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Abstract—The strain dependence of superconducting material 
is known to be responsible for the degradation of the electrical 
performance of cables. As such, their electrical optimization 
requires an understanding of their mechanical behavior. The 
present paper introduces a method for elasto-plastic modeling of 
commercial MgB2 multi-filamentary strands manufactured by 
the ex-situ powder-in-tube method. The model is based on a 
simplified representation of the structure, built using 
components’ volume fractions and nano-indentation test data. 
Monotonic and cyclic tension-compression tests were performed 
on the strands before and after chemical dissolution of the Monel 
outer layer to provide a multi-scale experimental database. These 
tests were used to identify the parameters of the kinematic and 
isotropic hardening laws of the elasto-plastic model. The model 
intends to be subsequently used to simulate the electrical 
behavior of cables and define guidelines for the manufacturing 
process, cabling process and end-product operating condition.  
 

Index Terms—Superconducting strand, mechanical behavior, 
modeling, MgB2, Multi-scale mechanical tests.  
 

I. INTRODUCTION 

UPERCONDUCTING cables are assemblies of twisted strands. 
A strand is a composite wire with superconducting 

filaments twisted in a metallic matrix resulting in a complex, 
multi-scale structure. It is well known that the strain state of 
the strands, depending on loading conditions, affects the 
electrical performance of cables [1], [2]. This dependency has 
been well studied since initial work by [3]. The manufacturing 
process, cabling process and operating conditions lead to 
tension-compression and bending loadings on the strands in 
cables [4]. 

The COCASCOPE project aims to model the behavior of 
superconducting cables at different scales for the optimization 
of their electrical performance. In the framework of this 
project, a commercial MgB2 strand used in superconducting 
cables based on the "react-and-wind" process was studied. 
Several studies have investigated the mechanical properties of 
MgB2 strands with different structures [5]-[9]. However, 
electrical modeling requires an accurate description of the 
mechanical behavior of the strand. Studies have previously 
been performed to model the mechanical behavior of Nb3Sn 
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based strands using various approaches [10]-[14]. Cyclic 
behavior with Bauschinger effect is rarely taking into account 
in these models, except by [14]. In this paper, we propose a 
method to model the mechanical behavior of superconducting 
strands thorough macroscopic, mesoscopic and microscopic 
approaches. This method is applied to a commercial MgB2 

strand. The constitutive equations are built for future use in 
multi-scale finite element simulations to predict the 
mechanical behavior [15] or the electrical behavior [16], [17].  

II. MODELING OF THE COMPOSITE STRUCTURE 

A. Samples 

The MgB2 strands were manufactured by Columbus 
Superconductors with an ex-situ Powder-In-Tube (PIT) 
method. A cross-sectional image of the strand is shown in 
Fig. 1(a). Two strands with a diameter of 1.33mm and 
1.55mm were tested. Each strand includes thirty-six MgB2 
filaments, surrounded by a Nickel inter-filamentary matrix and 
an outer layer of Monel. Fig. 1(b) shows two reaction layers 
with porosities at the interface of an MgB2 filament and the 
Nickel matrix. These layers were created by diffusion of 
Magnesium from MgB2 into the Nickel matrix. 

B. Numerical representation of the strand 

The first step of the modeling is to represent the complex 
composite structure of the strand by a simplified one which 
can be implemented in finite element simulation. To choose a 
well-adapted representation of the strand structure, the study 
of the strand components is required.  

Given the small scale of the microstructure, nano-
indentation tests are well-suited for characterizing the local 
mechanical properties of each component. During nano-
indentation, a precisely-dimensioned indenter tip is pressed 
into the surface of the material to a pre-defined depth 
measured from the position of the tip and a previous definition 

S

 
 

Fig.1.  SEM observations of (a) the MgB2 strand and (b) enlarged view at 
the interface between MgB2 filament and Nickel matrix. 
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of the surface of the sample. The load and the penetration 
depth are recorded. Oliver and Pharr [18] showed that the 
nano-hardness H and the elastic modulus E can be determined 
from the indentation test load-depth curve and the geometry of 
the indenter. Tests were performed with a commercial nano-
indenter with a Berkovich tip (three-sided diamond pyramid) 
and using the Continuous Stiffness Measurement (CSM) mode 
[19]. The indents were 200 nm in depth with a width of around 
1.4 µm. This indent size made it possible to characterize each 
constituent phase individually. The tests were performed in 
several transverse cross-sections. Table I summarizes the 
results with the number of indents and standard deviation for 
each measurement. Two diffusion layers have been 
characterized, one adjacent to the MgB2 and one adjacent to 
the Nickel. Nano-indentation in the MgB2 was not possible 
due to its porous structure. Results in the literature (EMgB2=76-
172 GPa [9], [20]) show a strong dependence on the 
manufacturing process, material structure and measurement 
methods. The Young’s moduli of Monel and Nickel measured 
by nano-indentation tests are in agreement with published 
values (EMonel=160-185 GPa [8], [21] and ENi=186-207 GPa 
[9], [22]) regarding the different manufacturing processes. 
Nano-hardness is related to the initial size of the elastic 
domain and can be used to constrain the elastic limits when 
optimizing model parameters as described in Section III. The 
diffusion layers are purely elastic in the loading range but their 
behavior is closer to the one of Nickel than that of MgB2. 

