A Mountaineering Strategy to Excited States: Highly-Accurate Reference Energies and Benchmarks Supporting Information

Pierre-François Loos,^{*,†} Anthony Scemama,[†] Aymeric Blondel,[‡] Yann Garniron,[†] Michel Caffarel,[†] and Denis Jacquemin^{*,‡}

 †Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, France
 ‡Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France

E-mail: loos@irsamc.ups-tlse.fr; Denis.Jacquemin@univ-nantes.fr

S1 Basis set and frozen-core effects

S1.1 Water, ammonia and hydrogen chloride

	ana-cc-nVDZ	$a_{31}a_{-2}a_{-$	d- <i>ana-cc</i> -nVTZ	00-0100	-nVOZ	d- <i>ana</i> -	20Vn-22	+-0300-0	20Vn2	ana-cc-nV57	d- <i>ana-cc</i> -nV57
	FC	FC FC	FC FC	FC FC	Full	FC FC	Full	FC	Full	Full	Full
					Δ	Vater					
${}^1B_1(n \to 3s)$	7.51	7.60	7.60	7.65	7.66	7.65	7.66	7.64	7.66	7.67	7.67
$^{1}A_{2}(n \rightarrow 3p)$	9.29	9.38	9.37	9.43	9.43	9.42	9.42	9.42	9.42	9.44	9.44
$^{1}A_{1}(n \rightarrow 3s)$	9.92	9.97	9.89	10.00	10.00	9.94	9.94	9.93	9.94	10.00	9.95
$^{3}B_{1}(n \rightarrow 3s)$	7.13	7.23	7.23	7.28	7.29	7.28	7.29	7.28	7.29	7.31	7.31
$^{3}A_{2}(n \rightarrow 3p)$	9.12	9.22	9.30	9.26	9.27	9.26	9.26	9.26	9.26	9.28	9.28
$^{3}A_{1}(n \rightarrow 3s)$	9.47	9.52	9.52	9.56	9.56	9.56	9.56	9.56	9.56	9.57	9.57
					Hydrog	gen sulfi	de				
$^{1}A_{2}(n \rightarrow 4p)$	6.29	6.19	6.17	6.16	6.15	6.15	6.14	6.15	6.14	6.12	6.11
$^{1}B_{1}(n \rightarrow 4s)$	6.10	6.24	6.24	6.29	6.28	6.29	6.27	6.29	6.27	6.29	6.29
$^{3}A_{2}(n \rightarrow 4p)$	5.91	5.82	5.81	5.80	5.79	5.80	5.79	5.80	5.79	5.76	5.75
$^{3}B_{1}(n \rightarrow 4s)$	5.75	5.88	5.88	5.93	5.92	5.93	5.92	5.93	5.92	5.94	5.94
					An	imonia					
$\frac{1}{A_2(n \to 3s)}$	6.46	6.57	6.57	6.61	6.61	6.61	6.61	6.61	6.61	6.63	6.63
$^{1}E(n \rightarrow 3p)$	8.06	8.15	8.12	8.18	8.18	8.16	8.16	8.16	8.16	8.18	8.17
$^{1}A_{1}(n \rightarrow 3p)$	9.66	9.32	8.56	9.11	9.11	8.61	8.61	8.60	8.60	8.91	8.62
$^1A_2(n \to 4s)$	10.40	9.95	9.12	9.77	9.77	9.16	9.17	9.15	9.16	9.61	9.18
$^{3}A_{2}(n \rightarrow 3s)$	6.18	6.29	6.29	6.33	6.34	6.33	6.34	6.33	6.34	6.35	6.35
					Hydrog	en chlor	ide				
$^{1}\Pi(CT)$	7.82	7.84	7.83	7.89	7.87	7.88	7.87	7.88	7.87	7.87	7.87

Table S1: CC3 vertical transition energies of water, hydrogen sulfide, ammonia, and hydrogen chloride using various atomic basis sets. FC stands for frozen core flores frozen core for sulfin and chlorine). All values are in aV

S1.2 Dinitrogen and carbon monoxide

of Table S1 for mo	re details.	0	100					0		
	aug-cc-pVDZ	aug-cc-pVTZ	aug-cc-	-pVQZ	d- <i>aug</i> -c	c-pVQZ	t-aug-c	c-pVQZ	aug-cc-pV5Z	d-aug-cc-pV5Z
	FC	FC	FC	Full	FC	Full	FC	Full	Full	Full
					Din	itrogen				
$^{1}\Pi_{g}(\mathrm{V};n \to \pi^{\star})$	9.44	9.34	9.33	9.32	9.33	9.32	9.33	9.32	9.32	9.32
$^{1}\Sigma_{u}^{-}(\mathrm{V};\pi ightarrow\pi^{\star})$	10.06	9.88	9.87	9.87	9.87	9.87	9.87	9.87	9.86	9.86
$^{1}\Delta_{u}(\mathrm{V};\pi ightarrow\pi^{\star})$	10.43	10.29	10.27	10.27	10.27	10.27	10.27	10.27	10.27	10.27
$^{1}\Sigma_{g}^{+}(\mathrm{R};n ightarrow\sigma^{\star})$	13.23	13.01	12.90	12.91	12.27	12.28	12.27	12.28	12.77	12.31
$^{1}\Pi_{u}^{i}(\mathrm{R})$	13.28	13.22	13.17	13.16	12.89	12.90	12.89	12.90	13.08	12.92
$^{1}\Sigma_{u}^{+}(\mathrm{R};n ightarrow\sigma^{\star})$	13.14	13.12	13.09	13.10	12.94	12.96	12.94	12.96	13.06	12.98
$^{1}\Pi_{u}(\mathrm{R})$	13.64	13.49	13.42	13.40	13.34	13.31	13.34	13.31	13.34	13.30
$^{3}\Sigma_{u}^{+}(\mathrm{V};\pi ightarrow\pi^{\star})$	7.67	7.68	7.71	7.70	7.71	7.70	7.71	7.70	7.71	7.71
$^{3}\Pi_{g}(\mathrm{V};n ightarrow\pi^{\star})$	8.07	8.04	8.04	8.03	8.04	8.03	8.04	8.03	8.04	8.04
$^{3}\Delta_{u}(\mathrm{V};\pi ightarrow\pi^{\star})$	8.97	8.87	8.87	8.86	8.87	8.86	8.87	8.86	8.87	8.87
${}^{3}\Sigma_{u}^{-}(\mathrm{V};\pi ightarrow\pi^{\star})$	9.78	9.68	9.68	9.67	9.68	9.67	9.68	9.67	9.67	9.67
					Carbon	ı monoxid	le			
$^{1}\Pi(\mathrm{V};n ightarrow\pi^{\star})$	8.57	8.49	8.47	8.46	8.47	8.45	8.47	8.45	8.45	8.45
$^{1}\Sigma^{-}(\mathrm{V};\pi ightarrow\pi^{\star})$	10.12	9.99	9.99	9.98	9.99	9.98	9.99	9.98	9.98	9.98
$^{1}\Delta(\mathrm{V};\pi ightarrow\pi^{\star})$	10.23	10.12	10.12	10.11	10.12	10.11	10.11	10.11	10.11	10.11
$^{1}\Sigma^{+}(\mathrm{R})$	10.92	10.94	10.90	10.91	10.72	10.72	10.72	10.72	10.85	10.74
$^{1}\Sigma^{+}(\mathrm{R})$	11.48	11.49	11.46	11.47	11.33	11.34	11.33	11.34	11.42	11.35
$^{1}\Pi(\mathrm{R})$	11.74	11.69	11.63	11.64	11.46	11.46	11.46	11.46	11.57	11.48
$^{3}\Pi(\mathrm{V};n ightarrow\pi^{\star})$	6.31	6.30	6.30	6.29	6.30	6.29	6.30	6.29	6.29	6.29
$^{3}\Sigma^{+}(\mathrm{V};\pi ightarrow\pi^{\star})$	8.45	8.45	8.48	8.47	8.48	8.47	8.48	8.47	8.48	8.48
$^{3}\Delta(\mathrm{V};\pi ightarrow\pi^{\star})$	9.37	9.30	9.31	9.30	9.31	9.30	9.31	9.30	9.30	9.30
$^{3}\Sigma^{-}(\mathrm{V};\pi ightarrow\pi^{\star})$	9.89	9.82	9.82	9.81	9.81	9.81	9.82	9.81	9.81	9.81
$^{3}\Sigma^{-}(R)$	10.39	10.45	10.44	10.45	10.33	10.33	10.33	10.34	10.42	10.35

Table S2: CC3 vertical transition energies of dinitrogen (top) and carbon monoxide (bottom) using various atomic basis sets. See caption

S1.3 Acetylene and ethylene

	aug-cc-pVDZ FC	aug-cc-pVTZ FC	aug-cc FC	≻pVQZ Full	d- aug - FC	cc-pVQZ Full	aug-cc-pV5Z Full	d- <i>aug</i> -cc-pV5Z Full
			Ace	tylene				
$^{1}\Sigma_{u}^{-}(\pi ightarrow \pi^{\star})$	7.21	7.09	7.09	7.09	7.09	7.09	7.09	7.09
$^{1}\Delta_{u}(\pi ightarrow \pi^{\star})$	7.51	7.42	7.41	7.42	7.41	7.42	7.42	7.42
$^{3}\Sigma_{u}^{+}(\pi ightarrow \pi^{\star})$	5.48	5.50	5.53	5.52	5.53	5.52	5.53	5.53
$^{3}\Delta_{u}(\pi ightarrow \pi^{\star})$	6.46	6.40	6.40	6.40	6.40	6.40	6.40	6.40
$^{3}\Sigma_{u}^{-}(\pi ightarrow \pi^{\star})$	7.13	7.07	7.07	7.07	7.07	7.07	7.08	7.08
$^{1}A_{u}[\mathrm{F}](\pi ightarrow \pi^{\star})$	3.70	3.64	3.63	3.63	3.63	3.63	3.63	3.63
$^{1}A_{2}[F](\pi \to \pi^{\star})$	3.92	3.84	3.83	3.84	3.84	3.84	3.84	3.84
			Etl	nylene				
$^{1}B_{3u}(\pi ightarrow 3s)$	7.29	7.35	7.38	7.39	7.37	7.38	7.39	7.39
$^{1}B_{1u}(\pi ightarrow \pi^{\star})$	7.94	7.91	7.90	7.91	7.90	7.93	7.91	7.90
$^{1}B_{1g}(\pi ightarrow 3p)$	7.97	8.03	8.04	8.05	8.03	8.04	8.05	8.05
$^{3}B_{1u}(\pi ightarrow \pi^{\star})$	4.53	4.53	4.54	4.53	4.54	4.53	4.53	4.53
$^{3}B_{3u}(\pi ightarrow 3s)$	7.17	7.24	7.27	7.28	7.26	7.28	7.29	7.29
$^{3}B_{1a}(\pi \rightarrow 3p)$	7.93	7.98	8.00	8.00	7.99	7.99	8.01	8.00

Table S3: CC3 vertical transition energies determined of acetylene (top) and ethylene (bottom) using various atomic basis sets. See caption of Table S1 for more details.

