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Abstract
The choice of a parallel manipulator for a particular application is a challenging task due to the existence of

numerous designs that generate the same motion type. Hence, this paper attempts to compare a class of 3 degree-
of-freedom parallel manipulators belonging to the 3-[PP]S family, for which each leg is confined to move in a plane
with the first two joints generating a motion equivalent to two coplanar translations. Specifically, the 3-[PP]S parallel
manipulators in which the planes are arranged in a Y-pattern are considered and are compared with respect to their
singularity-free orientation workspace, parasitic motions within that workspace and complexity indices. Moreover, the
comparison is done between the 3-[PP]S-Y family of manipulators for their different operation modes, with different
actuation schemes and for different sets of design parameters. Two indices are used to quantify the singularity-
free workspace and the parasitic motions of the manipulators at hand. Additionally, the non-dominated manipulator
architectures with regard to their singularity-free regions and parasitic motions are highlighted thanks to a Pareto front.
Finally, the Pareto-optimal solutions are ranked in ascending order of complexity.

1. Introduction

In recent years, Parallel Manipulators (PM) have been used in several industrial applications due to their high
stiffness and high payload capacity [1, 2, 3, 4]. The six degree-of-freedom (dof) Gough-Stewart platform is one
example with many applications like flight simulation, rehabilitation and machining. Besides, lower mobility PMs,
i.e., PMs with less than six dof, have gained a lot of attention as six actuators are not required for many applications [5].
Amongst them, the 3-dof mechanisms have been the focus of research for many interesting applications. These
manipulators can be classified into different families based on their mobile-platform motion type. DELTA robot [6]
and 3-UPU mechanism [7] are some examples of 3-dof translational PMs. The Agile eye is a well known 3-dof
spherical PM [8]. PMs with coupled motions generate both translational and rotational motions. An interesting
family of 3-dof mechanisms with coupled motions is that composed of zero torsion mechanisms [9, 10, 11]. Human
eye, sterno-clavicular joint and human wrist can be modelled as 3-dof zero-torsion parallel mechanisms [9]. The 3-
RPS PM, introduced by Hunt [2] is one example of zero-torsion mechanism that has been studied extensively. Other
examples include the 3-PRS, 3-RRS and 3-PPS PMs. We can find 3-RPS mechanisms as a part of a 6-dof robot [12],
as a micro-manipulator wrist subsystem of the ARTISAN manipulator [13] and as a reaction compensation device for
space robots [14]. The 3-PRS PM was first proposed for telescopic applications [15]. Another well-known application
of the 3-PRS mechanism is a machining head, called the Sprint Z3, developed and patented by DS Technology [16].
The 3-RPS PM was used as a boat simulator with different actuation modes [17]. The 3-RRS PM was analyzed in [18]
to be used as a part of a 6-dof hybrid robot for pick-and-place operations. A flexure based 3-PPS PM was used for a
nano imprinting tool module in [19].



The terminology Zero torsion mechanisms arises from the fact that the rotation of the mobile platform about an
axis normal to the latter is always constrained and they display a symmetric motion with respect to the constrained
axis. Accordingly, the local motions of the mobile platform of such mechanisms are two non-pure rotations about
horizontal axes and sometimes a pure translational motion along a direction normal to the axes of the rotational
motions. A popular category of these mechanisms is the 3-[PP]S type, for which each leg is confined to move in a
plane with the first two joints generating a motion equivalent to two coplanar translations. When these planes are
arranged such that they intersect at 120◦ in a common line, they are henceforth addressed as the 3-[PP]S-Y family. If
the arrangement of those planes is based on equilateral pattern, they will be part of the so-called 3-[PP]S-∆ family.
If these planes are arranged orthogonally, they are already known as the 3-[PP]S-cube family. For instance, the 3-
RPS-cube manipulator analyzed in [20] is part of the 3-[PP]S-cube family. Since the number of degree-of-freedom
and motion types are the same, the 3-[PP]S PMs can be used for similar applications although their parasitic motions
(horizontal displacements due to horizontal axes rotations) differ as it is shown in this paper. This paper aims at
finding a common ground to compare the mechanisms belonging to the 3-[PP]S-Y family. Several techniques have
already been introduced in the literature to compare PMs. A comparison study of four 3-dof translational PMs was
performed by Tsai and Joshi based on their well conditioned workspace, stiffness and inertia properties [21]. Pond
and Carretero compared the 3-PRS, 3-RPS and the Tricept PMs by formulating their dimensionally homogeneous
square Jacobian matrices and then calculating the condition number and singular values of the Jacobian [22]. Li et al.
compared 3-PRS PMs with different limb arrangements with respect to their parasitic motions [23] and listed 1T2R
PMs without parasitic motions [24]. In this paper, the comparison of mechanisms belonging to the 3-[PP]S-Y family
is performed with respect to their singularity free orientation workspace and their parasitic motions. An index, named
Maximum Inscribed Circle Radius (MICR), introduced in [25] is used to quantify the singularity free orientation
workspace of the manipulators. The maximum parasitic motion, denoted as µ within the Maximum Inscribed Circle
is used as a second performance index. Furthermore, the manipulators are compared based on their design parameters
and actuation scheme. The kinematic and singularity analysis problems are tackled locally using screw theory and
globally using algebraic geometry tools [26]. Finally, the Pareto optimal solutions obtained with respect to the two
objective functions MICR and µ are ranked based on their kinematic complexities using the complexity indices defined
in [27, 28]. It should be noted that joint limits and internal collisons are not considered in this paper.

The paper is organized as follows. First, the manipulator architectures under study are described. Section 3
presents the constraint equations for the manipulators belonging to the 3-[PP]S-Y family. Sections 4 deals with
the operation mode analysis of the foregoing manipulators. Section 5 presents the kinematic singularities of the
manipulators at hand obtained with screw theory approaches. Some illustrative examples are given in Section 6.
Finally, the manipulators belonging to the 3-[PP]S-Y family are compared based on the two performance indices
introduced in this paper and the obtained Pareto-optimal solutions are highlighted and are ranked in ascending order
of complexity.