The volume fractions of components were determined by 
area measurements on images of the transverse cross-section 
of the strand. Observations were performed both using SEM 
with backscattered electrons and an optical microscope. Cross-
sectional samples were prepared by manual polishing followed 
by vibro-polishing. Table II summarizes the volume fractions 
obtained grouped by set. The standard deviation in Table II 
corresponds to the difference between measurements made on 
SEM and optical observations of the transverse cross-section. 
Porosities are observed at the interface between MgB2 
filaments and diffusion layers, as in Fig.1(b). Voids were also 
observed in the MgB2 phase, due to its porous structure. For 
this reason, it was not possible to distinguish the volume 
fraction of MgB2 and porosities. The volume fraction of the 
{Nickel, diffusion layers} set was calculated from the areas of 
the inter-filamentary zone minus the area of the {porosities, 
MgB2} set. 

To predict the electrical performance, the stress and strain 
predictions in the filaments are required. A model has thus 
been developed to predict the mechanical behavior of the 
composite strand. From the structure of the strand and the 

microscopic results, we defined three sets to represent the 
composite structure: an outer-layer set, a matrix set and a 
filament set. The outer-layer set is composed of the Monel and 
has an elasto-plastic behavior. The matrix set is composed of 
the diffusion layers and the Nickel. It is also modeled with an 
elasto-plastic constitutive law. As it was not possible to 
measure precisely the porosity volume fraction of the porous 
MgB2 filaments the filament set is composed of both MgB2 
and porosities with an elastic behavior in the domain studied.  

C. Elasto-plastic modeling 

Each set has its own behavior as described above. Various 
approaches can be used to calculate the elasto-plastic response 
of a material. Plastic modulus or power laws are usually used 
in literature for elasto-plastic modeling of superconducting 
strands [10]-[13], [16]. However, this kind of model is not 
well-adapted to describe cyclic behavior and more particularly 
the Bauschinger effect. To be able to predict the cyclic 
response of the strand, it is necessary to introduce kinematic 
hardening variables [14], [23].  

For a single material, the model assumes that a domain 
exists where the behavior remains linear elastic and can be 
described by Hooke’s law. Once the limit of this elastic 
domain is reached, the behavior of the material becomes 
plastic. The evolution of this domain characterizes the 
macroscopic mechanical response of the material. A variable 
R characterizes the evolution of its diameter (isotropic 
hardening) and X the displacement of the elastic domain 
(kinematic hardening). The changes of these hardening 
variables are defined by [23]: 

  pRQbR    (1) 

pC  XεX p   (2) 

where b and γ represent the hardening rates, Q and C the 
saturation values and the plastic state is described by the 
plastic strain tensor εp and accumulated plastic strain p. 

The classical von Mises criterion is selected to describe the 
boundary of the elastic domain. It is represented by: 

0R)(:)(
2

3
)R,,(f 0  XSXSXσ  (3) 

where S is the deviatoric part of the stress tensor σ and σ0 is 
the initial size of the elastic domain. 

D. Parallel materials consideration for composite structure 

The mechanical behavior is based on a composite 
description of the strand in which the microstructure is shared 
out among three sets, as defined in Section II.B. The filament 
set has an elastic response in the domain studied. The elasto-
plastic models for the outer layer and the matrix are calculated 
separately.  

The composite model assumes homogeneous strain in the 

TABLE I 
NANO-INDENTATIONS RESULTS 

COMPONENTS 
Num. of 
indents 

E1 
(GPa) 

SD2 
(GPa) 

H3 
(GPa) 

SD2 
(GPa) 

Ni in matrix 513 204 7 1.6 0.1 
Ni in core 144 204 5 1.7 0.2 
Monel 40 170 5 2.1 0.1 
Diff. layer adj. Ni 24 191 15 11 1.4 
Diff. layer adj. MgB2 39 215 6 12 0.8 

1 Elastic modulus, 2 Standard Deviation and 3 Nano-hardness 

TABLE II 
VOLUME FRACTION OF MONEL, {NICKEL, DIFFUSION LAYERS} AND 

{POROSITIES, MgB2} 

 Monel 
{Porosities, 

MgB2} 
{Nickel, diff. 

layers} 

Average Area (mm²) 0.728 0.225 0.419 
Volume fraction fv 0.531 0.164 0.305 
Standard Deviation 1.1x10-3 0.2x10-3 1.3x10-3 
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strand and a stress distribution in the components that depends 
on component volume fractions defined as: 

omfs    (4) 

oovmmvffvs fff    (5) 

where the subscript s stands for strand, f for filament, m for 
matrix and o for outer layer. 