S1.4 Formaldehyde, methanimine and thioformaldehyde

Table S4: CC3 vertical transition energies determined of formaldehyde (top), methanimine (center), and thioformaldehyde (bottom) using various atomic basis sets. See caption of Table S1 for more details.

	aug-cc-pVDZ	aug-cc-pVTZ	ang-co	2-pVQZ	d- <i>aug</i> -	cc-pVQZ	aug-cc-pV5Z	d- aug - cc - $pV5Z$
	FC	FC	FC	Full	FC	Full	Full	Full
			Form	aldehyde				
$^1A_2(n \to \pi^\star)$	4.00	3.97	3.97	3.96	3.97	3.96	3.96	3.96
$^{1}B_{2}(n \rightarrow 3s)$	7.05	7.18	7.23	7.23	7.22	7.23	7.25	7.25
$^{1}B_{2}(n \rightarrow 3p)$	8.02	8.07	8.10	8.11	8.05	8.06	8.10	8.08
$^{1}A_{1}(n \rightarrow 3p)$	8.08	8.18	8.22	8.23	8.20	8.20	8.23	8.22
$^{1}A_{2}(n \rightarrow 3p)$	8.65	8.64	8.60	8.61	8.44	8.45	8.54	8.47
$^{1}B_{1}(\sigma ightarrow \pi^{\star})$	9.31	9.19	9.19	9.18	9.19	9.18	9.18	9.18
$^{1}A_{1}(\pi ightarrow \pi^{\star})$	9.59	9.48	9.46	9.46	9.30	9.31	9.43	9.31
$^{3}A_{2}(n \rightarrow \pi^{\star})$	3.58	3.57	3.58	3.57	3.58	3.57	3.57	3.57
$^{3}A_{1}(\pi ightarrow \pi^{\star})$	6.09	6.05	6.06	6.06	6.07	6.06	6.06	6.06
$^{3}B_{2}(n \rightarrow 3s)$	6.91	7.03	7.08	7.09	7.08	7.09	7.11	7.11
$^{3}B_{2}(n \rightarrow 3p)$	7.84	7.92	7.95	7.96	7.91	7.96	7.95	7.94
$^{3}A_{1}(n \rightarrow 3p)$	7.97	8.08	8.12	8.12	8.10	8.11	8.13	8.13
$^{3}B_{1}(n \rightarrow 3d)$	8.48	8.41	8.42	8.41	8.42	8.41	8.41	8.41
$^{1}A^{"}[\mathrm{F}](n ightarrow\pi^{\star})$	2.87	2.84	2.85	2.84	2.85	2.84	2.84	2.84
			Meth	animine				
$^{1}A^{"}(n \rightarrow \pi^{\star})$	5.26	5.20	5.20	5.18	5.20	5.18	5.18	
$^{3}A^{"}(n ightarrow\pi^{\star})$	4.63	4.61	4.62	4.60	4.62	4.60	4.60	
			L hiofor	maldehyd	le			
$1A_2(n \to \pi^*)$	2.27	2.23	2.23	2.21	2.23	2.21	2.21	
$^{1}B_{2}(n \rightarrow 4s)$	5.80	5.91	5.95	5.95	5.95	5.94	5.96	
$^{1}A_{1}(\pi ightarrow \pi^{\star})$	6.62	6.48	6.46	6.45	6.45	6.45	6.43	
$^{3}A_{2}(n ightarrow \pi^{\star})$	1.97	1.94	1.95	1.94	1.95	1.94	1.93	
$^{3}A_{1}(\pi ightarrow \pi^{*})$	3.43	3.38	3.40	3.39	3.40	3.39	3.39	
$^{3}B_{2}(n \rightarrow 4s)$	5.64	5.72	5.75	5.75	5.75	5.74	5.75	
$^{1}A_{2}[\mathrm{F}](n ightarrow\pi^{\star})$	2.00	1.97	1.98	1.96	1.97	1.96	1.95	

S1.5 Larger compounds

		aug-cc-pVDZ	aug-cc-pVTZ	aug-co	e-pVQZ	d- aug -cc- $pVQZ$
Molecule state		\mathbf{FC}	\mathbf{FC}	\mathbf{FC}	Full	Full
Acetaldehyde	${}^1A''(n \to \pi^\star)$	4.34	4.31	4.32	4.31	
	$^{3}A^{\prime\prime}(n \rightarrow \pi^{\star})$	3.96	3.95	3.97	3.96	
Cyclopropene	$^{1}B_{1}(\sigma \to \pi^{\star})$	6.72	6.68	6.68	6.68	
	$^{1}B_{2}(\pi \rightarrow \pi^{\star})$	6.77	6.73	6.73	6.73	
	$^{3}B_{2}(\pi \rightarrow \pi^{\star})$	4.34	4.34	4.35	4.34	
	$^{3}B_{1}(\sigma \to \pi^{\star})$	6.43	6.40	6.41	6.40	
Diazomethane	${}^1A_2(\pi \to \pi^\star)$	3.10	3.07	3.07	3.06	3.06
	$^{1}B_{1}(\pi \rightarrow 3s)$	5.32	5.45	5.49	5.51	5.50
	$^{1}A_{1}(\pi \rightarrow \pi^{\star})$	5.80	5.84	5.85	5.85	5.83
	$^{3}A_{2}(\pi \to \pi^{\star})$	2.84	2.83	2.82	2.82	2.83
	$^{3}A_{1}(\pi \to \pi^{\star})$	4.05	4.03	4.04	4.03	4.03
	$^{3}B_{1}(\pi \rightarrow 3s)$	5.17	5.31	5.35	5.37	5.36
	$^{3}A_{1}(\pi \rightarrow 3p)$	6.83	6.80	6.81	6.80	6.70
	${}^{1}A''[\mathbf{F}](\pi \to \pi^{\star})$	0.68	0.68	0.68	0.67	0.67
Formamide	${}^1A''(n \to \pi^\star)$	5.71	5.66	5.66	5.64	
	$^{1}A'(n \rightarrow 3s)$	6.65	6.74	6.78	6.79	
	${}^{1}A'(\pi ightarrow \pi^{\star})^{a}$	7.63	7.62	7.63	7.63	
	${}^{1}A'(n \rightarrow 3p)^{a}$	7.31	7.40	7.43	7.43	
	$^{3}A''(n \rightarrow \pi^{\star})$	5.42	5.38	5.39	5.37	
	$^{3}A'(\pi \rightarrow \pi^{\star})$	5.83	5.82	5.83	5.82	
Ketene	${}^1A_2(\pi \to \pi^\star)$	3.89	3.88	3.88	3.88	3.88
	$^{1}B_{1}(n \rightarrow 3s)$	5.83	5.96	6.00	6.01	6.01
	$^{1}A_{2}(\pi \rightarrow 3p)$	7.05	7.16	7.19	7.20	7.17
	$^{3}A_{2}(n \rightarrow \pi^{\star})$	3.79	3.78	3.79	3.78	3.78
	$^{3}A_{1}(\pi \to \pi^{\star})$	5.62	5.61	5.62	5.60	5.60
	$^{3}B_{1}(n \rightarrow 3s)$	5.63	5.76	5.81	5.82	5.82
	$^{3}A_{2}(\pi \rightarrow 3p)$	7.01	7.12	7.15	7.16	7.14
	${}^{1}A^{\prime\prime}[{\rm F}](\pi ightarrow \pi^{\star})$	1.00	1.00	1.00	1.00	1.00
Nitrosomethane	${}^{1}A''(n \to \pi^{\star})$	2.00	1.96	1.96	1.96	
	$^{1}A'(n,n \rightarrow \pi^{\star},\pi^{\star})$	5.75	5.76	5.74	5.73	
	$^{1}A'(n \rightarrow 3s/3p)$	6.20	6.31	6.35	6.36	
	$^{3}A''(n \to \pi^{\star})$	1.13	1.14	1.15	1.14	
	$^{3}A'(\pi \to \pi^{\star})$	5.54	5.51	5.52	5.52	
	${}^{1}A''[\mathbf{F}](n \to \pi^{\star})$	1.70	1.69	1.67	1.66	
Streptocyanine-C1	${}^1B_2(\pi \to \pi^\star)$	7.14	7.13	7.13	7.12	
	$^{3}B_{2}(\pi \rightarrow \pi^{\star})$	5.48	5.48	5.49	5.48	

Table S5: CC3 vertical transition energies of six compounds incorporating three non-hydrogen atoms. See caption of Table S1 for more details.

^aStrong state mixing.

S2 Geometries

Below are given the cartesian coordinates of the compounds investigated in this study. These are provided in atomic units (bohr) and they have been obtained at the CC3(full)/aug-cc-pVTZ level of theory.

