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Modal Expansion of the Scattered Field: Causality, Non-Divergence and
Non-Resonant Contribution

Rémi Colom1,2,∗, Ross McPhedran2, Brian Stout1, Nicolas Bonod1,∗
1Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France and

2Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), University of Sydney NSW 2006, Australia∗

Modal analysis based on the quasi-normal modes (QNM), also called resonant states, has emerged
as a promising way for modeling the resonant interaction of light with open optical cavities. However,
the fields associated with QNM in open photonic cavities diverge far away from the scatterer and the
possibility of expanding the scattered field with resonant contributions only has not been established.
Here, we address these two issues while restricting our study to the case of a dispersionless spherical
scatterer. First, we derive the rigorous pole expansion of the T -matrix coefficients that link the
scattered to the incident fields associated with an optical resonator. This expansion evinces the
existence of a non-resonant term. Second, in the time domain, the causality principle allows us to
solve the problem of divergence and to derive a modal expansion of the scattered field that does not
diverge far from the scatterer.

INTRODUCTION

Light can resonantly interact with dielectric and metal-
lic particles that behave as 3D open cavities with radia-
tive and possibly absorption losses. The analysis of the
resonance is of uppermost importance in understanding
and optimizing the process. Among the several theories
developed for such an analysis, the Quasi Normal Mode
(QNM) theory, also called resonant state expansion, has
attracted much attention since it allows for an interpreta-
tion of the electromagnetic response of optical resonators
with respect to their eigenmodes associated with com-
plex eigenfrequencies ωp,n [1–12]. Even though the use of
QNM is quite recent in nanophotonics, it has a long his-
tory in quantum scattering theory, electromagnetism and
nuclear physics [13–17] starting from the Gamow states
[18] and the singularity expansion method [19, 20].

The imaginary part of the eigenfrequencies ωp,n reflects
the energy decay experienced by the modes of open and
passive systems. That means that under an exp(−iωt)
time dependence, the imaginary part of ωp,n must be
negative. This negative imaginary part of the eigenfre-
quencies in turn causes a divergence of the associated
eigenmodes at large distances from the scatterer r →∞
as they verify outgoing boundary conditions meaning
that their radial dependence asymptotically tends to-
wards eiknr/r, kn =

ωp,n

c [21]. It is interesting to note
that this problem was raised in a different context by
Lamb as early as 1900 [22–24] who introduced the termi-
nology “exponential catastrophe” following the pioneer-
ing work of J.J. Thomson [23–25]. Because of the diver-
gence of these resonant states, their normalization has
to be redefined [1, 3, 4, 7, 15, 16, 26–30]. QNM anal-
ysis of the scattering problem of optical resonators has
been carried out by expanding the internal field on the
QNM basis in order to study the scattering problem [4].
The scattered field was then computed by means of the
Green function [4, 5, 31]. QNM expansions was recently

used to investigate the temporal dynamics of photonic
resonators [32, 33]. However, two major problems still
remain and prevent us from having a clear understand-
ing of the QNM analysis of the scattering problem:
1. A fundamental problem remains regarding the diver-
gence of the QNM fields: how is it possible to express the
scattered field as a sum of QNM whereas QNM diverge
when r → ∞? We will show that in the time-domain,
the causality principle solves the problem of divergence
faced by time harmonic QNM fields. The modal expan-
sion in the time domain of the outgoing and scattered
fields reveals that a part of the scattered field keeps the
same temporal dependence as the incident field (mere re-
flection) while the second part involves the eigenmodes
of the scatterer and modifies the temporal dependence of
the incident field.

2. The other problem we want to treat is related to the
expansion of the scattered field: can the scattered field
of a resonator be expanded as a sum of resonant contri-
butions only or should a non-resonant contribution also
be taken into account? This question remains, although
it has long been established that the internal field exist-
ing inside a spherical resonator could be expanded as a
sum of QNMs only [1, 34]. This result is only valid for
spherically symmetric scatterers but has been assumed
in most of the QNM analysis of arbitrary shaped scat-
terers [4, 35] for which the internal field was recast as a
superposition of QNMs. Here, we derive an expression of
the scattered field possessing a non-resonant part in ad-
dition to resonant parts associated with the QNM fields.
The non-resonant contribution is needed to derive con-
vergent expansion of the scattered field. It is different
from the incident field and is not required for expanding
the internal field.
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MODAL EXPANSION OF THE SCATTERING
OPERATORS