III. IDENTIFICATION PROCESS 

A. Step of identification process 

The elasto-plastic mechanical behavior described by 
constitutive equation is based on kinematic and isotropic 
hardening laws which depend on material parameters. These 
parameters need to be identified by defining an inverse 
identification problem. The identification process uses 
observable variables (here stress and strain) determined from 
experimental data. The set of parameters retained is the one 
for which the comparison between the experimental response 
and the simulated response is considered satisfactory. The 
methodology is synthetized in Fig. 2. 

The first step consists in calculating the response of the 
model to an experimental loading. It is done by numerically 
solving the mechanical differential systems using a fourth 
order Runge-Kutta method. Then the simulation is compared 
to the real behavior by calculating the difference between the 
experimental response and the calculated one. A cost function 
is used, defined as the normalized least square error: 

 


 


2
exp

2
simu

2
exp

cost
y

yy
f  (6) 

where y is the stress response (resp. strain) when the test is 
controlled in strain (resp. stress) and the subscripts exp and 
simu mean experimental and simulated, respectively. 

The identification of the material parameters consists thus 
in an optimization problem solved by iteratively generating a 
set of parameters and calculating the cost function in order to 
minimize it. A specific strategy of identification, detailed in 
Section III.B., and various optimization methods were used 
successively to obtain a set of parameters physically 
representative of the mechanical behavior of the strand and 

avoiding local minima. 

B. Identification strategy 

The material parameters of the model are 
• Outer layer: fvo / Eo / σyo / bo / Qo / Co / γo, 
• Filaments: fvf / Ef, 
• Matrix: fvm / Em / σym / bm / Qm / Cm / γm, 

where σy designates the yield stress of each component. 
Ideally, tests would be carried out on each individual 

material to correctly identify their parameters. Due to the 
manufacturing process and their composition, the Nickel, 
diffusion layers and MgB2 are not available independently. 
Bars of Monel having the same composition as the outer-layer 
specified by Colombus Superconductors have been tested. To 
access to the parameters of the matrix, tests on strands after 
dissolving the Monel outer layer, called inter-filamentary area 
strands, were carried out and described in Section IV.B. 

The volume fractions fvo, fvf, fvm are measured from image 
analyses. Elastic moduli Eo and Em are defined from nano-
indentation tests: Eo=EMonel and Em=ENi. Elastic limits σyo and 
σym are evaluated by tests on Monel bars and inter-filamentary 
area strands. They will be accurately identified during the 
optimization process by using the nano-hardness results 
detailed in Table II and literature values from [26] as limits. 

As MgB2 is porous, it is not possible to measure its elastic 
modulus by nano-indentation tests. It has to be evaluated using 
the composite nature of the strand. Indeed, the elastic modulus 
of the filaments set Ef should verify the two following mixture 
laws, expressed at the strand scale (7) or at the inter-
filamentary scale (8): 

mmooffS EfvEfvEfvE   (7) 

m
mf

m
f

mf

f
IFA E

fvfv

fv
E

fvfv

fv
E





  (8) 

The elastic moduli measured on the complete strands ES and 
the inter-filamentary area strands EIFA allow to calculate the 
filament elastic modulus Ef from (7) and (8). One can observe 
in Table III that results do not agree. This difference may be 
explained by the difficulty to handle inter-filamentary strands 
before and during mechanical tests, which may cause more 
damage, and then lowers the apparent elastic modulus of the 
inter-filamentary strand. Nevertheless, to remain compatible 
with both experiments on complete and inter-filamentary area 
strands during the identification process, a compromise for Ef 
at 120 GPa has been chosen.  

 The volume fractions and elastic moduli remain constant 
during the optimization process. Several tests exploring 
various ranges and types of loadings were used to ensure a 
wide domain of prediction and the uniqueness of the set of 
parameters. To differentiate isotropic and kinematic hardening 
components for cyclic modeling, both monotonic tensile tests 

 
Fig. 2. Methodology of the identification process. 