S2.1 Acetaldehyde

С	-0.00234503	0.0000000	0.87125063
С	-1.75847785	0.0000000	-1.34973671
0	2.27947397	0.0000000	0.71968028
Η	-0.92904537	0.0000000	2.73929404
Η	-2.97955463	1.66046488	-1.25209463
Η	-2.97955463	-1.66046488	-1.25209463
Η	-0.70043433	0.0000000	-3.11066412

S2.2 Acetylene

Ground state

С	0.0000000	0.0000000	1.14048351
С	0.0000000	0.0000000	-1.14048351
Η	0.0000000	0.0000000	3.14009043
Н	0.0000000	0.0000000	-3.14009043

Trans excited state (${}^{1}A_{u}$ state in the C_{2h} point group)

С	1.29567779	0.0000000	-0.01846047
С	-1.29567779	0.0000000	0.01846047
Η	2.41938674	0.0000000	1.70881682
Η	-2.41938674	0.0000000	-1.70881682

Cis excited state (${}^{1}A_{2}$ state in the C_{2v} point group)

0.0000000	1.26834508	-0.11726146
0.0000000	-1.26834508	-0.11726146
0.0000000	2.67282325	1.39629264
0.0000000	-2.67282325	1.39629264
	0.0000000 0.0000000 0.0000000 0.0000000	0.00000001.268345080.0000000-1.268345080.000000002.672823250.00000000-2.67282325

S2.3 Ammonia

0.12804615	-0.0000000	0.0000000
-0.59303935	0.88580079	-1.53425197
-0.59303935	-1.77160157	-0.0000000
-0.59303935	0.88580079	1.53425197
	0.12804615 -0.59303935 -0.59303935 -0.59303935	0.12804615-0.0000000-0.593039350.88580079-0.59303935-1.77160157-0.593039350.88580079

S2.4 Carbon monoxide

С	0.0000000	0.0000000	-1.24942055
0	0.0000000	0.0000000	0.89266692

S2.5 Cyclopropene

С	0.0000000	0.0000000	-1.66820880
С	0.0000000	1.22523906	0.90681419
С	0.0000000	-1.22523906	0.90681419
Η	1.72255446	0.0000000	-2.77881149
Η	-1.72255446	0.0000000	-2.77881149
Н	0.0000000	2.97844519	1.92076771
Η	0.0000000	-2.97844519	1.92076771

S2.6 Diazomethane

Ground state

С	0.0000000	0.0000000	-2.30830005
N	0.0000000	0.0000000	0.14457890
N	0.0000000	0.0000000	2.29923216
Η	0.0000000	1.79875201	-3.24272317
Н	0.0000000	-1.79875201	-3.24272317

Excited state (¹A["] state in the C_s point group)

С	1.80206107	0.0000000	-1.03389466
N	-0.01743713	0.0000000	0.84742344
N	-2.25203764	0.0000000	0.54034983
Η	3.74280590	0.0000000	-0.44375913
Η	1.20115546	0.0000000	-2.98380249

S2.7 Dinitrogen

N	0.0000000	0.0000000	1.04008632
N	0.0000000	0.0000000	-1.04008632

S2.8 Ethylene

0.0000000	1.26026583	0.0000000
0.0000000	-1.26026583	0.0000000
0.0000000	2.32345976	1.74287672
0.0000000	-2.32345976	1.74287672
0.0000000	2.32345976	-1.74287672
0.0000000	-2.32345976	-1.74287672
	0.0000000 0.0000000 0.0000000 0.0000000 0.000000	0.00000001.260265830.0000000-1.260265830.00000002.323459760.0000000-2.323459760.00000002.323459760.0000000-2.32345976

S2.9 Formaldehyde

Ground state

С	0.0000000	0.0000000	-1.13947666
0	0.0000000	0.0000000	1.14402883
Η	0.0000000	1.76627623	-2.23398653
Н	0.0000000	-1.76627623	-2.23398653

Excited state (¹A["] state in the C_s point group)

С	-0.09942705	0.0000000	1.27071070
0	0.01987299	0.0000000	-1.23280536
Η	0.42778855	1.76729629	2.18470884
Η	0.42778855	-1.76729629	2.18470884

S2.10 Formamide

С	0.00183118	0.0000000	0.79313299
0	2.26817156	0.0000000	0.43918824
N	-1.76886033	0.0000000	-1.06219243
Η	-0.84133459	0.0000000	2.68872485
Н	-1.21254414	0.0000000	-2.87596907
Η	-3.61627502	0.0000000	-0.65031317

S2.11 Hydrogen chloride

Cl	0.0000000	0.0000000	-0.02489783
Н	0.0000000	0.0000000	2.38483140

S2.12 Hydrogen sulfide

S	0.0000000	0.0000000 0.0000000	
Н	0.0000000	1.81828105	1.25212288
Н	0.0000000	-1.81828105	1.25212288

S2.13 Ketene

Ground state

С	0.0000000	0.0000000	-2.44810151
С	0.0000000	0.0000000	0.03498545
0	0.0000000	0.0000000	2.23663914
Η	0.0000000	1.77432079	-3.43705988
Η	0.0000000	-1.77432079	-3.43705988

Excited state (¹A["] state in the C_s point group)

С	2.04306304	0.0000000	-0.93056721
С	0.00400918	0.0000000	0.83531393
0	-2.23710378	0.0000000	0.46984584
Η	1.63603518	0.0000000	-2.93687368
Η	3.96212800	0.0000000	-0.26649149

S2.14 Methanimine

С	0.10696646	0.0000000	1.11091130
N	0.10764012	0.0000000	-1.29677742
Η	-1.59140953	0.0000000	2.27296652
Η	1.90475160	0.0000000	2.09393982
Η	-1.69956184	0.0000000	-1.96217482

S2.15 Nitrosomethane

Ground state

С	-1.78426612	0.0000000	-1.07224050
N	-0.00541753	0.0000000	1.08060391
0	2.18814985	0.0000000	0.43452135
Η	-0.77343975	0.0000000	-2.86415606
Н	-2.97471478	1.66801808	-0.86424584
Н	-2.97471478	-1.66801808	-0.86424584

Excited state (¹A["] state in the C_s point group)

С	1.86306273	0.0000000	-1.06035094
Ν	0.00638693	0.0000000	1.02546010
0	-2.26923072	0.0000000	0.47699489
Н	3.72600129	0.0000000	-0.21094854
Η	1.58491147	1.68964774	-2.20977225
Η	1.58491147	-1.68964774	-2.20977225

S2.16 Streptocyanine-C1

0.0000000	0.0000000	0.80488833
0.00000000	2.19423463	-0.33580561
0.0000000	-2.19423463	-0.33580561
0.00000000	0.0000000	2.84436959
0.00000000	2.36978315	-2.23371976
0.00000000	-2.36978315	-2.23371976
0.00000000	3.79412648	0.69399206
0.00000000	-3.79412648	0.69399206
	0.0000000 0.0000000 0.0000000 0.0000000 0.000000	0.00000000.00000000.00000002.194234630.00000000-2.194234630.000000000.00000000.000000002.369783150.00000000-2.369783150.000000003.794126480.00000000-3.79412648

S2.17 Thioformaldehyde

Ground state

0.0000000	-2.08677304
0.0000000	0.97251194
1.73657773	-3.17013507
-1.73657773	-3.17013507
	0.0000000 0.0000000 1.73657773 -1.73657773

Excited state (${}^{1}A_{2}$ state in the C_{2v} point group)

С	0.0000000	0.0000000	-2.20256705
S	0.0000000	0.0000000	1.02717172
Η	0.0000000	1.76634191	-3.21909384
Η	0.0000000	-1.76634191	-3.21909384

S2.18 Water

0	0.0000000	0.0000000	-0.13209669
Η	0.0000000	1.43152878	0.97970006
Η	0.0000000	-1.43152878	0.97970006

S3 Benchmark

|--|

	(2) ADC (3)	4.29	3.89	6.72	7.06	5.24	6.06	6.72	2.85	3.08	6.63	8.21	9.38	10.00	6.31	8.24	3 9.73) 9.82	2 10.79	3 11.33	3 11.56	5.97	8.21	9.03	1 9.53	3 10.29	6.56	6.56	4.09	6.26	2.74	5.23	5.48	2.44	3.64	
	Q ADC	4.24	3.83	7.24	7.56	5.75	6.57	7.27	3.78	3.99	6.40	7.87	9.05	9.67	6.16	8.69	10.05	10.3(11.35	11.85	12.05	6.45	8.54	9.33	10.01	10.85	6.75	6.86	4.45	6.45	3.34	5.63	5.97	3.01	4.20	
	CCSDT			7.09^{a}	7.43^a	5.52^a	6.39^{a}	7.08^{c}	3.64^a	3.85^{a}	6.59	8.16	9.34^a	9.96^a	6.30	8.48	9.93	10.07	10.96	11.52	11.72	6.28	8.44	9.26		10.48										lext page
	CCSDT	4.29	3.94	7.09	7.43	5.51	6.39	7.08^{b}	3.66	3.86	6.57	8.14	9.31	9.94	6.29	8.49	9.94	10.08	10.99	11.54	11.74	6.30	8.42	9.26		10.50	6.68	6.75	4.35^{b}	6.40^{b}	3.07	5.48	5.86	2.82	4.02	med on r
(3).	CC3	4.31	3.95	7.09	7.42	5.50	6.40	7.07	3.64	3.84	6.57	8.15	9.32	9.95	6.29	8.49	9.99	10.12	10.94	11.49	11.69	6.30	8.45	9.30	9.82	10.45	6.68	6.73	4.34	6.40	3.07	5.45	5.84	2.83	4.03	Contir
or CCSDR	CCSDT-3	4.32		7.09	7.42				3.64	3.84	6.58	8.15	9.32	9.95		8.51	9.98	10.11	11.02	11.55	11.76						6.70	6.76			3.10	5.47	5.86			
CC(3) f	CC(3)	4.31		7.09	7.43				3.66	3.85	6.57	8.15	9.32	9.94		8.52	9.98	10.12	10.99	11.53	11.73						6.68	6.73			3.12	5.48	5.87			
D and (I CCSD	4.36	3.95	7.15	7.48	5.45	6.41	7.12	3.70	3.92	6.60	8.15	9.33	9.95	6.30	8.59	9.99	10.12	11.22	11.75	11.96	6.36	8.34	9.23	9.81	10.71	6.76	6.86	4.30	6.46	3.19	5.57	5.94	3.19	3.95	
M-CCS	STEON	4.25	3.95	7.08	7.42	5.20	6.13	6.84	3.65	3.85	6.55	8.14	9.33	9.98	6.31	8.55	9.90	10.07	11.14	11.75	12.00	6.32	8.37	9.21	9.83	10.73		6.94	4.36	6.57	3.20	5.57	5.75	2.85	3.91	
STEO	$^{\circ})$ CC2	4.41	3.98	7.26	7.59	5.76	6.60	7.29	3.94	4.11	6.39	7.85	9.05	9.65	6.14	8.64	10.30	10.60	11.11	11.63	11.83	6.42	8.72	9.56	10.27	10.60	6.73	6.78	4.46	6.44	3.37	5.53	6.00	3.08	4.25	
nds for) $CIS(D_{\circ}$	4.24	3.83	7.24	7.56	5.75	6.57	7.27	3.78	3.99	6.40	7.87	9.05	9.67	6.16	8.69	10.03	10.30	11.32	11.83	12.03	6.45	8.54	9.33	10.01	10.83	6.75	6.86	4.45	6.45	3.34	5.63	5.97	3.00	4.20	
M stai	CIS(D)	4.36	3.96	7.28	7.62	5.79	6.62	7.31	3.85	4.06	6.37	7.86	9.04	9.59	6.18	8.78	10.13	10.41	11.48	11.71	12.06	6.51	8.63	9.44	10.10	10.98	6.90	6.90	4.55	6.49	3.55	5.65	6.03	3.21	4.28	
STEO	TBE	4.31	3.97	7.10	7.44	5.53	6.40	7.08	3.64	3.85	6.59	8.16	9.33	9.96	6.31	8.49	9.92	10.06	10.95	11.52	11.72	6.28	8.45	9.27	9.80	10.47	6.68	6.79	4.38	6.45	3.14	5.54	5.90	2.79	4.05	
approximation.	State	$^{1}A''(\mathrm{V};n ightarrow\pi^{\star})$	$^{3}A''(\mathrm{V};n ightarrow\pi^{\star})$	$^{1}\Sigma_{u}^{-}(\mathrm{V};\pi ightarrow\pi^{\star})$	$^{1}\Delta_{u}(\mathrm{V};\pi ightarrow\pi^{\star})$	$^{3}\Sigma_{u}^{+}(\mathrm{V};\pi ightarrow\pi^{\star})$	$^{3}\Delta_{u}^{\infty}(\mathrm{V};\pi ightarrow\pi^{\star})$	$^{3}\Sigma_{u}^{-}(\mathrm{V};\pi ightarrow\pi^{\star})$	$^{1}A_{u}^{\widetilde{u}}[F](V;\pi ightarrow\pi^{\star})$	$^{1}A_{2}[F](V;\pi ightarrow\pi^{\star})$	$^{1}A_{2}(\mathrm{R};n ightarrow3s)$	$^{1}E(\mathrm{R};n ightarrow 3p)$	$^{1}A_{1}(\mathrm{R};n ightarrow3p)$	$^{1}A_{2}(\mathbf{R};n\rightarrow 4s)$	$^{3}A_{2}(\mathrm{R};n \rightarrow 3s)$	$^{1}\Pi(\mathrm{V};n ightarrow\pi^{\star})$	$^{1}\Sigma^{-}(V;\pi ightarrow \pi^{\star})$	$^{1}\Delta(\mathrm{V};\pi ightarrow\pi^{\star})$	$^{1}\Sigma^{+}(R)$	$^{1}\Sigma^{+}(R)$	$^{1}\Pi(R)$	$^{3}\Pi(\mathrm{V};n ightarrow\pi^{\star})$	$^{3}\Sigma^{+}(\mathrm{V};\pi ightarrow\pi^{\star})$	$^{3}\Delta(\mathrm{V};\pi ightarrow\pi^{\star})$	$^{3}\Sigma^{-}(\mathrm{V};\pi ightarrow\pi^{\star})$	$^{3}\Sigma^{+}(R)$	$^{1}B_{1}(\mathrm{V};\sigma ightarrow \pi^{\star})$	$^{1}B_{2}(\mathrm{V};\pi ightarrow\pi^{\star})$	$^{3}B_{2}(\mathrm{V};\pi ightarrow\pi^{*})$	${}^{3}B_{1}(\mathrm{V};\sigma ightarrow \pi^{\star})$	$^{1}A_{2}(\mathrm{V};\pi ightarrow\pi^{\star})$	$^{1}B_{1}(\mathrm{R};\pi ightarrow3s)$	$^{1}A_{1}(\mathrm{V};\pi ightarrow\pi^{\star})$	$^{3}A_{2}(\mathrm{V};\pi ightarrow\pi^{*})$	$^{3}A_{1}(\mathrm{V};\pi ightarrow\pi^{\star})$	
	Compound	Acetaldehyde	•	Acetylene							Ammonia					Carbon monoxyde											Cyclopropene				Diazomethane					

