
(

Btr +
k

2

a

Ra

)

ωh − g1 (ωh)
)

JvJtr
,

(43)

dθv

dt
= Ωv, (44)

dωh

dt
=

kak1

JtrRa

uh −

(

Btr

Jtr
+

k 2
a

JtrRa

)

ωh

−
g1(ωh)

Jtr
,

(45)

dΩh

dt
=

kohg2 (ωh) cos(θv)− kohΩh − g3 (θh) + g6 (θv)

Φ

+
kmωv sin(θv)Ωv

(

−Φ− 2KE cos2(θv)
)

(Φ)2

+
km sin(θv)

(

kbk2

Rb

uv −
(

Bmr +
k

2

b

Rb

)

ωv − g4 (ωv)
)

JmrΦ
,

(46)

dθh

dt
= Ωh, (47)

where Φ = KD cos2(θv) + KE sin2(θv) + KF , ωv, Ωv,
θv, ωh, Ωh and θh are the rotational velocity of the
main rotor, angular velocity around horizontal axes, pitch
angle of the beam, rotational velocity of the tail rotor,
angular velocity around vertical axes and yaw angle of
the beam, respectively. For more information the reader is
referred to (Rotondo et al., 2013). The system state vector

is x =
[

ωT
v ,Ω

T
v , θ

T
v , ω

T
h ,Ω

T
h , θ

T
h

]T
and the system input

vector is u =
[

uT
v , u

T
h

]T
where uv and uh are the voltages

of the main and tail rotors. The rest of the parameters are
inherited from (Rotondo et al., 2013).

The non-linear model, which describes the behaviour of
the system has been discretized with a sampling time

Fig. 1. Twin-rotor aero-dynamical system

Ts = 0.01[s] which leads to the state-space representation
(5)–(6). It is worth to emphasize that the angular velocity
around both, vertical and horizontal axes, were not mea-
sured directly during the experiment, which implies the
output equation expressed by

C =







1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1






. (48)

Moreover, let us consider following fault scenarios for the
sensor fault fs,k =

[

fs,1,k,fs,3,k,fs,4,k,f s,6,k

]

with:

fs,1,k = 0

fs,3,k =

{

y2,k − 0.2, 60[s] ≤ t ≤ 80[s],
0, otherwise,

fs,4,k =

{

y3,k + 77, 70[s] ≤ t ≤ 90[s],
0, otherwise,

fs,6,k = 0

(49)

and for the process fault fk

f1,k =

{

−0.01, 58[s] ≤ t ≤ 72[s],
0, otherwise,

(50)

with the process fault distribution matrix

D =















1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0















. (51)

The fault distribution matrix D indicates that the process
fault acts directly onto the rotational velocity of the
main rotor ωv. Moreover, the rest of the process faults
influencing directly onto variables Ωv, θv, ωh,Ωh, θh are
equal to 0. The number describing the sensor fault is
adequate to the state of the system. By analysing the
above scenarios, it can be concluded that the intermittent
faults occur in two sensors. At some time instances the
sensor faults overlap each other. This means that they
give wrong measurements, simultaneously. Moreover, at
the same time, as it is for the sensor faults, the process
fault occurs. Such a dangerous situation might happen
in real industrial system and could cause its incorrect
operation. As a consequence, it even might be a reason



of a total failure of the system. Summarising, in the above
scenarios it is considered that two sensor faults and the
process fault are occurring simultaneously.

Let us assume that the initial state for the system and for
the estimator are x0 = [0, 0, 0.001, 0, 0, 0.001] and x̂0 =
[1, 0, 0.01, 1, 0, 0.01], respectively. The sensor faults as well

as the process fault are initialised by f̂s,0 = [0, 0, 0, 0] and

f̂1,0 = 0, respectively.

By solving a set of LMIs (25) described in previous section,
the following gain matrices for the state as well as for the
sensor and process faults have been obtained:

Kx =















0.0012 0.0000 0.0000 −0.0000
−0.0001 0.0003 −0.0001 −0.0001
0.0000 −0.0010 0.0000 0.0001
0.0000 −0.0001 0.0003 −0.0004
0.0001 0.0001 −0.0001 0.0002
−0.0000 0.0001 0.0001 −0.0003















, (52)

Kz =















0.5930 0.0000 0.0000 0.0000
−0.0000 −0.0000 −0.0000 0.0000
0.0000 −0.0000 0.0000 0.0000
0.0000 −0.0000 0.0000 −0.0000
−0.0000 −0.0000 0.0000 0.0000
−0.0000 0.0000 −0.0000 −0.0000















, (53)

Ks =







0.9907 −0.0001 0.0003 −0.0007
−0.0001 0.9750 −0.0014 0.0035
0.0002 −0.0017 0.9858 0.0052
−0.0002 0.0002 −0.0055 0.9843






. (54)

4.2 Discussion

Figures 2–4 present the exemplary response of the system
in the open-loop without the control feedback. In those
pictures, a black solid line represent the real state of
the system. A red dashed line stands for the estimate
and a dash-dotted blue line is the measured output. The
state estimate for the ωv has been following the real
state during the experiment in spite of the process fault
occurrence. Meanwhile, the other two states have been
measured incorrectly. This means that the sensor faults
occurred. However, despite the sensor faults the state
estimates have not been following the measured, faulty
output but they have been estimating the real state with
a very good accuracy. The real sensor faults (red dashed

0 5000 10000 15000
0

100

200

300

400

500

600

700

output real estimate

ω
v
,k

Discrete time

Fig. 2. Rotational velocity of the main rotor and its
estimate

line) for the pitch angle and for the rotational velocity of
the tail rotor as well as their estimates (blue solid line) are

0 5000 10000 15000
-0.1

-0.05

0

0.05

0.1
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0.2
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Fig. 3. Pitch angle of the beam and its estimate
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Fig. 4. Rotational velocity of the tail rotor and its estimate

shown in Figs. 5–6, respectively. It can be seen that even if
the sensor faults were occurring simultaneously they have
been estimated very well. Finally, Fig. 7 present the real
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-0.2
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f
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Fig. 5. The sensor fault for the pitch angle
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Fig. 6. The sensor fault for rotational velocity of the tail
rotor

process fault (which is the multiplication of the fault and



state) depicted by blue solid line and its estimate by red
dashed line. Despite the sensor and process faults the real
states as well as the sensor and process faults have been
estimated properly. It may be concluded that the proposed
approach can be efficiently applied for the class of non-
linear systems.
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Fig. 7. The process fault and its estimate

5. CONCLUSIONS

The paper deals with the simultaneous estimation problem
for the state as well as for the sensor and process faults.
The proposed estimator was able to estimate the sensor
and process faults, simultaneously. Having a knowledge
concerning the sensor faults, provided by the fault estima-
tor, it was possible to estimate the real state of the system,
instead of the faulty output, which gives a sensor fault-free
results. To cope with the process and measurement uncer-
tainties the proposed strategy is based onH∞ approach. It
provides a convergence analysis for the proposed estimator
and guaranties a predefined disturbance attenuation level.
The design procedure brings down to solve a set of LMIs.
The final part of the paper showed an illustrative exam-
ple with an application to the twin-rotor aero-dynamical
system. The achieved results confirm the correctness and
performances of the proposed approach. The future work
will be focused on the problem of compensating the simul-
taneous sensor and process faults. The controller design
strategy will be proposed to cope with the stated problem
for the considered system.
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