TABLE III 
ELASTIC MODULI MEASURED FROM TENSILE TESTS AND AS CALCULATED 

SAMPLES 
E measured 

(GPa) 
SD* 

(GPa) 
Ef  calculated 

(GPa) 
SD* 

(GPa) 
Complete strand 180 8.5 167 50 
Inter. Filament. strand 160 8.8 78 25 

*Standard Deviation 
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with plastic unloads and cyclic tests were used.  
To ensure that each parameter of a set has a physical 

meaning, we identified σyo/bo/Qo/Co/γo from tests on Monel 
Bars and σym/bm/Qm/Cm/γm from tests on inter-filamentary area 
strands. A genetic algorithm [27] was used during these 
mesoscopic optimizations to sweep a large range of solutions 
and gave us an idea of the optimal parameter values. They 
provide us initial parameters and have enabled us to define 
reduced variation ranges for the parameters of the outer-layer 
and matrix sets for the global optimization. 

Direct-search or gradient-based methods were used on the 
refined ranges obtained by meso-scale optimizations to find 
the global set of parameters representing the complete strand. 
The global optimization uses monotonic and cyclic tests 
carried out on macroscopic complete strands. This last step is 
required to find the final set of parameters which represents 
the complete composite strand.  

IV. INVERSE IDENTIFICATION OF MATERIAL PARAMETERS 

A. Experimental procedure 

Tensile tests were carried out using a commercial 
electromechanical tensile test machine and a specific device to 
avoid any damage to the strand. The stress applied on the 
sample is calculated from load measurements made using a 
1 kN load cell. The strain was calculated from displacement 
measurements made with a compact and light axial 
extensometer. Tests were performed at room temperature on 
40 mm long strands at a strain rate of 5x10-4 s-1. 

B. Mesoscopic scale tests and optimizations 

Monotonic tensile tests were carried out on commercial 
3 mm diameter Monel rods up to 15% strain and a test of one 
cycle of tension-compression was performed up to 0.5% 
strain, between σmax=250 MPa and σmin= -200 MPa. We 
identified bo/Qo/Co/γo from these tests. 

Tests on the inter-filamentary area were carried out. The 
sample was prepared by dissolving the Monel outer layer with 
a solution of HNO3 and CH3COOH. The parameters of the 
kinematic hardening law were identified by tensile tests with 
plastic unloads. The results show that the isotropic hardening 
does not exist in the domain studied. Thus, the matrix is 
modeled with only a kinematic hardening. Fig. 4(a) shows the 
experimental and simulated responses for the inter-filamentary 

area with the retained σym/Cm/γm parameters. 

C. Macroscopic scale and global optimization 

Cyclic tests were carried out using pneumatic grips with a 
sufficiently short length of the strand between the grips to 
avoid buckling. The test was controlled in stress with a mean 
stress σm=80 MPa and a stress amplitude σa=110 MPa. Stress-
strain results are shown in Fig. 4(b) with the calculated 
response. The value of the parameters identified in the global 
optimization are summarized in Table IV. 

D. Model validation using cyclic tests 

To evaluate the robustness of the model, two independent 
cyclic tests were used. Fig. 4(c) displays the experimental and 
simulated stress-strain curves of a cyclic test performed at 
σm=80 MPa and σa=120 MPa. One can observe that the strain 
amplitude is well predicted. However, during these tests, a 
plastic strain increment occurs every cycle, which is called 
ratchetting. Fig. 4(d) shows the evolution of the mean strain 
with the number of cycles for cyclic test. It can be seen that 
the model is able to predict the existence of such ratchetting 
during cyclic loading, although its level is not well described. 
It could be improved by adding one or more kinematic 
hardening terms or by modifying its constitutive law [28], at 
the expense of the identification cost. 

V. CONCLUSION 

This work presents a mechanical composite elasto-plastic 
modeling of MgB2 strands based on a multi-scale 
characterization, an elasto-plastic calculation and a complete 
optimization process. The model of strand’s mechanical 
behavior as identified has a low computation cost, it can 
henceforth be used for the simulation of the mechanical 
response of superconducting cables under loading 
representative of in-service conditions, which is necessary for 
accurately predicting their coupled electrical response.  

 
 
Fig. 4. Stress-strain curve of experimental and simulated results of (a) Inter-filamentary area with plastic unloads, tension-compression cyclic test on complete 
strand used for (b) the identification and (c) the validation. (d) Evolution of calculated and experimental mean strain of test (c) with number of cycles. 

TABLE IV 
PARAMETERS OF THE STRAND MODEL 

 fv E (GPa) σy (GPa) b Q C γ 
Outer layer 0.531 170 140 0.95 2466 0.16 638 
Matrix 0.305 204 66 - - 0.29 488 
Filaments 0.164 120 - - - - - 
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