Compound	State	TBE	CIS(D)) $CIS(D_{\infty})$)CC2	STEON	I CCSD	CC(3)	CCSDT-3	CC3	CCSDT	CCSDTQ	ADC(2)	ADC(3)
	$^{3}B_{1}(\mathrm{R};\pi ightarrow3s)$	5.35	5.53	5.50	5.53	5.43	5.42			5.31	5.34		5.50	5.08
	$^{3}A_{1}(\mathrm{R};\pi ightarrow3p)$	6.82	7.37	7.09	7.04		6.85			6.80	6.80^b		7.09	6.36
	$^{1}A''[\mathrm{F}](\mathrm{V};\pi \to \pi^{\star})$	0.71	1.06	0.80	0.90	0.88	0.81	0.73	0.70	0.68	0.67		0.81	0.24
Dinitrogen	$^{1}\Pi_{a}(V;n ightarrow\pi^{\star})$	9.34	9.66	9.48	9.44	9.37	9.41	9.36	9.35	9.34	9.33	9.32	9.48	9.16
	$^{1}\Sigma_{u}^{-}(\mathrm{V};\pi ightarrow\pi^{\star})$	9.88	10.31	10.26	10.32	10.09	10.00	9.90	9.89	9.88	9.89	9.88	10.26	9.33
	$^{1}\Delta_{u}^{-}(\mathrm{V};\pi ightarrow\pi^{\star})$	10.29	10.85	10.79	10.86	10.56	10.44	10.33	10.31	10.29	10.30	10.29^{a}	10.79	9.74
	$^{1}\Sigma_{a}^{+}(\mathrm{R})$	12.98	13.67	12.99	12.83	13.13	13.15	13.04	13.06	13.01	13.00	12.97	12.99	13.01
	$^{1}\Pi_{u}^{J}(\mathrm{R})$	13.03	13.64	13.33	13.15	13.43	13.43	13.28	13.27	13.22	13.14	13.09	13.32	12.98
	$^{1}\Sigma_{n}^{+}(\mathrm{R})$	13.09	13.75	13.07	12.89	13.22	13.26	13.14	13.16	13.12	13.12	13.09	13.07	13.09
	$^{1}\Pi_{u}^{\widetilde{u}}(\mathrm{R})$	13.46	14.52	13.99	13.96	13.73	13.67	13.52		13.49	13.45	13.42	14.00	13.40
	$^{3}\Sigma_{u}^{+}(\mathrm{V};\pi ightarrow\pi^{\star})$	7.70	8.20	8.15	8.19	7.70	7.66			7.68	7.69	7.70	8.15	7.25
	$^{3}\Pi_{g}^{-}(\mathrm{V};n ightarrow\pi^{\star})$	8.01	8.33	8.20	8.19	8.16	8.09			8.04	8.03	8.02	8.20	7.77
	$^{3}\Delta_{u}^{2}(\mathrm{V};\pi ightarrow\pi^{\star})$	8.87	9.30	9.25	9.30	8.94	8.91			8.87	8.87	8.87	9.25	8.36
	$^{3}\Sigma_{u}^{-}(\mathrm{V};\pi ightarrow\pi^{\star})$	9.66	10.29	10.23	10.29	9.90	9.83			9.68	9.68	9.66	10.23	9.14
Ethylene	$^{1}B_{3u}(\mathrm{R};\pi ightarrow3s)$	7.39	7.35	7.34	7.29	7.42	7.42	7.35	7.36	7.35	7.37	7.38^a	7.34	7.17
	$^{1}B_{1u}(\mathrm{V};\pi ightarrow\pi^{\star})$	7.93	7.95	7.92	7.92		8.02	7.89	7.92	7.91	7.92	7.91^a	7.91	7.69
	$^{1}B_{1g}(\mathrm{R};\pi ightarrow 3p)$	8.08	8.01	7.99	7.95	8.10	8.08	8.02	8.03	8.03	8.04	8.05^{a}	7.99	7.84
	${}^{3}B_{1u}(\mathrm{V};\pi ightarrow\pi^{\star})$	4.54	4.62	4.59	4.59	4.36	4.46			4.53	4.53	4.53^a	4.59	4.28
	$^{3}B_{3u}(\mathrm{R};\pi ightarrow3s)$	7.23	7.26	7.23	7.19	7.31	7.29			7.24	7.25	7.25^a	7.23	7.05
	$^{3}B_{1g}(\mathrm{R};\pi ightarrow3p)$	7.98	7.97	7.95	7.91	8.08	8.03			7.98	7.99	7.99^a	7.95	7.80
Formaldehyde	$^{1}A_{2}(\mathrm{V};n ightarrow\pi^{\star})$	3.98	4.04	3.92	4.07	3.91	4.01	3.97	3.98	3.97	3.95	3.96^a	3.92	3.90
	$^{1}B_{2}(\mathrm{R};n ightarrow3s)$	7.23	6.64	6.50	6.56	7.19	7.23	7.18	7.21	7.18	7.16	7.21^a	6.50	7.62
	$^{1}B_{2}(\mathrm{R};n ightarrow3p)$	8.13	7.56	7.53	7.57	8.05	8.12	8.08	8.11	8.07	8.07	8.11^{a}	7.53	8.45
	$^{1}A_{1}(\mathrm{R};n ightarrow3p)$	8.23	8.16	7.47	7.52	8.18	8.21	8.17	8.21	8.18	8.16	8.21^{a}	7.47	8.61
	$^{1}A_{2}(\mathrm{R};n ightarrow 3p)$	8.67	8.04	7.99	8.04	8.68	8.65	8.63	8.66	8.64	8.61	8.66^a	7.99	9.02
	$^{1}B_{1}(\mathrm{V};\sigma ightarrow\pi^{\star})$	9.22	9.38	9.17	9.32	9.08	9.28	9.20	9.20	9.19	9.17	9.18^a	9.17	9.17
	$^{1}A_{1}(\mathrm{V};\pi ightarrow \pi^{\star})$	9.43	9.08	9.46	9.54		9.67	9.51	9.51	9.48	9.49	9.44^a	9.46	9.05
	$^{3}A_{2}(\mathrm{V};n ightarrow\pi^{\star})$	3.58	3.58	3.46	3.59	3.54	3.56			3.57	3.56	3.57^a	3.46	3.48
	$^{3}A_{1}(\mathrm{V};\pi ightarrow\pi^{\star})$	6.06	6.27	6.20	6.30	5.89	5.97			6.05	6.05	6.06^a	6.20	5.71
	${}^{3}B_{2}(\mathrm{R};n ightarrow3s)$	7.06	6.66	6.39	6.44	7.07	7.08			7.03	7.02	7.07^a	6.39	7.44
	${}^{3}B_{2}(\mathrm{R};n ightarrow3p)$	7.94	7.52	7.41	7.45	7.98	7.94			7.92	7.90	7.94^{a}	7.41	8.23
	$^{3}A_{1}(\mathrm{R};n ightarrow3p)$	8.10	7.68	7.40	7.44	8.15	8.09			8.08	8.06	8.11^{a}	7.40	8.46
	$^{3}B_{1}(\mathrm{R};n ightarrow 3d)$	8.42	8.57	8.39	8.52	8.36	8.43			8.41	8.40	8.41^{a}	8.39	8.32
	$^{1}A"[\mathrm{F}](\mathrm{V};n ightarrow\pi^{\star})$	2.80	2.90	2.71	2.97	2.81	2.93	2.86	2.86	2.84	2.82	2.84^{a}	2.71	2.77
Formamide	$^{1}A^{\prime\prime}\mathrm{V};(n ightarrow\pi^{\star})$	5.65	5.58	5.45	5.69	5.72	5.69	5.66	5.67	5.66	5.63^b		5.45	5.75
	$^{1}A'(\mathrm{R};n ightarrow3s)$	6.77	6.82^{d}	6.26^d	6.31^d	6.94	6.99	6.83	6.83	6.74	6.74		6.26^d	7.20
	$^{1}A^{\prime}(\mathrm{V};\pi ightarrow\pi^{\star})$	7.63	6.84^d	7.39^d	7.55^d		7.55^d	7.44	7.68^d	7.62^{d}	7.61^{b}		7.39^d	7.80^{d}
	$^{1}A'(\mathrm{R};n ightarrow 3p)$	7.38	6.89^d	6.83^d	6.89^d		7.78^{d}	7.65	7.46^d	7.40^{d}	7.38^{b}		6.83^d	8.12^d
	$^{3}A^{\prime\prime}(\mathrm{V};n ightarrow\pi^{\star})$	5.38	5.31	5.15	5.36	5.29	5.36			5.38	5.35^{b}		5.15	5.42
										Conti	nued on n	text page		