When considering light-scattering, an excitation field
Eexc(kr) illuminates a scatterer and gives rise to a scat-
tered field Escat(kr) outside the scatterer and an in-
ternal field Eint(kr). The total field outside the scat-
terer is the superposition of the excitation and scat-
tered field: Etot(kr) = Eexc(kr) + Escat(kr) and can
be also decomposed as a sum of incoming Ein(kr) and
outgoing Eout(kr) fields. The incoming and outgoing
fields Ein(kr) and Eout(kr) are expanded on a set of in-

coming (N
(−)
n,m(kr), M

(−)
n,m(kr)) and outgoing (N(+)(kr),

M(+)(kr)) Vector Partial Waves (VPWs). Given the def-
initions of the incoming and outgoing VPWs (see Supple-
mental Material), Ein(kr) and Eout(kr) can be expressed
as follows:

Eout(kr) = E0

∞∑
n,m

s(h,+)
n,m (ω)M(+)

n,m(kr) + s(e,+)
n,m (ω)N(+)

n,m(kr)

Ein(kr) = E0

∑
n,m

s(h,−)
n,m (ω)M(−)

n,m(kr) + s(e,−)
n,m (ω)N(−)

n,m(kr)

(1)

where E0 is the amplitude of the field, s
(i,−)
n,m (resp.

s
(i,+)
n,m ) are the coefficients of expansion of the incoming

(resp. outgoing) field on the incoming (resp. outgo-
ing) VPWs, with i = (e, h), e and h denoting electric
and magnetic modes, n and m denote the multipolar or-
der (see Supplemental Material). The S-matrix opera-
tor provides the outgoing field with respect to the in-
coming field: Eout(ω) = S(ω)Ein(ω). For spherically-
symmetric scatterers, it takes the form of a diagonal
matrix in a multipolar representation with coefficients

defined as S
(i)
n = s

(i,+)
n,m /s

(i,−)
n,m . The analytic properties

of the S
(i)
n coefficients are linked with the energy con-

servation and causality. In particular, for passive me-
dia, the norm of all the S-matrix elements are bounded

|S(e,h)
n | ≤ 1 (see Supplemental Material) and |S(e,h)

n | = 1
for lossless scatterers (where | | corresponds to the norm).
The causality principle also has important implications
on the analytic properties of the S-matrix coefficients
[24, 30, 36]. Causality notably implies that the coef-

ficients S
(e,h)
n (ω) have to be regular, i.e. do not admit

poles, in the upper part of the complex plane. Demon-
strations of this analytic property of the S-matrix coef-
ficients can be found in [24, 36]. Poles satisfy the con-

dition S
(e,h)
n

−1 (
ω

(e,h)
p,n,α

)
= 0 and can be identified as

the QNM eigenfrequencies of the scatterers. The poles

of the S-matrix, ω
(e,h)
p,n,α = ω

(e,h)′

p,n,α + iω
(e,h)′′

p,n,α , consequently

have a negative imaginary part: ω
(e,h)′′

p,n,α . Moreover, en-
ergy conservation and time-reversal symmetry yield for

a lossless scatterer: S
(e,h)
n (ω) = 1/S

(e,h)∗
n (ω∗) [24, 37].

As a consequence, S
(e,h)
n (ω) should also admit zeros in

the upper part of the complex plane that are mirror im-

ages of the poles of S
(e,h)
n (ω) with respect to the real

axis for a lossless scatterer [24]. These zeros z
(e,h)
n,α satisfy

the condition S
(e,h)
n (z

(e,h)
n,α ) = 0 and are associated with

modes verifying incoming boundary conditions [37, 38].
The reality of the field and the time reversal symmetry
impose that the mirror images of ωp,n,α and zn,α with

respect of the imaginary axis: −ω(e,h)∗
p,n,α and −z(e,h)∗

n,α are

also poles and zeros of S
(e,h)
n . The S-matrix coefficients

can be cast as a product between a holomorphic func-

tion S
(e,h)
R,n (ω) and an exponential phase factor e−2iωc R:

S
(e,h)
n (ω) = e−2iωc RS

(e,h)
R,n (ω). The prefactor exp(−2ikR)

expresses the causality requirement, and arises from the
ratio of outgoing and incoming zero-order Hankel func-
tions at the sphere surface. This term will be necessary
to guarantee the convergence of the sum form in Eq.(3)
when M → ∞. These considerations lead to the fol-
lowing infinite-product form of the S-matrix coefficients
[24, 30, 36, 37, 39](see also Supplemental Material):

S(e)
n (ω) = (−1)n+1e−2ikR

∞∏
α=−∞

ω − z(e)
n,α

ω − ω(e)
p,n,α

S(h)
n (ω) = (−1)ne−2ikR

∞∏
α=−∞

ω − z(h)
n,α

ω − ω(h)
p,n,α

(2)

where k = ω
c . This infinite product converges because

of the link between the positions of zeros and poles. The
poles and zeros with a positive index α have a positive
real part while those with a negative index are their
mirror images with respect to the real axis (a pole on
imaginary axis can be designated α = 0). If we expand

S
(e,h)
R,n (ω) into partial fractions, it is possible to transform

the product in Eq. (2) into an infinite sum [37, 39]. In
practice, one has to truncate this sum to a finite number
M of terms. This leads to the following expression of

S
(e,h)
n (ω) (see Supplemental Material):

S(i)
n (ω) ' e−2ikR

(
S(i)

nr,n +

M∑
α=−M

r
(i)
n,α

ω − ω(i)
p,n,α

)
(3)

where i = (e, h) and r
(i)
n,α is the residue of S

(i)
R,n

at the poles ω
(i)
p,n,α and the non-resonant term

S
(i)
nr,n = 1 +

∑M
α=−M

r(i)n,α

ω
(i)
p,n,α

.

So far, the use of the S-matrix formalism has proved
very useful for deducing the analytic properties of the
scattering matrix coefficients from general properties like
causality and energy conservation. However, the T-
matrix formalism will be preferred in the following as
it provides a more intuive description of the scattering
problem by linking the excitation field to the scattered
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field. The excitation field Eexc will be expanded on the

set of regular VPWs (N
(1)
n,m(kr),M

(1)
n,m(kr)) with the cor-

responding coefficients of expansion (e
(e)
n,m(ω),e

(h)
n,m(ω)),

while coefficients of expansion of the scattered field Escat

on the outgoing VPWs (N(+)(kr),M(+)(kr)) will be de-

noted (f
(e)
n,m(ω),f

(h)
n,m(ω)) (see Supplemental Material).

The T-matrix is also diagonal for a spherically symmet-
ric scatterer and its coefficients are defined as follows:
T

(e,h)
n (ω) = f

(e,h)
n,m (ω)/e

(e,h)
n,m (ω). A pole expansion of the

T-matrix coefficient can also be derived from Eq. (3) by
means of the following relation T = S−I

2 [40], where I is
the identity matrix, leading to:

T (i)
n (ω) ' A(i)

n (ω) +B(i)
n (ω)

M∑
α=−M

r
(i)
n,α

ω − ω(i)
p,n,α

(4)

where i = (e, h), A
(i)
n (ω) =

e−2ikRS(i)
nr,n−1

2 and

B
(i)
n (ω) = e−2ikR

2 . This pole expansion of the T-matrix
coefficients allows to determine the spectral response of
a scatterer over a broad range of frequencies from a dis-
crete set of QNMs. This is illustrated in Fig. 1a where
the accuracy of this pole expansion and the importance
of these non-resonant terms are assessed. We compare
in particular the dipolar electric partial scattering effi-

ciency: Q
(e)
1 = 6

z2 |T
(e)
1 |2 obtained by exact calculation

on one side and using Eq. (4) with M = 100 for a spheri-
cal scatterer of dielectric permittivity ε = 16 in air as it is
close to the permittivity of silicon in the visible spectrum
[29]. Poles were found by using their asympotic values
[30] along with pole finding methods (ε = 16 in the whole
complex ω-plane). A good agreement between the exact
calculations and Eq. (4) is found. Fig. 1a) also illus-
trates the importance of the non-resonant term in Eq.
(4) since a poor prediction of the electric dipolar partial
scattering efficiency is obtained when neglecting it even
when a large number of poles is taken into account. Sim-
ilar results can be obtained for other multipolar orders.
The link between the pole expansion of the T-matrix co-
efficients and the QNM expansion of the scattered field
will be clarified in the second part of this study.