2. Manipulators under study

Figure 1 represents six manipulators from the 3-[PP]S-Y family. The two coplanar translational motions can be
obtained with the following serial kinematic chains: RP, PhR, PvR, RR, PvPh or PhPv with Ph denoting a prismatic
joint of horizontal direction and Pv denoting a prismatic joint of vertical direction1. Though there are other possible
orientations of the prismatic joints [29], most practical applications include horizontal or vertical prismatic joints. The
spherical joint centers are restricted to move along the vertical planes Π1, Π2 and Π3 shown in Fig. 2. These planes
are considered in the fixed coordinate frame such that they pass through points A1, A2 and A3, respectively. They have
a common line of intersection, L along the z0-axis and they subtend an angle of 120◦. This geometric condition is
used to derive the constraint equations for these manipulators. Table 1 gives a list of twelve manipulators belonging
to the 3-[PP]S-Y family. The underlined letters denote actuated joints.

Both the base and platform are equilateral triangles with vertices Ai and Bi, i = 1, 2, 3 and with circumradii h1 and
h2, respectively. The origin O0 of the fixed coordinate frame Σ0 coincides with base circumcenter while origin O1 of
frame Σ1 coincides with the platform circumcenter. The x0-axis of Σ0 is along line (O0A1) and the x1-axis of frame Σ1

1It should be noted that these directions are considered following the notation defined in [11] and it is assumed that the fixed base is horizontal.
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Figure 1: Six parallel manipulators belonging to the 3-[PP]S-Y family
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No. 3-[PP]S-Y family

1 3-PvRS
2 3-PhRS
3 3-PvRS
4 3-PhRS
5 3-RPS
6 3-RPS
7 3-RRS
8 3-RRS
9 3-PhPvS

10 3-PhPvS
11 3-PvPhS
12 3-PvPhS

Table 1: Manipulators belonging to the 3-[PP]S-Y family
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Figure 2: Planes containing the limbs of the 3–[PP]S–Y
PMs

is along line (O1B1). Thus, the axes yi, i = 1, 2 are parallel to lines (A2A3) and (B2B3), respectively and the axes zi,
i = 1, 2 are normal to the base and the moving-platform, respectively.

3. Constraint Equations

This section aims to determine the constraint equations of the manipulators under study. Those constraint equa-
tions are expressed algebraically based on the motions of the moving-platform that are constrained by the legs.

From Fig. 2, the coordinates of points Ai and Bi in coordinate frames Σ0 and Σ1, respectively, are expressed as
follows:

0a1 = [h1, 0, 0]T , 0a2 = [−
1
2

h1,

√
3

2
h1, 0]T , 0a3 = [−

1
2

h1,−

√
3

2
h1, 0]T

1b1 = [h2, 0, 0]T , 1b2 = [−
1
2

h2,

√
3

2
h2, 0]T , 1b3 = [−

1
2

h2,−

√
3

2
h2, 0]T

(1)

The rotation matrix 0R1 from frame Σ0 to frame Σ1 is expressed as:

0R1 =


x0

2 + x1
2 − x2

2 − x3
2 −2 x0x3 + 2 x1x2 2 x0x2 + 2 x1x3

2 x0x3 + 2 x1x2 x0
2 − x1

2 + x2
2 − x3

2 −2 x0x1 + 2 x3x2

−2 x0x2 + 2 x1x3 2 x0x1 + 2 x3x2 x0
2 − x1

2 − x2
2 + x3

2

 (2)

where x j, j = 0, 1, 2, 3 are the unit orientation quaternions satisfying: x2
0 + x2

1 + x2
2 + x2

3 = 1.
From Fig. 2, for each leg, the vector connecting points Ai and Bi should always lie in the plane Πi. This geometrical

constraint holds true for all manipulators belonging to the 3-[PP]S-Y family. To derive the constraint equations, we
can express the normal vector si to planes Πi, i = 1, 2, 3, in frame Σ0 as follows:

0s1 = [0,−1, 0]T , 0s2 = [

√
3

2
,

1
2
, 0]T , 0s3 = [−

√
3

2
,

1
2
, 0]T (3)

In the fixed coordinate frame Σ0, the coordinates of point Bi can be expressed as follows:

0bi = 0R1
1bi + 0p1, i = 1, 2, 3 (4)
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where 0p1 is the point-displacement vector from the origin O0 of Σ0 to the origin O1 of Σ1 expressed in Σ0 as [X,Y,Z]T .
The vector

−−−→
AiBi is perpendicular to si, which is expressed as ( 0bi −

0ai)T 0si = 0 which after simplification yields the
following three equations:

g1 := x0x3 = 0 (5)

g2 := X − h2x2
1 + h2x2

2 = 0 (6)
g3 := Y − 4h2x0x3 + 2h2x1x2 = 0 (7)

Depending upon the actuated joints, three other equations, g4 = 0, g5 = 0 and g6 = 0 can be derived. For instance,
in case of the 3-RPS PM (Figure 1a), the Euclidean distance between Ai and Bi must be equal to the prismatic joint
length, ri for the i-th leg of the manipulator. As a result, ‖0bi −

0ai‖
2 = r2

i leads to three additional equations [26] :

g4 := (4 Xh2 − 4 h1h2) x0
2 − 4 Zh2x0x2 + 4 Yh2x0x3 + (4 Xh2 − 4 h1h2) x1

2 + 4 Yh2x1x2 + 4 Zh2x1x3 (8)

+ X2 − 2 Xh1 − 2 Xh2 + Y2 + Z2 + h1
2 + 2 h1h2 + h2

2 − r1
2 = 0

g5 :=
(
−2
√

3Yh2 − 2 Xh2 − 4 h1h2

)
x0

2 − 2
√

3Zh2x0x1 + 2 Zh2x0x2 +
(
2
√

3Xh2 − 2 Yh2

)
x0x3 (9)