) $ADC(3)$	5.63	7.79	6.05	6.18	5.67	5.81	3.67	5.87	7.07	3.56	5.39	5.67	7.03	0.67	5.05	4.44	1.72	3.00	6.48	0.84	5.04	1.40	7.16	5.33	2.05	5.94	5.98	1.77	3.07	5.71	1.80	7.84	9.63	10.22	7.41	9.43	9.70
2 ADC(2)	5.88	7.97	6.37	6.34	5.91	5.96	4.11	6.03	7.18	3.92	5.67	5.85	7.15	1.19	5.29	4.61	1.88		5.86	1.03	5.75	1.55	7.00	5.55	2.24	5.80	6.57	1.86	3.45	5.62	1.92	7.18	8.84	9.52	6.86	8.72	9.15
CCSDT		7.84	6.18	6.24	5.81	5.88									5.20^a	4.61^{a}									2.22^a	5.91^{a}	6.38^{a}	1.93^{a}	3.39^{a}	5.73^a	1.96^{a}	7.62	9.40	9.98	7.24	9.23	9.53
CCSDT	5.80^b	7.83	6.18	6.24	5.81	5.88	3.87	5.99	7.20	3.78	5.60	5.80	7.17	1.00	5.19	4.61	1.95	5.29	6.30	1.13	5.51^b	1.66	7.11	5.47	2.21	5.89	6.47	1.93	3.38	5.71	1.98	7.65	9.42	9.98	7.28	9.25	9.54
CC3	5.82	7.84	6.19	6.24	5.82	5.88	3.88	5.96	7.16	3.78	5.61	5.76	7.12	1.00	5.20	4.61	1.96	5.76	6.31	1.14	5.51	1.69	7.13	5.48	2.23	5.91	6.48	1.94	3.38	5.72	1.97	7.65	9.43	10.00	7.28	9.26	9.56
CCSDT-3		7.85	6.23	6.28			3.90	5.99	7.20					1.03	5.22		1.96	6.02	6.38			1.67	7.16		2.24	5.94	6.51				1.98	7.61	9.38	9.97			
CC(3)	~	7.84	6.25	6.29			3.92	5.99	7.19					1.06	5.20		1.96		6.33			1.67	7.12		2.22	5.90	6.50				1.97	7.60	9.38	9.96			
M CCSD	5.77	7.91	6.25	6.29	5.85	5.92	3.97	6.09	7.29	3.83	5.55	5.89	7.25	1.13	5.28	4.63	1.98		6.43	1.11	5.43	1.68	7.24	5.45	2.29	5.97	6.63	1.95	3.28	5.76	2.05	7.60	9.36	9.96	7.20	9.20	9.49
STEOI	5.74	7.91	6.23	6.31	5.96	5.98	3.84	6.08	7.29	3.82	5.53	5.91	7.32	1.03	5.20	4.62	1.80		6.51	0.99	5.04	1.49	6.76	5.40	2.17	5.92	6.48	1.91	3.18	5.71	1.92	7.56	9.37	9.92	7.24	9.21	9.51
$\infty)$ CC2	5.99	7.96	6.35	6.30	5.91	5.94	4.17	5.94	7.09	3.98	5.72	5.77	7.06	1.26	5.32	4.65	1.98		5.84	1.12	5.74	1.68	7.20	5.60	2.34	5.82	6.71	1.94	3.48	5.64	2.09	7.23	8.89	9.58	6.91	8.77	9.20
$O(\operatorname{CIS}(D))$	5.88	7.97	6.37	6.34	5.91	5.96	4.11	6.03	7.18	3.92	5.67	5.85	7.15	1.20	5.29	4.61	1.88		5.86	1.03	5.75	1.55	7.00	5.55	2.24	5.80	6.57	1.86	3.45	5.62	1.92	7.18	8.84	9.52	6.86	8.72	9.15
CIS(D	6.07	7.98	6.38	6.33	5.94	5.99	4.18	6.09	7.25	4.00	5.79	5.94	7.24	1.28	5.38	4.71	2.03		5.89	1.18	5.89	1.73	6.99	5.61	2.30	5.87	6.65	1.94	3.49	5.78	2.00	7.17	8.92	9.52	6.92	8.91	9.30
TBE	5.81	7.84	6.18	6.24	5.81	5.88	3.86	6.01	7.18	3.77	5.61	5.79	7.12	1.00	5.23	4.65	1.96	4.72	6.40	1.16	5.60	1.67	7.13	5.47	2.22	5.96	6.38	1.94	3.43	5.72	1.95	7.62	9.41	9.99	7.25	9.24	9.54
State	$^{3}A'(\mathrm{V};\pi ightarrow\pi^{\star})$	$^{1}\Pi(CT)$	$^{1}A_{2}^{\circ}(\mathrm{R};n ightarrow4p)$	$^{1}B_{1}(\mathbf{R};n \rightarrow 4s)$	$^{3}A_{2}(\mathrm{R};n ightarrow 4p)$	$^{3}B_{1}(\mathrm{R};n ightarrow4s)$	$^{1}A_{2}(\mathrm{V};\pi ightarrow\pi^{\star})$	$^{1}B_{1}(\mathrm{R};n ightarrow3s)$	$^{1}A_{2}(\mathrm{R};\pi ightarrow3p)$	$^{3}A_{2}(\mathrm{V};n ightarrow\pi^{\star})$	${}^{3}A_{1}^{-}(\mathrm{V};\pi ightarrow\pi^{\star})$	$^{3}B_{1}^{-}(\mathrm{R};n ightarrow3s)$	$^{3}A_{2}^{-}(\mathrm{R};\pi ightarrow3p)$	$^{1}A"[\mathrm{F}](\mathrm{V};\pi ightarrow\pi^{\star})$	$^{1}A"(V;n ightarrow\pi^{\star})$	$^{3}A"(\mathrm{V};n ightarrow\pi^{\star})$	$^{1}A''(\mathrm{V};n ightarrow\pi^{\star})$	$^{1}A'(\mathrm{V};n,n ightarrow\pi^{\star},\pi^{\star})$	$^{1}A'(\mathrm{R};n ightarrow 3s/3p)$	$^{3}A''(\mathrm{V};n ightarrow\pi^{\star})$	$^{3}A'(\mathrm{V};\pi ightarrow\pi^{\star})$	$^{1}A''[\mathrm{F}](\mathrm{V};n ightarrow\pi^{\star})$	$^{1}B_{2}(\mathrm{V};\pi ightarrow\pi^{*})$	$^{3}B_{2}(\mathrm{V};\pi ightarrow\pi^{*})$	$^{1}A_{2}(\mathrm{V};n ightarrow\pi^{\star})$	$^{1}B_{2}(\mathrm{R};n \to 4s)$	$^{1}A_{1}(\mathrm{V};\pi ightarrow\pi^{\star})$	$^{3}A_{2}(\mathrm{V};n ightarrow\pi^{\star})$	$^{3}A_{1}(\mathrm{V};\pi ightarrow\pi^{*})$	${}^{3}B_{2}(\mathrm{R};n ightarrow4s)$	$^{1}A_{2}[\mathrm{F}](\mathrm{V};n ightarrow\pi^{\star})$	$^{1}B_{1}(\mathrm{R};n ightarrow3s)$	$^{1}A_{2}(\mathrm{R};n ightarrow3p)$	$^{1}A_{1}(\mathrm{R};n ightarrow3s)$	${}^{3}B_{1}(\mathrm{R};n ightarrow3s)$	$^{3}A_{2}(\mathrm{R};n ightarrow3p)$	$^{3}A_{1}(\mathrm{R};n\rightarrow3s)$
Compound		Hydrogen chloride	Hydrogen sulfide)			Ketene								Methanimine		Nitrosomethane						Streptocyanine		Thioformaldehyde							Water					

^aCCSDTQ/aug-cc-pVDZ value corrected with the difference between CCSDT/aug-cc-pVTZ and CCSDT/aug-cc-pVDZ values; ^bCCSDT/aug-cc-pVDZ

value corrected with the difference between CC3/aug-cc-pVTZ and CC3/aug-cc-pVDZ values; $^{c}CCSDTQ/aug$ -cc-pVDZ value corrected with the difference between CC3/aug-cc-pVDZ values; $^{d}Strong$ state mixing.