Let us now extend this work to the internal field,
the field inside the resonator, by introducing the Ξ ma-
trix that relates the internal field to the incoming field.

Let (u
(e)
n,m(ω),u

(h)
n,m(ω)) be the coefficients of the inter-

nal field on the regular VPWs (N
(1)
n,m(ksr),M

(1)
n,m(ksr))

where ks =
√
εs
ω
c . The coefficients are then simply de-

fined as: Ξ
(i)
n (ω) =

u(i)
n,m(ω)

s
(i,−)
n,m (ω)

. Similarly, it is useful to

introduce the Ω matrix that relates the excitation field
to the internal field and whose coefficients are defined as:

Ω
(i)
n (ω) =

u(i)
n,m(ω)

e
(i)
n,m(ω)

, with Ω
(i)
n (ω) =

Ξ(i)
n (ω)

2 . A pole expan-

sion can also be derived for Ξ
(i)
n (ω) and Ω

(i)
n (ω). Energy

conservation does not require the coefficients Ξ
(i)
n (ω) to

be unitary. Consequently, and in contrast to S
(i)
n (ω),

Figure 1: (a) Dipolar electric partial scattering

efficiency Q
(e)
1 = 6

z2 |T
(e)
1 |2 and (b) averaged square

modulus of the internal electric field with |E0| = 1 for
an ε = 16 spherical scatterer in air: exact calculations
(red solid curve), Eq. (4) with M = 100 poles for (a)
and Eq. (5) with M = 10 poles for (b) (gray dashed
line), Eq. (4) with M = 100 for (a) while assuming

S
(e,h)
nr,n = 0 (blue dashed curve).

these coefficients do not possess zeros that are symmet-
ric to their poles with respect to the real axis. One can

show that Ξ
(i)
n (ω) and Ω

(i)
n (ω) admit the following pole

expansion (see Supplemental Material):

Ξ(i)
n (ω) =

∞∑
α=−∞

r
(i)
Ξ,n,α

ω − ω(i)
p,n,α

≡ 2 Ω(e,h)
n (ω) (5)

where i = e or h. Unlike the pole expansions of S
(e,h)
n (ω)

and T
(e,h)
n (ω), there is no non-resonant term in the pole

expansion of Ξ
(e,h)
n (ω) and Ω

(e,h)
n (ω). To study the ac-

curacy of this pole expansion, we calculate the aver-
aged square internal field of a spherical resonator ex-
cited by a plane wave [30] (see Supplemental Material):
〈|Eint|2〉
|E0|2 =

∑∞
n=1

〈|E(e)
i,n|

2〉
|E0|2 +

〈|E(h)
i,n|

2〉
|E0|2 . This expression is

plotted in Fig. 1b with εs = 16 while considering the

electric dipole contribution only, i.e.
〈|E(e)

i,1 |
2〉

|E0|2 .

Fig. 1b shows a good agreement between exact calcu-
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lations and the predictions obtained while using Eq. 5
with 20 poles (10 poles with a positive real part along
with their symmetric with respect to the imaginary axis).

CAUSALITY AND TIME DOMAIN

Let us now derive the expression of the outgoing and
scattered fields in terms of the QNM fields. We will in
particular show how the divergence of these QNM fields
can be dealt with. That is why we will here focus on
the far-field region where this divergence occurs. The
modes of spherically symmetric scatterers have to belong
to one type of VPWs. Let us denote the electric-type
(resp. magnetic-type) modes of the n − th multipolar

order E
(e)
n,m,α (r) (resp. E

(h)
n,m,α (r)). Outside the scat-

terer, i.e. for r > R: E
(e)
n,m,α (r) ∝ N

(+)
n,m

(
ω(e)

p,n,α

c r

)
and

E
(h)
n,m,α (r) ∝M

(+)
n,m

(
ω(h)

p,n,α

c r

)
. Moreover, in the far-field

region (i.e. when r → ∞), they possess the following

asymptotic expressions E
(e),FF
n,m,α (r) and E

(h),FF
n,m,α (r) (see

Supplementary Material):

E(e),FF
n,m,α (r) ∝ ei

ω
(e)
p,n,α
c rZn,m(θ, φ)

E(h),FF
n,m,α (r) ∝ ei

ω
(h)
p,n,α
c rXn,m(θ, φ) .