+ (−2 Xh2 − h1h2) x1
2 +

(
−2
√

3Xh2 − 2
√

3h1h2 − 2 Yh2

)
x1x2 − 2 Zh2x1x3 +

(
−2
√

3Yh2 − 3 h1h2

)
x2

2

− 2
√

3Zh2x2x3 +
√

3Yh1 +
√

3Yh2 + X2 + Xh1 + Xh2 + Y2 + Z2 + h1
2 + 2 h1h2 + h2

2 − r2
2 = 0

g6 :=
(
2
√

3Yh2 − 2 Xh2 − 4 h1h2

)
x0

2 + 2
√

3Zh2x0x1 + 2 Zh2x0x2 +
(
−2
√

3Xh2 − 2 Yh2

)
x0x3 (10)

+ (−2 Xh2 − h1h2) x1
2 +

(
2
√

3Xh2 + 2
√

3h1h2 − 2 Yh2

)
x1x2 − 2 Zh2x1x3 +

(
2
√

3Yh2 − 3 h1h2

)
x2

2

+ 2
√

3Zh2x2x3 −
√

3Yh1 −
√

3Yh2 + X2 + Xh1 + Xh2 + Y2 + Z2 + h1
2 + 2 h1h2 + h2

2 − r3
2 = 0

(11)

In addition, the normalization equation of the unit quaternion is to be considered, namely,
g7 := x0

2 + x1
2 + x2

2 + x3
2 − 1 = 0 (12)

It is noteworthy that Eq. (5) reveals that the 3-[PP]S-Y family of PMs can have at least two operation modes
characterized by x0 = 0 and x3 = 0. The following section examines the primary decomposition of the ideal of
constraint equations to identify different operation modes of the mechanisms under study.

4. Operation Modes

The constraint equations (5) to (7) describe the configuration space of the manipulators. The first constraint
equation is recalled:

x0x3 = 0 (13)

As a result, their configuration space can be split into two parts x0 = 0 and x3 = 0, called the operation modes [29,
30, 31] separated by a constraint or C-space singularity [32]. To obtain other equations in each operation mode, a
polynomial ideal is defined consisting of equations g1, g2, g3 and g7 with variables {x0, x1, x2, x3, X,Y,Z} over the
coefficient ring C[h1, h2] as follows:

J = 〈g1, g2, g3, g7〉 (14)

The primary decomposition of ideal J results in two ideals Jk (i = 1, 2) confirming two operation modes for all
the PMs in the 3-[PP]S-Y family, no matter their actuation scheme.

The analysis is completed by adding the remaining constraint equations g4 = g5 = g6 = 0 to the primary ideals
J1 and J2, which returns two ideals K1 and K2. As a consequence, the ideals Ki correspond to the two operation
modes and can be studied separately.

Kk = Jk ∪ 〈g4, g5, g6〉 k = 1, 2 (15)

5



Ideal K1–Operation mode 1, OM1 (x0 = 0) : The moving platform is always found to be displaced about a finite
screw axis by 180 degrees from the identity position where Σ0 coincides with Σ1 [30]. Substituting x0 = 0 and solving
for X,Y from the ideal K1 shows that the translational motions can be parametrized by Z and the rotational motions
by x1, x2 and x3 along with x2

1 + x2
2 + x2

3 = 1 [30].

Ideal K2–Operation mode 2, OM2 (x3 = 0) : The moving platform is displaced about a finite screw axis with
a rotation angle α defined as: α = ±2 acos(x0). The screw axis in this case stays parallel to the xy-plane [30].
Substituting x3 = 0 and solving for X,Y,Z from the ideal K2 shows that the translational motions can be parametrized
by Z and the rotational motions by x0, x1 and x2 along with x2

0 + x2
1 + x2

2 = 1 [30].
Therefore, PMs belonging to the 3-[PP]S-Y family exhibit two operation modes. In what remains, those manipu-

lators are compared based on their singularity-free orientation workspace size and parasitic motions.

5. Singularity Analysis and Parasitic Motions

For each operation mode, the motion of the moving platform can be parametrized by Z and any two of the ori-
entation parameters xi [29]. It simplifies the singularity analysis and the singular surfaces can be visualized in the
three dimensional Euclidean space, E3. However, the rotations of the moving-platform are not pure. Indeed some
undesired translational motions called as parasitic motions, arise. This section is dedicated to the evaluation of the
singularity-free orientation workspace and the parasitic motions of PMs belonging to the 3-[PP]S-Y family. The for-
ward kinematic Jacobian matrix is derived in two ways: (i) differentiating the constraint equations with respect to the
output variables (ii) using screw theory. It is shown how screw theory methods simplify the determination of the Ja-
cobian matrix for different actuation schemes. An index is defined to assess the maximum singularity-free orientation
workspace of the mechanisms under study. Additionally, their parasitic motions are also assessed.

5.1. Jacobian Matrix obtained by differentiating the constraint equations
The Jacobian matrix is defined for each operation mode as a matrix composed of the first order partial derivatives

of the constraint equations with respect to the parameters x0, x1, x2, x3, X,Y and Z [33, 34], i.e.,

Jk =

(
∂gm

∂xi
,
∂gm

∂X
,
∂gm

∂Y
,
∂gm

∂Z

)
where k = 1, 2 ; m = 1, ..., 7 ; i = 0, ..., 3 (16)

where, gm, m = 1, ..., 7 are the constraint equations for the manipulator at hand. Thus, the manipulator reaches
a kinematic singularity when det(Jk) = 0. The vanishing condition of det(Jk) results in a hyper-variety for each
operation mode:

S 1: x3 · f1(x1, x2, x3, X,Y,Z) = 0 and S 2: x0 · f2(x0, x1, x2, X,Y,Z) = 0 (17)

The polynomials f1 and f2, whose degree depends on the PM at hand describe the singularities in each operation
mode, which depend on the actuation scheme. x0 = x3 = 0 describes the constraint singularity that exhibits the
transition between K1 and K2.
It is noteworthy that this method is not always convenient to use as equations g4, g5 and g6 depend on the manipulator
actuation scheme. For instance, the equations for the 3-RPS manipulator expressed in Sec. 3 depend on the actuated
prismatic joint lengths. Besides, it should be noted that the derivation of equations g4, g5 and g6 as a function of the
actuated revolute joint angles is usually tedious. To overcome this problem, screw theory techniques are adopted to
derive the Jacobian matrices of the PMs.