S4 Additional statistical analyses

Twne		CIS(D)	CIS(D)	i CCC	STEOM	USDD	GG(3)	CCSDT-3	CC3	TUSDD	CCSDTO	ADC(9)	ADC(3)
Singlet	MSE	0.08	-0.02	0.01	0.03	0.08	0.01	0.01	-0.01	-0.01	-0.01	-0.02	-0.14
)	MAE	0.28	0.22	0.23	0.09	0.08	0.04	0.03	0.03	0.03	0.01	0.22	0.22
Triplet	MSE	0.12	0.01	0.06	-0.02	0.01			-0.01	-0.01	0.00	0.01	-0.18
	MAE	0.22	0.19	0.20	0.11	0.07			0.02	0.02	0.01	0.19	0.25
Valence	MSE	0.18	0.09	0.17	-0.03	0.04	0.01	0.01	0.00	-0.01	-0.01	0.09	-0.27
	MAE	0.20	0.15	0.18	0.10	0.08	0.03	0.03	0.02	0.02	0.01	0.15	0.28
$\operatorname{Rydberg}$	MSE	-0.01	-0.14	-0.17	0.06	0.06	0.00	0.01	-0.01	-0.01	0.00	-0.14	0.01
	MAE	0.32	0.29	0.26	0.09	0.08	0.05	0.04	0.03	0.03	0.01	0.29	0.17
$n ightarrow \pi^{\star}$	MSE	0.11	-0.01	0.08	-0.02	0.04	0.01	0.02	0.00	-0.01	0.00	-0.01	-0.16
	MAE	0.12	0.12	0.09	0.07	0.06	0.02	0.02	0.01	0.02	0.02	0.12	0.18
$\pi \to \pi^{\star}$	MSE	0.23	0.16	0.24	-0.05	0.03	0.01	0.01	0.00	-0.01	0.00	0.16	-0.35
	MAE	0.26	0.17	0.24	0.13	0.09	0.04	0.03	0.03	0.02	0.01	0.17	0.36
$\% T_1 > 95\%$	MSE	0.12	0.03	0.07	-0.01	0.02	-0.01	-0.01	-0.01	-0.01	0.00	0.03	-0.22
	MAE	0.22	0.19	0.21	0.10	0.07	0.03	0.02	0.02	0.02	0.01	0.19	0.28
$\% T_1 > 90\%$	MSE	0.08	-0.02	0.02	0.00	0.04	0.00	0.01	-0.01	-0.01	-0.01	-0.02	-0.15
	MAE	0.24	0.21	0.22	0.09	0.07	0.03	0.03	0.02	0.02	0.01	0.21	0.24
$\% T_1 < 90\%$	MSE	0.30	0.11	0.20	0.05	0.16	0.06	0.06	0.03	0.01	0.01	0.11	-0.15
	MAE	0.33	0.17	0.20	0.17	0.16	0.06	0.06	0.04	0.03	0.03	0.17	0.16

Table S7: Mean signed and absolute errors for different subsets of electronic transitions. $\%T_1$ indicates the single excitation character as given by CC3, see Table 6 in the body of the paper. All values are in eV.

S5 Basis set extrapolation with 6-31+G(d)

Below we list the CC3/6-31+G(d), CCSDT/6-31+G(d), and CCSDTQ/6-31+G(d) data for the states for which CCSDT/aug-cc-pVTZ, and CCSDTQ/aug-cc-pVTZ results were obtained.

		CC3	CCSDT	CCSDTQ
Acetaldehyde	$^{1}A''(\mathrm{V}; n \to \pi^{\star})$	4.39	4.37	
-	${}^{3}A''(\mathrm{V};n\to\pi^{\star})$	4.04	4.02	
Acetylene	${}^{1}\Sigma_{u}^{-}(\mathrm{V};\pi\to\pi^{\star})$	7.40	7.40	7.40
	$^{1}\Delta_{u}(\mathrm{V};\pi\to\pi^{\star})$	7.72	7.73	7.73
	${}^{3}\Sigma_{u}^{+}(\mathrm{V};\pi\to\pi^{\star})$	5.49	5.51	
	$^{3}\Delta_{u}(\mathrm{V};\pi\to\pi^{\star})$	6.57	6.57	6.57
	${}^{3}\Sigma_{u}^{-}(\mathrm{V};\pi\to\pi^{\star})$	7.28	7.28	7.28
	${}^{1}A_{u}[\mathrm{F}](\mathrm{V};\pi\to\pi^{\star})$	3.83	3.85	3.84
	${}^{1}A_{2}[\mathrm{F}](\mathrm{V};\pi\to\pi^{\star})$	4.05	4.07	4.06
Ammonia	${}^{1}A_{2}(\mathbf{R}; n \to 3s)$	6.96	6.95	6.96
	${}^{1}E(\mathbf{R};n\to 3p)$	8.95	8.95	8.96
	$^{1}A_{1}(\mathrm{R}; n \rightarrow 3p)$	10.19	10.19	10.20
	${}^{1}A_{2}(\mathbf{R}; n \to 4s)$	11.65	11.64	11.64
	${}^{3}A_{2}(\mathbf{R};n\to 3s)$	6.49	6.49	6.50
Carbon monoxyde	${}^{1}\Pi(\mathrm{V};n\to\pi^{\star})$	8.66	8.67	8.66
	$^{1}\Sigma^{-}(\mathrm{V};\pi\to\pi^{\star})$	10.19	10.13	10.12
	$^{1}\Delta(\mathrm{V};\pi\to\pi^{\star})$	10.28	10.23	10.22
	$^{1}\Sigma^{+}(R)$	10.89	10.92	10.90
	$^{1}\Sigma^{+}(R)$	11.53	11.57	11.56
	$^{1}\Pi(R)$	11.83	11.86	11.85
	${}^{3}\Pi(\mathrm{V};n \to \pi^{\star})$	6.35	6.34	6.32
	${}^{3}\Sigma^{+}(\mathrm{V};\pi\to\pi^{\star})$	8.49	8.47	8.48
	$^{3}\Delta(\mathrm{V};\pi\to\pi^{\star})$	9.44	9.39	9.40
	$^{3}\Sigma^{-}(\mathrm{V};\pi \to \pi^{\star})$	9.94		
	$^{3}\Sigma^{+}(R)$	10.33	10.36	10.35
Cyclopropene	${}^{1}B_{1}(\mathrm{V};\sigma\to\pi^{\star})$	6.86	6.85	
	${}^{1}B_{2}(\mathrm{V};\pi\to\pi^{\star})$	6.98	6.99	
	${}^{3}B_{2}(\mathrm{V};\pi\to\pi^{\star})$	4.37	4.38	
	${}^{3}B_{1}(\mathrm{V};\sigma\to\pi^{\star})$	6.61	6.60	
Diazomethane	${}^{1}A_{2}(\mathrm{V};\pi\to\pi^{\star})$	3.05	3.05	
	${}^{1}B_{1}(\mathbf{R};\pi\to 3s)$	5.37	5.40	
	$^{1}A_{1}(\mathrm{V};\pi\to\pi^{\star})$	5.83	5.86	
	$^{3}A_{2}(\mathrm{V};\pi\to\pi^{\star})$	2.80	2.80	
	$^{3}A_{1}(\mathrm{V};\pi\to\pi^{\star})$	4.02	4.01	
	$^{3}B_{1}(\mathrm{R};\pi\rightarrow3s)$	5.20	5.23	
	$^{3}A_{1}(\mathrm{R};\pi\rightarrow3p)$	6.86	6.86	

Table S8: Additional CC results obtained with the compact 6-31+G(d) atomic basis set. All values are in eV.

		CC3	CCSDT	CCSDTQ
	$^{1}A''[\mathrm{F}](\mathrm{V};\pi\to\pi^{\star})$	0.62	0.60	
Dinitrogen	${}^{1}\Pi_{g}(\mathcal{V};n\to\pi^{\star})$	9.46	9.44	9.43
	${}^{1}\Sigma_{u}^{-}(\mathrm{V};\pi\to\pi^{\star})$	10.10	10.10	10.10
	$^{1}\Delta_{u}(\mathrm{V};\pi\to\pi^{\star})$	10.47	10.48	10.47
	${}^{1}\Sigma_{q}^{+}(\mathbf{R})$	13.29	13.26	13.23
	${}^{1}\Pi_{u}^{\prime}(\mathbf{R})$	13.44	13.32	13.28
	${}^{1}\Sigma_{u}^{+}(\mathbf{R})$	13.51	13.51	13.48
	${}^{1}\Pi_{u}(\mathbf{R})$	13.85	13.82	13.79
	${}^{3}\Sigma_{u}^{+}(\mathrm{V};\pi\to\pi^{\star})$	7.68	7.68	7.70
	${}^{3}\Pi_{g}(\mathcal{V};n\to\pi^{\star})$	8.10	8.09	8.08
	$^{3}\Delta_{u}(\mathrm{V};\pi\to\pi^{\star})$	8.99	8.99	8.99
	${}^{3}\Sigma_{u}^{-}(\mathrm{V};\pi\to\pi^{\star})$	9.80	9.78	9.77
Ethylene	${}^{1}B_{3u}(\mathbf{R};\pi\to 3s)$	7.72	7.73	7.72
	${}^{1}B_{1u}(\mathrm{V};\pi\to\pi^{\star})$	8.14	8.15	8.14
	$^{1}B_{1g}(\mathbf{R};\pi\to 3p)$	8.29	8.30	8.29
	$^{3}B_{1u}(\mathrm{V};\pi\to\pi^{\star})$	4.52	4.53	4.53
	$^{3}B_{3u}(\mathrm{R};\pi\to3s)$	7.49	7.51	7.51
	$^{3}B_{1g}(\mathrm{R};\pi\to 3p)$	8.20	8.22	8.22
Formaldehyde	$^{1}A_{2}(\mathrm{V};n\to\pi^{\star})$	4.03	4.01	4.02
	$^{1}B_{2}(\mathrm{R}; n \to 3s)$	7.24	7.23	7.28
	${}^{1}B_{2}(\mathbf{R}; n \to 3p)$	8.02	8.01	8.04
	$^{1}A_{1}(\mathrm{R}; n \to 3p)$	8.30	8.29	8.34
	$^{1}A_{2}(\mathrm{R}; n \to 3p)$	8.70	8.68	8.72
	$^{1}B_{1}(\mathrm{V};\sigma\to\pi^{\star})$	9.37	9.34	9.35
	$^{1}A_{1}(\mathrm{V};\pi\to\pi^{\star})$	9.83	9.83	9.78
	$^{3}A_{2}(\mathrm{V}; n \to \pi^{\star})$	3.66	3.65	3.66
	$^{3}A_{1}(\mathrm{V};\pi\to\pi^{\star})$	6.09	6.09	6.10
	${}^{3}B_{2}(\mathbf{R}; n \to 3s)$	7.07	7.06	7.11
	${}^{3}B_{2}(\mathbf{R}; n \to 3p)$	7.84	7.82	7.86
	${}^{3}A_{1}(\mathbf{R}; n \to 3p)$	8.17	8.15	8.20
	${}^{3}B_{1}(\mathbf{R}; n \to 3d)$	8.54	8.52	8.53
	$^{1}A^{"}[\mathrm{F}](\mathrm{V};n\to\pi^{\star})$	2.88	2.85	2.86
Formamide	$^{1}A''V; (n \rightarrow \pi^{\star})$	5.83	5.79	
	${}^{3}A''(\mathrm{V}; n \to \pi^{\star})$	5.55	5.52	
	$^{3}A'(\mathrm{V};\pi\to\pi^{\star})$	5.92	5.90	
Hydrogen chloride	$^{1}\Pi(CT)$	7.84	7.84	7.84
Hydrogen sulfide	$^{1}A_{2}(\mathrm{R}; n \to 4p)$	6.47	6.46	6.46
	$^{1}B_{1}(\mathbf{R}; n \to 4s)$	6.05	6.05	6.05
	${}^{3}A_{2}(\mathbf{R}; n \to 4p)$	6.01	6.00	6.00
	$^{3}B_{1}(\mathbf{R}; n \to 4s)$	5.66	5.66	5.66
Ketene	$^{1}A_{2}(V; \pi \rightarrow \pi^{\star})$	3.86	3.85	
	$^{1}B_{1}(\mathbf{R}; n \to 3s)$	5.91	5.94	
	$^{+}A_{2}(\mathrm{R};\pi\to 3p)$	7.34	7.38	
	$^{3}A_{2}(V; n \to \pi^{\star})$	3.78	3.78	
	$^{3}A_{1}(V; \pi \rightarrow \pi^{\star})$	5.63	5.62	
	$^{\circ}B_1(\mathbf{R}; n \to 3s)$	5.68	5.70	