(6)

where Xn,m(θ, φ) and Zn,m(θ, φ) are vector spherical

harmonics (see Appendix A of [41]). Since ei
ω
(i)
p,n,α
c r =

ei
ω
(i)′
p,n,αr

c e−
ω
(i)′′
p,n,αr

c and as, due to causality, ω
(i)′′

p,n,α < 0,

E
(i)
n,m,α (r) is exponentially diverging as r →∞ (i = e, h).

One may believe that this divergence could hinder the
derivation of an expression of the scattered field in terms

of (E
(e)
n,m,α,E

(h)
n,m,α). However, this divergence can be un-

derstood by noting that, due to causality, considering a
scattered field at r → ∞ amounts to assuming that the
system was excited at t→ −∞ [22, 24].

In what follows, we will show that a divergence free ex-
pansion of the scattered and outgoing fields of 3D open
optical cavities in the time domain can be obtained. It
will require the use of a causal incoming and excitation
fields, i.e. fields with a sharp cut-off in the time domain
[24], together with rigorous calculations based on the the-
orem of residues. Causality can be better understood in

the framework of the S matrix while considering incom-
ing and outgoing waves in the far-field region. The in-
coming field defined in Eq. (1) takes the following asymp-
totic expression in the far-field region that is denoted
EFF

in :

EFF
in (r, ω) = E0

∞∑
n=1

n∑
m=−n

(
s(h,−)
n,m (ω)in+1 e

−ikr

kr
Xn,m(θ, φ)

−s(e,−)
n,m (ω)in+2 e

−ikr

kr
Zn,m(θ, φ)

) (7)

where s
(i,−)
n,m (ω) = s

(i,−)
n,m g(ω), s

(i,−)
n,m being the coefficient

of expansion of the incoming field on the VPWs and g(ω)
being the Fourier transform of the temporal dependence
of the incoming field g(t). Let us take the Fourier trans-
form of one of the terms in this sum:

E
(e),FF
in,n,m(r, t) = − i

n+2E0

2π

∫ +∞

−∞
s(e,−)
n,m (ω)

e−ikr

kr
×

Zn,m(θ, φ)e−iωtdω .

(8)

As shown in the Supplemental Material, we choose the
time dependence g(t) = H(t)e−iω0t for the incoming
field since it corresponds to an incoming causal wave-
front. This causal wavefront can be built up by choos-

ing the following frequency dependence for s
(e,−)
n,m (ω):

s
(e,−)
n,m (ω) = limη→0+ s

(e,−)
n,m

ω
ω0

ieiωts

ω−ω0+iη (with s
(e,−)
n,m a con-

stant) as it is the Fourier transform of g(t). In a sake of
generality, an additional phase factor eiωts is introduced
to yield an additional time delay ts. This definition of

s
(e,−)
n,m (ω) can be used in the expression of E

(e),FF
in,n,m(r, t)

(see Supplemental Material):

E
(e),FF
in,n,m(r0, t) = −H

(
t− ts +

r0

c

)
in+2E0s

(e,−)
n,m ×

e−ik0r0

k0r0
Zn,m(θ, φ)e−iω0(t−ts)

,(9)

where H is the Heaviside step distribution. The
time-dependent outgoing field in the far-field region
can be calculated with respect to the S-matrix co-

efficients of the incoming field: E
(e),FF
out,n,m(r, t) =

(−i)n+2E0

2π

∫ +∞
−∞ S

(e)
n (ω)s

(e,−)
n,m (ω) e

ikr

kr Zn,m(θ, φ)e−iωtdω.