5.2. Jacobian Matrix obtained based on Screw Theory
Based on the theory of reciprocal screws, the velocity model of a parallel manipulator can be expressed as

At = Bρ̇ (18)

where ρ̇ is the actuated joint rate vector. t is the moving platform twist with respect to the fixed base i.e., it contains
the angular velocity vector of the moving platform and the linear velocity vector of the MP geometric center. A is
called the forward Jacobian matrix and it incorporates the actuation and constraint wrenches of the PM while B is
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named the inverse Jacobian matrix [35]. For a non redundantly actuated and non overconstraint PM, A is a 6 × 6
square matrix whereas B is a 6 × n matrix where n is the number of actuated joints. To compare the manipulators of
the 3-[PP]S-Y family, only the parallel singularities are considered such that, A is rank deficient. Since, A is square,
configurations satisfying det(A) = 0 are singular. Moreover, the manipulators belonging to the 3-[PP]S family cannot
meey any serial singularity corresponding to the rank deficiency of B except the 3-RRS PM.

For instance, the kinematic modeling of the 3-RPS and 3-RPS PMs following Eq. 18 can be expressed as

A3−RPS
0t = B3−RPS ρ̇ =⇒



(0R1
1b1 ×

0u1)T 0uT
1

(0R1
1b2 ×

0u2)T 0uT
2

(0R1
1b3 ×

0u3)T 0uT
3

(0R1
1b1 ×

0s1)T 0sT
1

(0R1
1b2 ×

0s2)T 0sT
2

(0R1
1b3 ×

0s3)T 0sT
3


[

0ω
0v

]
=

[
I3×3
03×3

] ρ̇1
ρ̇2
ρ̇3

 (19)

A3−RPS
0t = B3−RPS θ̇ =⇒



(0R1
1b1 ×

0v1)T 0vT
1

(0R1
1b2 ×

0v2)T 0vT
2

(0R1
1b3 ×

0v3)T 0vT
3

(0R1
1b1 ×

0s1)T 0sT
1

(0R1
1b2 ×

0s2)T 0sT
2

(0R1
1b3 ×

0s3)T 0sT
3


[

0ω
0v

]
=

[
I3×3
03×3

] θ̇1
θ̇2
θ̇3

 (20)

where, 0ui is a unit vector along the prismatic joint direction and expressed in Σ0, 0si is the unit vector along the
ith revolute joint axis, 0vi is a vector normal to both 0ui and 0si. Matrices A3−RPS and A3−RPS incorporate the actuation
and constraint wrenches of the 3-RPS and 3-RPS PMs, respectively [35] and they are both 6 × 6 square matrices. For
the i-th leg of these manipulators, the constraint wrench, 0ζ̂c

0i and the actuation wrench, 0ζ̂a
0i are represented in Figs. 3

and 4 and are expressed in frame Σ0 as follows:

3 − RPS PM : 0ζ̂c
0i =

[
0si

0R1
1bi ×

0si

]
0ζ̂a

0i =

[
0ui

0R1
1bi ×

0ui

]
(21)

3 − RPS PM : 0ζ̂c
0i =

[
0si

0R1
1bi ×

0si

]
0ζ̂a

0i =

[
0vi

0R1
1bi ×

0vi

]
(22)

Thus, from Eqs. (1), (3) and (4), the determinant of the forward Jacobian matrix A3−RPS and A3−RPS in Eqs. (19)
and (20) can be calculated in terms of x0, x1, x2, x3, X,Y,Z and the design parameters. The derivation of the forward
Jacobian matrix by differentiating the constraint equations is tedious when a revolute joint is actuated whereas using
screw theory, it is straightforward regardless of the actuation scheme. Therefore, the forward singularities for different
actuation schemes of 3-[PP]S PMs are determined when the determinant of matrix A in Eq. (18) vanishes.

5.3. Singularity loci in the orientation workspace

The singularities can be expressed in the orientation workspace by parametrizing the orientation of the platform
in terms of Tilt-and-Torsion (T&T) angles, φ (azimuth), θ (tilt) and σ (torsion) [9, 36] as recalled in Fig. 52. As shown
in [9], those angles are more suitable for 3-[PP]S manipulators, which are known to be zero torsion mechanisms (σ
is always equal to 0 or π depending on the operation mode). The orientation quaternions can be expressed in terms of

2Figure 5 is a combination of Figs. 1(a) and 1(b) in [9]. In case of ZXZ Euler angle notation, a rotation matrix is decomposed as R =

Rz(φ)Rx(θ)Rz(ψ) whereas T&T angles use only two rotations R = Ra(θ)Rz(σ), where θ and σ represent tilt and torsion, respectively. That is the
reason why they are named as Tilt and Torsion angles. However, it should be noted that the azimuth angle is necessary to locate the axis-a and is
measured from x-axis to be consistent with the ZXZ Euler angle convention. This simple yet effective change of angles makes the whole analysis
much simpler and suits the behavior of any zero-torsion mechanism.
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the T&T angles as follows3:

x0 = cos(
θ

2
)cos(

σ

2
)

x1 = sin(
θ

2
)cos(φ −

σ

2
)

x2 = sin(
θ

2
)sin(φ −

σ

2
)

x3 = cos(
θ

2
)sin(

σ

2
)

(23)