		CC3	CCSDT	CCSDTQ
	${}^{3}A_{2}(\mathrm{R};\pi\to 3p)$	7.27	7.31	•
	${}^{1}A"[F](V; \pi \to \pi^{\star})$	0.90	0.90	
Methanimine	${}^{1}A"(\mathbf{V}; n \to \pi^{\star})$	5.34	5.32	5.33
	${}^{3}A"(\mathrm{V};n\to\pi^{\star})$	4.72	4.71	4.72
Nitrosomethane	${}^{1}A''(\mathbf{V}; n \to \pi^{\star})$	2.02	2.00	
	${}^{1}A'(\mathbf{R}; n \rightarrow 3s/3p)$	6.49	6.48	
	$^{3}A''(\mathrm{V}; n \to \pi^{\star})$	1.14	1.13	
	${}^{3}A'(\mathrm{V};\pi\to\pi^{\star})$	5.55	5.55	
	${}^{1}A''[\mathrm{F}](\mathrm{V};n\to\pi^{\star})$	1.72	1.70	
Streptocyanine	${}^{1}B_{2}(\mathrm{V};\pi\to\pi^{\star})$	7.28	7.25	
	${}^{3}B_{2}(\mathrm{V};\pi\to\pi^{\star})$	5.53	5.52	
Thioformaldehyde	$^{1}A_{2}(\mathrm{V};n\rightarrow\pi^{\star})$	2.26	2.24	2.25
	$^{1}B_{2}(\mathbf{R}; n \to 4s)$	5.88	5.88	5.89
	$^{1}A_{1}(\mathrm{V};\pi\to\pi^{\star})$	6.82	6.79	6.71
	$^{3}A_{2}(\mathrm{V};n\to\pi^{\star})$	1.98	1.97	1.97
	$^{3}A_{1}(\mathrm{V};\pi\to\pi^{\star})$	3.38	3.39	3.39
	$^{3}B_{2}(\mathrm{R}; n \to 4s)$	5.67	5.67	5.69
	$^{1}A_{2}[\mathrm{F}](\mathrm{V};n\to\pi^{\star})$	1.99	1.96	1.96
Water	$^{1}B_{1}(\mathbf{R}; n \to 3s)$	8.32	8.32	8.33
	$^{1}A_{2}(\mathrm{R}; n \rightarrow 3p)$	10.74	10.73	10.74
	$^{1}A_{1}(\mathrm{R}; n \to 3s)$	10.84	10.83	10.84
	${}^{3}B_{1}(\mathbf{R}; n \to 3s)$	7.71	7.70	7.71
	$^{3}A_{2}(\mathrm{R}; n \rightarrow 3p)$	10.34	10.33	10.34
	${}^{3}A_{1}(\mathbf{R}; n \to 3s)$	10.16	10.15	10.17

S6 sCI and exFCI results

Table S9: Vertical excitations (in eV) for various states of the studied molecules computed with a extrapolated sCI method (exFCI). The number of determinants N_{det} of the largest sCI wave functions and their corresponding excitation energies are also reported.

Molecule	Transition	A	VDZ	A	VTZ	A	VQZ
		$N_{\rm det}$	sCI exFCI	$N_{\rm det}$	sCI exFC	I $N_{\rm det}$	sCI exFC
Acetaldehyde	${}^{1}A^{''}(n \to \pi^{\star})$	5803234	4.37 4.34	1357186	4.29 4.31		
	${}^{3}A^{''}(n \to \pi^{\star})$	4151858	4.07 3.98	1722025	3.51 4.01		
Acetylene	$^{1}\Sigma_{u}^{-}(\pi \to \pi^{\star})$	4162848	7.21 7.20	3113480	7.09 7.10		
	$^{1}\Delta_{u}(\pi \to \pi^{\star})$		7.52 7.51		7.43 7.44		
	$^{3}\Sigma_{u}^{+}(\pi \to \pi^{\star})$	8494075	5.50 5.50	3282690	5.52 5.53		
	$^{3}\Delta_{u}(\pi \rightarrow \pi^{\star})$	4403434	6.46 6.46	2190673	6.40 6.40		
	$^{3}\Sigma_{u}^{-}(\pi \to \pi^{\star})$		7.14 7.14		7.08 7.08		
	$^{1}A_{u}(\pi \to \pi^{\star})$ [F]	5943690	3.71 3.71	3 982 131	3.64 3.64		
	$\frac{{}^{1}A_{2}(\pi \to \pi^{\star}) [\mathrm{F}]}{14}$	5 788 835	3.93 3.93	3967196	3.85 3.85		
Ammonia	$^{1}A_{2}(n \rightarrow 3s)$	2063356	6.48 6.48	6450032	6.59 6.59	3608385	6.64 6.64
	$^{1}E(n \rightarrow 3p)$		8.08 8.08		8.17 8.16		8.21 8.22
	$^{1}A_{1}(n \rightarrow 3p)$		9.08 9.08		9.34 9.33		9.14 9.14
	$A_2(n \to 4s)$ $3A(n \to 2s)$	2 220 425	$10.41 \ 10.41$ 6 10 6 10	6 171 974	$9.90 \ 9.90$ 6 91 6 91	2600 202	694 695
Carbon monovido	$\frac{A_1(n \to 3s)}{\Pi(n \to \pi^*)}$	2 309 433	856 857	6 8 3 2 1 1 8	8.46 8.40	<u>2 096 262</u> <u>5 800 330</u>	$\frac{0.34}{8.41}$ $\frac{0.35}{8.50}$
Carbon monoxide	$^{1}\Sigma(\pi \to \pi^{\star})$	010 040	10.07 10.05	0 0 0 0 2 1 1 0	0 03 0 02	0 00 0 000	0.41 0.50
	$^{1}\Lambda(\pi \to \pi^{\star})$		10.18 10.16		10.06.10.06		10.04 10.11
	${}^{1}\Sigma^{+}(\mathbf{R})$		10.93 10.94		$10.95 \ 10.95$		10.89 10.96
	$^{1}\Sigma^{+}(R)$		$11.52 \ 11.52$		$11.51 \ 11.52$		11.46 11.53
	$^{1}\Pi(\mathbf{R})$		11.76 11.76		11.70 11.72		11.64 11.70
	$^{3}\Pi(n \rightarrow \pi^{\star})$	1238764	6.28 6.29	2221825	6.28 6.28	4054250	6.28 6.29
	$^{3}\Sigma^{+}(\pi \rightarrow \pi^{\star})$	2117552	8.46 8.46	7820835	8.46 8.45	2302698	8.49 8.49
	$^{3}\Delta(\pi \to \pi^{\star})$		9.34 9.33		9.28 9.27		9.29 9.29
	$^{3}\Sigma^{-}(\pi \rightarrow \pi^{\star})$		9.84 9.83		9.78 9.80		9.77 9.78
	$^{3}\Sigma^{+}(R)$		$10.42 \ 10.41$		10.49 10.47		
Cyclopropene	$^{1}B_{1}(\sigma \rightarrow \pi^{\star})$	5496693	$6.75 6.7^a$	4594382	$6.61 6.6^a$		
	$^{1}B_{2}(\pi \rightarrow \pi^{\star})$	5 404 007	6.82 6.82	1 500 550	$6.69 6.7^a$		
	${}^{3}B_{2}(\pi \rightarrow \pi^{*})$	5 484 297	4.39 4.35	1762752	4.38 4.38		
Diagometheme	$\frac{^{\circ}B_1(\sigma \to \pi^*)}{14(\pi \to \pi^*)}$	<u>4457019</u> <u>8272270</u>	0.44 0.43	2 (03 402 4 266 276	$0.44 \ 0.43$		
Diazomethane	$A_2(\pi \to \pi)$ ${}^1B(\pi \to 2a)$	0313210	$5.08 ext{ } 5.09 ext{ } 5.28 ext{ } 5.25 ext{ }$	4 300 270	2.99 5.14 5.51 \ 5.54		
	$D_1(\pi \to 3S)$ $^1A_1(\pi \to \pi^*)$		$5.38 ext{ } 5.35 ext{ } 5.35 ext{ } 5.79 ext{ } 1000 ext{ } 100$		$5.31 \ 5.04$ $5.83 \ 5.90$		
	$^{3}A_{2}(\pi \rightarrow \pi^{*})$	3407311	2.81 2.81	1887903	$2.58 2.8^a$		
	$^{3}A_{1}(\pi \rightarrow \pi^{\star})$	0 101 011	4.05 4.03	1001000	3.81 4.05		
	${}^{3}B_{1}(\pi \rightarrow 3s)$		5.24 5.18		5.22 5.35		
	${}^{3}A_{1}(\pi \rightarrow 3p)$		6.85 6.81		6.65 6.82		
	${}^{1}A^{''}(\pi \to \pi^{\star})$ [F]	10654552	$2\ 0.65\ 0.65$	2325176	0.60 0.71		
Dinitrogen	$1_{\Pi_a}(n \to 3s)$	2775773	9.41 9.41	2 545 210	9.32 9.34	1728899	9.28 9.34
0	${}^{1}\Sigma_{u}^{g}(\pi \to \pi^{\star})$		$10.05 \ 10.05$		9.89 9.88		9.82 9.92
	${}^{1}\Delta_{u}^{\overset{\sim}{-}}(\pi \to \pi^{\star})$		$10.43 \ 10.43$		10.29 10.29		$10.24 \ 10.31$
	${}^{1}\Sigma_{q}^{\overline{+}}(\mathbf{R})$		$13.19\ 13.18$		$12.98 \ 12.98$		$12.85\ 12.89$
	${}^{1}\Pi_{u}^{}(\mathrm{R})$		$13.12\ 13.12$		$13.12 \ 13.03$		$13.12 \ 13.1^a$
	${}^{1}\Sigma_{u}^{+}(\mathbf{R})$		$13.11 \ 13.11$		$13.10\ 13.09$		$13.20 \ 13.2^a$
	${}^{1}\Pi_{u}(\mathbf{R})$		$13.56 \ 13.56$		$13.39 \ 13.46$		$13.23 \ 13.7^a$
	${}^{3}\Sigma_{u}^{+}(\pi \to \pi^{\star})$	8 139 401	7.70 7.70	3302015	7.70 7.70	4881350	7.73 7.74
	$\operatorname{SH}_g(n \to \pi^\star)$	2705349	8.05 8.05	6 298 290	8.01 8.01	2 530 197	8.04 8.03