The easiest way to calculate E
(e),FF
out,n,m(r, t) is to use

the convolution theorem associated with the theorem of
residues:

E
(e),FF
out,n,m (r, t) =

Cn,m(θ, φ)

k0r
g(t) ∗

(
S(e)

nr,nδ (t− τ)− iH (t− τ)

M∑
α=−M

r(e)
n,αe

−iω
(e)
p,n,α
c (t−τ)

)
(10)

with Cn,m(θ, φ) = (−i)n+2E0s
(e,−)
n,m Zn,m(θ, φ); g(t) = H(t)e−iω0t, and τ = ts + r

c −
2R
c . Two contributions
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can be identified in Eq. (10): (i) The non-resonant con-
tribution equal to the convolution between the tempo-
ral dependence of the incoming field g(t) and the Dirac
distribution δ

(
t− ts − r

c + 2R
c

)
. This contribution cor-

responds to a mere reflection of the incoming field by the
surface of the scatterer. Importantly, it keeps the same
temporal dependence as the incoming field which means
that it does not distort the incoming field that is simply
translated in time by a factor τ ; (ii) The resonant con-
tributions that correspond to the convolution between
g(t) and a sum of exponentially decreasing terms that
are characteristic of the response of each mode. This
resonant response strongly distorts the temporal depen-
dence of the incoming field which was expected since
it results from a resonant interaction between light and
eigen-modes of the cavity. These two contributions are
sketched in Fig.2.

Figure 2: Schematic representation of non-resonant and
resonant terms in Eq.10

The scattered field can finally be obtained by re-
moving the outgoing part of the excitation field from

E
(e),FF
out,n,m (r, t) in Eq. (10):

E
(e),FF
scat,n,m(r, t) =

Dn,m(θ, φ)

2k0r
g(t)∗(

S(e)
nr,nδ (t− τ)− δ

(
t− ts −

r

c

)
−iH (t− τ)

M∑
α=−M

r(e)
n,αe

−iω(e)
p,n,α(t−τ)

) (11)

with Dn,m(θ, φ) = (−i)n+2E0e
(e)
n,mZn,m(θ, φ).

The scattered field in the time domain results from
a convolution between the excitation field g(t) and the
function characterizing the response of the scatterer, de-

scribed by two terms. The first term, S
(e)
nr,nδ (t− τ) −

δ
(
t− ts − r

c

)
, is associated with the non-resonant part

S
(e)
nr,n of the S-matrix coefficients from which is sub-

stracted the outgoing part of the excitation field. This
evinces the fact that the non-resonant part does not in-
clude the excitation field. The second term includes
the far-field limit of the QNM fields E

(e),FF
n,m,α (r) ∝

ei
ω
(e)
p,n,α
c rZn,m(θ, φ). The Heaviside step function in front

of the sum prevents the field from diverging when r →∞.
The Heaviside distribution results from causality and
simply means that, given the initial conditions imposed
on the incoming field in Eq. (9), the outgoing field
has only been able to propagate up to a distance r =
c (t− ts)+2R. Due to the Heaviside distribution, the out-
going field is different from zero only when t−ts− rc+ 2R

c ≥
0. Therefore the term eω

(e)′′
p,n,α(t−ts− rc+ 2R

c ) < 1 since one
has both ω

(i)′′

p,n,α < 0 and t− ts − r
c + 2R

c ≥ 0. and conse-
quently this term does not diverge.

CONCLUSION

To conclude, in addition to the resonant contributions
due to the excitation of QNM of the scatterer by the ex-
citation field, a non-resonant contribution must be taken
into account in the expansion of the scattered field. This
result has been demonstrated by deriving pole expan-
sions of the S and T matrix coefficients of a dispersion-
less 3D scatterer. We benefited from the symmetry of the
spherical scatterers to provide the explicit expressions of
both resonant and non-resonant contributions of the scat-
tered field expansion. Then, the expansion of the scat-
tered field in the time domain was computed by means of
an inverse Fourier transform of the frequency-dependent
scattered field obtained from the pole expansion of the
T-matrix coefficients. Rigorous calculations based on the
theorem of residues together with causality principle lead
to QNM expansion terms that do not diverge far from the
scatterer. This result obtained in the framework of the
multipolar theory can, on physical grounds, be gener-
alized to arbitrarily shaped scatterers. Moreover, QNM
theory is applicable to an extremely broad range of phys-
ical studies far beyond optics.
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