The change of parametrization results in only three parameters expressing the orientation of the moving-platform.
Furthermore, for operation mode K1, characterized by x0 = 0, Eq. (23) gives σ = π. Similarly, for operation mode
K2, characterized by x3 = 0, Eq. (23) gives σ = 0. Substituting the values of σ in the remaining equations, leads to
xi expressed as functions of φ and θ angles, only.
In order to plot the singularity loci of the manipulator into the orientation workspace, the determinant of the forward
Jacobian matrix of the manipulator should be expressed as a function φ and θ angles, only. All remaining variables
should be eliminated from the determinant of the forward Jacobian matrix. X and Y can be eliminated using Eqs. (6)
and (7) for the 3-[PP]S-Y PMs as follows:

X = h2

(
x1

2 − x2
2
)

Y = −2 h2x1x2 (24)

To this end, the determinant of the forward Jacobian matrix is a function of Z, xi, i = 0, 1, 2, 3 and of the actuated
joint variables. The actuated joint variables can be eliminated using equations g4 = g5 = g6 = 0 as shown in Sec. 3.
Additionally, from Eq. (23), xi can be expressed as functions of φ and θ angles leading to the final expression of the
determinant of the forward Jacobian matrix in terms of Z, θ and φ.

5.4. Maximum Inscribed Circle Radius (MICR)
From a practical point of view, it is desirable to use a PM in its singularity free region. A performance index, named

Maximum Inscribed Circle Radius (MICR) and defined in [25], is used in this section to quantify the capability of the
Parallel Manipulator (PM) in terms of orientation motions. For a given altitude Z, this index gives the maximum tilt
angle θ that the moving-platform can reach for any azimuth angle φ without reaching any parallel singularity:

MICR = max
0≤θ≤π
{θ,∀ φ ∈ [0, π], det(A) , 0} (25)

MICR values are calculated for all the mechanisms at hand in their operation modes for three ratios for
h2

h1
= {

1
2
, 1, 2}

and two ratios for
Z
h1

= 1, 2. The ratios
Z
h1

and
h2

h1
make sure that the MICR values can be used to compare the

mechanisms and their operation modes no matter the platform and base sizes. Thus, MICR is used to compare the
PMS belonging to the 3-[PP]S-Y family.

5.5. Parasitic Motions
For the 3-[PP]S-Y family of PMs, the workspace is expressed in terms of Z, φ and θ. Since the torsion angle σ

can only attain the values 0 or π depending on the operation mode, the constrained motions are along the x and y axes.
The parasitic displacements along the x and y coordinates of the moving platform are expressed in terms of Z and xi

in Equations (24).

3The change of parameters from quaternions to T&T angles is done for the following reasons: quaternions are used to obtain algebraic constraint
equations so that the algebraic geometry techniques can be used to analyse those equations. For instance, primary decomposition of the ideal of the
constraint polynomials described in Eq. (14) yields the exact number of operation modes and their characterization. However, the parametrization
is changed to T&T angles to be able to visualize the singularities and maximum parasitic displacements in the orientation workspace. Moreover,
they offer a more intuitive approach to deal with zero-torsion mechanisms that are compared in this paper.
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To compare the parasitic motions of PMs belonging to the 3-[PP]S-Y family, the maximum displacement within
the Maximum Inscribed Circle (MIC) [25] is considered. Here, the following index is defined to quantify the parasitic
motions of the moving-platform along x0 and y0 axes. A parameter with units of length is defined such that

µ = max
(√

X2 + Y2
)

when 0 ≤ θ ≤ MICR ; −π ≤ φ ≤ π (26)

µ can be expressed in terms of h2, θ and φ for these manipulators.

5.6. Internal collisions
A drawback of using parallel manipulators for potential applications is the existence of internal collisions. It also

applies to the PMs belonging to the 3-[PP]S-Y family listed in Table 1. For these manipulators, three kinds of internal
collisions should be considered:

1. Collisions between limbs.
2. Collisions between limbs and the moving or fixed platform triangles.
3. Collision between the fixed and moving-platform triangles.

An accurate collision analysis requires the shape and thickness of the limbs as well as the range of motion of the
spherical joints. It should be noted that this paper mainly focuses on the singularity free orientation workspace and
the parasitic motions. The collision analysis is left for future work.
However, it can be observed that most applications of the 3-[PP]S-Y PMs [15, 16, 18, 19] require them to be in the
second operation mode (characterized in this paper by x3 = 0), due to the existence of internal collisions in their first
operation mode (x0 = 0). This is partially accounted for a new complexity index introduced on the next section.

6. Example: The 3-RPS PM

In this section, the 3-RPS PM is considered and the forward Jacobian matrix is formulated, leading to the deter-
mination of MICR for different sizes of its fixed base and moving platforms. Furthermore, the parasitic motions are
visualized within the Maximum Inscribed Circle (MIC) by plotting µ vs. φ and θ4.

The architecture of the 3-RPS PM belonging to the family of 3-[PP]S-Y of PMs is shown in Figure 6.
The determinant of A3-RPS calculated from Eq. (19) turns out to be a function of x0, x1, x2, x3, X,Y,Z, h1 and h2. X

and Y are substituted from Eq. (24) and then T&T angle substitutions are done (Eq. (23)) resulting in the determinant
of the forward Jacobian matrix to be a function of Z, h1, h2, θ, φ and σ. For operation mode 1, substituting σ = π and
assigning h1 = 1 and h2 = 2, the implicit plot of the Jacobian can be drawn by varying Z, φ and θ as shown in Fig. 7a.
For operation mode 2 with σ = 0, the implicit plot is shown in Fig. 7b. A slice of these surfaces at Z = h1 = 1 shows
the singularity loci in Fig. 8.

Along with the singularity loci, the so called intersection loci, depicting the collision between each pair of limbs
A1B1, A2B2 and A3B3 are also plotted. They are calculated as follows:
The limbs are assumed to have no thickness and the spherical joints are assumed to have full range of motion. Thus,
the problem is reduced to find all possible intersections between three pairs of line segments. For instance, to find the
intersection loci of line segments A1B1 and A2B2, their vector equations are written as follows:

r1 = a1 + (b1 − a1)t1 t1 ∈ [0, 1] (27)
r2 = a2 + (b2 − a1)t2 t2 ∈ [0, 1] (28)

where r1 and r1 are position vectors of a point on line segments A1B1 and A2B2, respectively. An intersection occurs
when r1 = r2. Eliminating t1 and t2 from this equation gives an implicit curve in terms of θ and φwhere the considered
line segments intersect under the condition t1, t2 ∈ [0, 1]. The intersection between the other two pairs of limbs are
determined in a similar manner, resulting in the intersection loci as plotted in blue in Fig. 8. It is apparent that the

4Radian is used as the angular unit throughout the text but degree is used in figures for better clarity.
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internal collisions dominate in operation mode 1 leading the a MICR value without practical use. Nonetheless, it is
possible to establish a singularity and collision-free workspace by releasing the constraint associated to MIC center
lying at θ = φ = 0 deg. However, this is not the scope of this paper and is left for future work.
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MICR, defined in Eq. (25). is also marked in these figures. For different ratios of h2 to h1, the variations in MICR
values are plotted in Figs. 9 and 10.
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From Eqs. (23) and (24), the maximum displacement within the Maximum Inscribed Circle (MIC) is written as

µ = max
(√

X2 + Y2
)

= max
(
h2

2 sin
(
θ

2

)4)
when 0 ≤ θ ≤ MICR ; −π ≤ φ ≤ π (29)

By varying Z from 0 to 4, θ from 0 to MICR and φ from −π to π, µ is plotted for the 3-RPS PM as shown in

Figs. 11 and 12. It is observed that the parasitic motion increases as the ratio
h2

h1
increases. But, the larger the

h2

h1
ratio, the smaller the MICR and hence, the smaller the singularity free workspace.
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7. Comparison of 3-[PP]S-Y PMs based on their MICR and parasitic motions

For most applications, it is better to have a large singularity-free orientation workspace with small parasitic mo-
tions. To find out the most suitable manipulator for this purpose, MICR vs. µ is plotted for all the mechanisms listed in

Table 1 in their two operation modes each for three ratios of
h2

h1
= {

1
2
, 1, 2} and two ratios of

Z
h1

= {1, 2}. These points

are plotted for the abovementioned ratios in Figures 13 to 18. From Eq. (24), it is noticed that parasitic motions are
higher for larger singularity free regions. The abscissa is chosen to be π-MICR since the minimum of this function is
preferred and the ordinate is chosen to be µ. For a PM from the 3-[PP]S-Y family, π-MICR and µ values are preferred
to be smaller. Thus, plotting π-MICR vs. µ results in a Pareto front as shown in Figs. 13 to 18.

Among the manipulators listed in Table 1, it is noticed that the 3-PhPvS PM behaves exactly like the 3-PvPhS
PM and the 3-PhPvS PM like the 3-PvPhS PM. Hence, only the 3-PhPvS PM is considered for analysis. Due to the
arrangement of prismatic joints, 3-PvRS and 3-PhPvS are inherently singular at any configuration and hence they are
not considered here. Indeed, for these manipulators, the three actuation forces are coplanar and intersect at a point
resulting in only two independent forces. In addition, the PMs 3-RPS and 3-RRS; 3-PhRS and 3-PhPvS; behave
alike due to identical arrangement of their passive joints. It should be noted that the leg links of the 3-RRS PM are
considered to be of length h1 so that the moving platform can reach the maximum value of Z(= 2h1) considered to
compare the manipulators at hand.

In Fig. 15, the MICR and µ values are marked for the 3-RPS PM when
h2

h1
= 2 and

Z
h1

= 1. These points

correspond to the MICR and µ values spotted in the MICR and µ vs
Z
h1

plots in Sec. 6.

To compare the 3-[PP]S-Y family of PMs, their MICR vs µ values are plotted for different ratios of
h2

h1
and

Z
h1

in Figs. 19 and 20. The former figure shows the Pareto optimal solutions listed in Table 2 while the latter shows the
solutions that do not dominate any other solutions listed in Table 3. Their respective configurations are also displayed
in these figures. Operation mode 1 is represented with crossed legs or upside down moving platform. But, this need
not always be the case. In fact, the generic pose of the 3-[PP]S family of PMs in each of their operation modes is still
an open problem. It is noteworthy that the ordinate is chosen to be log µ so that the smaller as well as larger values of
µ are clearly visible in the same graph.
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3-[PP]S PM
h2

h1

Z
h1

3-RPS OM2 1/2 1,2
3-PhPvS OM1 1/2 2
3-PhRS OM1 1/2 2
3-PhPvS OM2 1/2 2
3-PhRS OM2 1/2 2
3-PvRS OM1 1/2 2
3-PvRS OM2 1/2 2
3-RPS OM1 1/2 1,2
3-RRS OM1 1/2 1,2
3-RPS OM1 1/2 1,2
3-RPS OM2 1/2 1,2
3-RRS OM2 1/2 1,2
3-RRS OM1 1/2 1
3-PhRS OM1 1/2 1,2
3-PhRS OM2 1/2 2

Table 2: Pareto-optimal solutions (Fig. 19)

3-[PP]S PM
h2

h1

Z
h1

3-RPS OM1 2 1,2
3-RPS OM2 2 1,2

3-PhPvS OM1 2 2
3-PhRS OM1 2 2
3-PhPvS OM2 2 2
3-PhRS OM2 2 2
3-RRS OM2 2 1,2
3-PvPS OM2 2 2
3-RPS OM2 2 1,2
3-RRS OM2 2 1,2
3-PhRS OM1 2 1,2
3-RPS OM1 2 1,2
3-RRS OM1 2 1,2
3-PvRS OM1 2 2
3-RRS OM1 2 1

Table 3: Solutions that do not dominate any other solutions (Fig. 20)

Some observations that can be drawn from these curves are that all the Pareto optimal solutions consist of 3-[PP]S-

Y type PMs with
h2

h1
=

1
2

meaning that the circum-radius of the base is double that of the platform. The solutions

that do not dominate any other solution include only 3-[PP]S-Y type PMs with
h2

h1
= 2 implying that the height of the

platform is double the circum-radius of the base. Furthermore, the 3-PhRS PM in operation mode 1 with
h2

h1
=

1
2

,

Z
h1

= 1 and the 3-PhRS PM in operation mode 2 with
h2

h1
= {

1
2
, 1},

Z
h1

= 1 have the least µ of all the PMs under study.

On the contrary, the 3-RPS PM in its first operation mode with
h2

h1
= 2,

Z
h1

= 1 has the largest µ.

8. Ranking the Pareto optimal solutions based on complexity indices

Some complexity indices were introduced in [28, 27] to evaluate the complexity of serial and parallel manipulators
at their conceptual design stage. Those indices can be used to rank the parallel manipulators at hand. The complexity
is not considered as a separate objective function along with MICR and µ. It is given a lesser priority to compare the

PMs belonging to the 3-[PP]S-Y family due to the fact that the complexity indices are independent of
h2

h1
and

Z
h1

.

Moreover, due to little differences between architectures of the 3-[PP]S-Y PMs, most of the indices defined in [27]
yield the same complexity. In order to avoid this problem and to rank the Pareto optimal solutions listed in Table 2 in
order of complexity, two more indices are introduced in this paper. In total, the following six complexity indices are
used to compare the Pareto-optimal solutions listed in Table 2:

8.1. Joint-number complexity KN

The joint-number complexity KN is defined as

KN = 1 − exp(−qN N), (30)

where N is the number of joints in the PM and qN is the resolution parameter defined by

qN =

{
− ln(0.1)/Nmax, for Nmax > 0;

0, for Nmax = 0. (31)
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For all the 3-[PP]S-Y PMs considered here, N = Nmax = 9 and hence kN = 0.9.

8.2. Joint-type complexity KJ

As the name suggests, the joint-type complexity KJ is associated with the type of joints in the PM. The 3-[PP]S-Y
PMs consist of only revolute, prismatic and spherical joints and it leads to the definition of KJ as follows:

KJ =
nRKG|R + nPKG|P + nS KG|S

n
, (32)

where nR, nP and nS are the numbers of revolute, prismatic and spherical joints, respectively with n = nR + nP + nS .
KG|x is the geometric complexity of the pair x as introduced in [27]: KG|R = 0.5234, KG|P = 1 and KG|S = 0. The
values of KJ for the Pareto optimal solutions are listed in Table 4.

8.3. Loop complexity KL

The loop complexity of a PM is defined as:

KL = 1 − exp(−qLL), L = l − lm, (33)

where l is the number of kinematic loops and lm is the minimum number of loops required to produce a special
displacement group or subgroup. Since each PM belonging to the 3-[PP]S-Y family has non-pure rotations about two
horizontal axes and a vertical translation, the three degrees of freedom can be realized using a single kinematic chain.
Hence, for all the 3-[PP]S-Y PMs, l = 2 and lm = 0. qL is defined the same way as in Eq. (31):

qL =

{
− ln(0.1)/Lmax, for Lmax > 0;

0, for Lmax = 0. (34)

where, Lmax = L = 2 for all the Pareto optimal solutions resulting in KL = 0.9.

8.4. Link diversity KB

Link diversity KB is defined to quantify the geometric constraints between neighboring joints. For a revolute
joint, its axis of rotation is considered whereas for a prismatic joint, its direction. Five possible joint-constraint types
between the neighboring joint axes/directions were reported in [27]:

1. Type B1: Orthogonal intersection.
2. Type B2: Nonorthogonal intersection.
3. Type B3: Parallelism.
4. Type B4: Orthogonal but not intersecting.
5. Type B5: Skew.

Thus, the geometric-constraint diversity was defined as:

KB =
B

Bmax
, B = −

c∑
i=1

bi log2(bi), bi =
Mi∑c

i=1 Mi
, (35)

where B is the entropy of the joint-constraint types and Bmax = 2.32 [27]. c is the number of distinct joint-constraint
types and Mi is the number of instances of each type of joint-constraints.

For 3-[PP]S-Y PMs, the joint-constraint between the first two joints in each limb is of type B1 except for the
3-RRS PM where the revolute joint axes are parallel and is of type B3. The constraint type is always B5 between the
second and the spherical joint while it is either B2 or B3 between different limbs. There are three instances of each type

due to three limbs and hence for any 3-[PP]S-Y PM, bi =
3
9
, i = 1, 2, 3. This leads to B = log2(3) and KB = 0.6832.

Two more complexity indices are introduced in this paper to facilitate the ranking of the Pareto optimal 3-[PP]S-Y
PMs:
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8.5. Actuator-position complexity KP

Actuator-position complexity KP is defined as:

1
m

m∑
i=1

pi − 1
ni

, (36)

where m is the number of limbs, ni is the total number of joints in the i-th limb and pi is the location of the actuated
joint i.e. pi = k if k-th joint is actuated. For 3-[PP]S-Y PMs, KP = 0 if the first joint is actuated and KP = 1/3 if the
second joint is actuated. It is noteworthy that the actuator position index can be applied to any other serial kinematic
chain or a PM even if the position of the actuator differs from one limb to another.

8.6. Operation mode complexity KOM

Operation mode complexity KOM is defined specifically for 3-[PP]S-Y PMs. As seen in Sec. 4, a 3-[PP]S-Y PM
has two different operation modes. In the first operation mode, the moving platform is rotated upside down by 180
degrees with respect to the fixed base. As a result of this complexity analysis, it is prone to have internal collisions as
compared to operation mode 2, as shown for a 3-RPS PM in Sec. 6. Although a detailed collision analysis is necessary
to overcome this issue, it is partially overcome in this paper by introducing a new complexity index as follows:

KOM = 1 for OM1 (37)
KOM = 0 for OM2 (38)

8.7. Total complexity

Total complexity K ∈ [0, 1] of a kinematic chain was defined as a convex combination of the different complexity
indices [27]. In this context, for the 3-[PP]S-Y PMs, it is defined as

K = wN KN + wJ KJ + wLKL + wBKB + wPKP + wOMKOM (39)

where wN ,wJ ,wL,wB,wP and wOM denote their corresponding weights, such that

wN + wJ + wL + wB + wP + wOM = 1

Assigning equal weights5 to all complexity indices implies

K =
1
6

(KN + KJ + KL + KB + KP + KOM) (40)

The Pareto optimal solutions listed in Table 2 are ranked in ascending order of complexity in Table 4. It is apparent
that the 3-RPS, 3-PvRS and 3-PhRS PMs in OM2 dominate their counterparts with higher singularity-free orientation
workspaces, lower parasitic motions and are the simplest ones, their complexity being equal to 0.4985. The 3-PhPvS
PM in OM1 is the most complex Pareto optimal solution with a complexity equal to 0.7472.

9. Conclusion

In this paper, different operation and actuation modes of the 3-[PP]S-Y zero torsion parallel manipulators were
compared based on their singularity free orientation workspace and parasitic motions. The manipulators belonging
to the 3-[PP]S-Y family of PMs were considered and kinematic constraint equations were derived for their general
architectures. A primary decomposition of the ideal of the constraint polynomials showed that they have two operation
modes. Furthermore, their forward kinematic Jacobian matrices were derived for the mechanisms at hand. The

5Since KN ,KL and KB are the same for all the 3-[PP]S-Y PMs, the weights wN ,wL and wB do not affect the complexity ranking. However,
when wL = 1

3 and wP = 1
12 , 3-RRS PM in OM2 becomes the simplest PM belonging to the 3-[PP]S-Y family. Eventually, the weights can be

chosen according to the application.
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Rank Pareto optimal solutions KN KJ KL KB KP KOM K

1 3-RPS OM2 0.9 0.5078 0.9 0.6832 0 0 0.4985
3-PvRS OM2 0.9 0.5078 0.9 0.6832 0 0 0.4985
3-PhRS OM2 0.9 0.5078 0.9 0.6832 0 0 0.4985

2 3-RRS OM2 0.9 0.3489 0.9 0.6832 0.3333 0 0.5276
3 3-PhRS OM2 0.9 0.5078 0.9 0.6832 0.3333 0 0.5541

3-RPS OM2 0.9 0.5078 0.9 0.6832 0.3333 0 0.5541
4 3-PhPvS OM2 0.9 0.6667 0.9 0.6832 0.3333 0 0.5805
5 3-RRS OM1 0.9 0.3489 0.9 0.6832 0 1 0.6387
6 3-PvRS OM1 0.9 0.5078 0.9 0.6832 0 1 0.6552

3-PhRS OM1 0.9 0.5078 0.9 0.6832 0 1 0.6552
7 3-RRS OM1 0.9 0.3489 0.9 0.6832 0.3333 1 0.6942
8 3-PhRS OM1 0.9 0.5078 0.9 0.6832 0.3333 1 0.7207

3-RPS OM1 0.9 0.5078 0.9 0.6832 0.3333 1 0.7207
9 3-PhPvS OM1 0.9 0.6667 0.9 0.6832 0.3333 1 0.7472

Table 4: Complexity indices of Pareto optimal 3-[PP]S-Y PMs in ascending order

determinant of the Jacobian matrix was expressed as a function of the orientation workspace parameters tilt, azimuth
and height of the moving-platform, Z. The vanishing condition of the determinant was used to visualize the singularity
loci in the orientation workspace. An index, named Maximum Inscribed Circle Radius (MICR), was used to quantify
the singularity free orientation workspace of the manipulators. The maximum parasitic motion within the Maximum

Inscribed Circle denoted as µ and was used as a second performance index. For
h2

h1
=

1
2
, 1, 2 and

Z
h1

= 1, 2, MICR

vs µ values were plotted for all the mechanisms in Table 1. The 3-RPS PM was taken as an example to illustrate the
methodology to find the MICR and µ values. For all manipulators belonging to the 3-[PP]S-Y family, the plots of
(180-MICR) vs. µ were drawn such that a minimum of these objective functions is the preferred solution. Different
plots were drawn for different ratios of the circumference of the moving-platform to the circumference of the fixed
base. Ultimately, (180-MICR) vs. log10(µ) points are plotted in the same graph for all the mechanisms for easier
comparison. A Pareto front was observed in the plot and manipulator configurations were represented for the Pareto-
optimal solutions and the solutions that do not dominate any other solution. It was concluded that the Pareto optimal
solutions only include the PMs from the 3-[PP]S-Y family with the circum-radius of the base twice as that of the
platform. The solutions that do not dominate any other solutions include the PMs from the 3-[PP]S-Y family with
the circum-radius of the platform twice as that of the base. Therefore, the MICR vs µ plots could be used to compare
the 3-[PP]S family of PMs especially while choosing them for a particular application. Furthermore, the complexity
indices of the Pareto optimal solutions were calculated. For equal weights of all complexity indices, it was shown that
the 3-RPS, 3-PvRS and 3-PhRS PMs in their second operation mode are the simplest ones amongst 3-[PP]S-Y PMs.
Future work will include a comparison between 3-[PP]S-∆ and 3-[PP]S-cube PMs for different actuation schemes.
Furthermore, the comparison will be done while taking into account joint limits and self collisions. Additionally,
MICR, parasitic motions and proposed complexity indices can be used as a basis of comparison for other lower
mobility PMs.
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K Pareto optimal 3-[PP]S-Y parallel manipulators

0.4985

3-RPS OM2 3-PvRS OM2

3-PhRS OM2

0.5276

3-RRS OM2

0.5541

3-PhRS OM2
3-RPS OM2

0.5805

3-PhPvS OM2

0.6387
3-RRS OM1

0.6552

3-PvRS OM1 3-PhRS OM1

0.6942
3-RRS OM1

0.7207

3-PhRS OM1

3-RPS OM1

0.7472

3-PhPvS OM1

Table 5: Pareto optimal 3-[PP]S-Y parallel manipulators configurations in ascending order of complexity
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