Molecule	Transition	AV	/DZ		AV	/TZ		A	VQZ	
		$N_{\rm det}$	sCI	exFCI	$N_{\rm det}$	sCI	exFCI	$N_{\rm det}$	sCI	exFCI
	$^{3}\Delta_{u}(\pi \to \pi^{\star})$		8.96	8.96		8.87	8.87		8.88	8.88
	${}^{3}\Sigma_{u}^{-}(\pi \to \pi^{\star})$		9.75	9.75		9.66	9.66		9.67	9.66
Ethylene	$^{-1}B_{3u}(\pi \rightarrow 3s)$	4 158 361	7.32	7.31	11 069 830	7.38	7.39			
	${}^{1}B_{1u}(\pi \to \pi^{\star})$		7.94	7.93		7.90	7.93			
	${}^{1}B_{1}^{(u)}(\pi \rightarrow 3p)$		8.01	8.00		8.06	8.08			
	${}^{3}B_{1}^{1g}(\pi \rightarrow \pi^{\star})$	3767429	4.55	4.55	1 709 107	4.55	4.54			
	${}^{3}B_{2} (\pi \rightarrow 3s)$	8479296	7.23	7.16	4055685	7.55	a			
	${}^{3}B_{1}(\pi \rightarrow 3n)$	0 0 0	8.00	7.93		8.32	a			
Formaldehvde	$\frac{-1g(n \to \sigma_F)}{1A_n(n \to \pi^*)}$	2 043 030	4.00	3.99	6773751	3.97	3.98			
i olimaraony ao	${}^{1}B_{2}(n \rightarrow 3s)$	- 0 10 000	7.15	7.11	0110101	7.24	7.23			
	${}^{1}B_{2}(n \rightarrow 3n)$		8.09	8.04		8.14	8.13			
	$^{1}A_{1}(n \rightarrow 3p)$		8.15	8.12		8.24	8.23			
	${}^{1}A_{2}(n \rightarrow 3p)$		8.74	8.65		8.68	8.67			
	${}^{1}B_{1}(\sigma \rightarrow \pi^{\star})$		9.32	9.29		9.20	9.22			
	$^{1}A_{1}(\pi \rightarrow \pi^{\star})$		9.60	9.53		9.47	9.43			
	${}^{3}A_{2}(n \rightarrow \pi^{\star})$	10774489	3.58	3.58	5289475	3.58	3.58			
	${}^{3}A_{1}(\pi \rightarrow \pi^{\star})$	4 192 682	6.10	6.10	6637572	6.06	6.06			
	${}^{3}B_{2}(n \rightarrow 3s)$	1102002	6.96	6.95	0 001 01-	7.09	7.06			
	${}^{3}B_{2}(n \rightarrow 3n)$		7.88	7.87		7.98	7.94			
	$^{3}A_{1}(n \rightarrow 3n)$		8.02	8.01		8.13	8.10			
	${}^{3}B_{1}(n \rightarrow 3d)$		8.48	8.48		8.43	8.42			
	${}^{1}A^{\prime\prime}(n \rightarrow \pi^{\star})$ [F]	6 989 511	2.86	2.86	5289475	2.83	2.80			
Formamida	$\frac{1}{1} \frac{1}{n} \frac{n}{n} \frac{\pi^*}{\pi^*}$	6 202 257	5.74	5 70	5 240 511	5.65	5 74			
Formannue	$\begin{array}{c} A & (n \to n) \\ 1 A' & (n \to 2) \end{array}$	0 392 337	0.14	0.10	0249011	5.05	5.7			
	$^{1}A(n \rightarrow 3s)$		0.70	0.07						
	$A(n \to \pi^{*})$		7.73	7.64		7.64	7.63			
	$^{3}A(n \to \pi^{\star})$	3958975	5.44	5.42	1791542	5.37	5.4^{a}			
	$^{3}A(\pi \to \pi^{\star})$	3452920	5.90	5.82	1791542	5.65	5.7^{a}			
Hydrogen chloride	$^{1}\Pi(CT)$	1049127	7.82	7.82	3546637	7.84	7.84	6 944 492	7.88	7.88
Hydrogen sulfide	$^{1}A_{2}(n \rightarrow 4p)$	2005501	6.29	6.29	5354721	6.18	6.18			
	$^{1}B_{1}(n \rightarrow 4s)$		6.10	6.10		6.24	6.24			
	$^{3}A_{2}(n \rightarrow 4p)$	4293448	5.90	5.90	5696382	5.81	5.81			
	$^{3}B_{1}(n \rightarrow 4s)$	2401216	5.75	5.75	3647563	5.89	5.89			
Ketene	$^{1}A_{2}(\pi \rightarrow \pi^{\star})$	6698206	3.87	3.84	4648503	3.83	3.86			
	$^{1}B_{1}(n \rightarrow 3s)$		5.96	5.88		6.04	6.01			
	$^{1}A_{2}(\pi \rightarrow 3p)$		7.12	7.08		7.22	7.18			
	$^{3}A_{2}(n \rightarrow \pi^{\star})$	3293583	3.81	3.79	1850086	3.59	3.77			
	$^{3}A_{1}(\pi \rightarrow \pi^{\star})$		5.67	5.64		5.44	5.61			
	$^{3}B_{1}(n \rightarrow 3s)$		5.75	5.68		5.70	5.79			
	${}^{3}A_{2}(\pi \rightarrow 3p)$		7.11	7.07		7.02	7.12			
	${}^{1}A^{''}(\pi \to \pi^{\star}) \ [F]$	4289184	0.96	0.96	2798757	0.94	1.00			
Methanimine	${}^{1}A^{\prime\prime}(n \to \pi^{\star})$	2526499	5.25	5.25	5096976	5.20	5.23			
	${}^{3}A^{''}(n \rightarrow \pi^{\star})$	1861136	4.63	4.63	3954983	4.56	4.65			
Nitrosomethane	$1A''(n \rightarrow \pi^{\star})$	3446151	2.00	1 99	4 270 321	1.89	$2 0^a$			
1 1101 05 01110 0110110	$\frac{1}{4} A'(n n \rightarrow \pi^* \pi^*)$	0 110 101	1.82	1.81	5 285 063	1 72	4.72			
	$\frac{1}{1} \binom{n}{n} \frac{n}{2} \binom{2n}{2}$		6.24	6.90	0 200 000	6.94	н. 12 С Ла			
	$3 \Lambda''(m \rightarrow 33/3p)$	1070674	0.04	0.29	1 607 995	1.00	0.4			
	$^{\circ}A(n \rightarrow \pi^{\circ})$	4079674	1.14	1.15	1 007 335	1.09	1.10			
	$^{\circ}A(\pi \to \pi^{\star})$	3 225 628	5.61	5.56	1 792 165	5.60	5.60			
	$^{1}A (n \rightarrow \pi^{\star}) [\mathrm{F}]$	4 509 295	1.70	1.70	2718837	1.62	1.7^{a}			
Streptocyanine-C1	$^{1}B_{2}(\pi \rightarrow \pi^{\star})$	8 620 009	7.17	7.14	5468384	7.07	7.1^{a}			
	$^{\circ}B_2(\pi \to \pi^{\star})$	6970063	5.52	5.47	2436373	5.51	5.52			
Thioformaldehyde	$^{1}A_{2}(n \rightarrow \pi^{\star})$	2672140	2.26	2.26	6036063	2.21	2.22			
	$^{1}B_{2}(n \rightarrow 4s)$		5.85	5.83		5.97	5.96			

Molecule	Transition	A	VDZ		A	VTZ		A	VQZ	
		$N_{ m det}$	sCI	exFCI	$N_{\rm det}$	sCI	exFCI	$N_{\rm det}$	sCI	exFCI
	$^{1}A_{1}(\pi \rightarrow \pi^{\star})$		6.54	6.5^{a}		6.40	6.4^{a}			
	$^{3}A_{2}(n \rightarrow \pi^{\star})$	1841330	1.96	1.97	4611888	1.93	1.94			
	$^{3}A_{1}(\pi \rightarrow \pi^{\star})$	8450984	3.43	3.45	4169151	3.40	3.43			
	$^{3}B_{2}(n \rightarrow 4s)$		5.68	5.66		5.66	5.6^{a}			
	$^{1}A_{2}(n \rightarrow \pi^{\star})$ [F]	245005	1.98	1.98	6108383	1.94	1.95			
Water	$^{1}B_{1}(n \rightarrow 3s)$	5869449	7.53	7.53	5589200	7.63	7.62	1139302	7.69	7.68
	$^{1}A_{2}(n \rightarrow 3p)$		9.32	9.32		9.41	9.41		9.46	9.46
	$^{1}A_{1}(n \rightarrow 3s)$		9.94	9.94		9.99	9.99		10.04	10.02
	$^{3}B_{1}(n \rightarrow 3s)$	1985139	7.14	7.14	5950423	7.25	7.25	2342816	7.30	7.30
	$^{3}A_{2}(n \rightarrow 3p)$	4566873	9.14	9.14	3760373	9.24	9.24	525499	9.28	9.28
	$^{3}A_{1}(n \rightarrow 3s)$		9.49	9.49		9.54	9.54		9.58	9.58

 $^a\mathrm{CI}$ convergence too slow to provide reliable estimate.

Figure S1: sCI energy $E_{\rm sCI}$ (in a.u.) as a function of the second-order perturbative correction $E_{\rm PT2}$ (in a.u.) for various singlet states of water (H₂O), formaldehyde (CH₂O), diazomethane (CH₂N₂) and streptocyanine-C1 (H₂N-CH-NH₂⁺). The extrapolation to the FCI limit corresponds to $E_{\rm PT2} = 0$. Several extrapolations are reported: i) two-point linear fit (solid slides), ii) three-point linear fit (dashed lines), and iii) three-point quadratic fit (dotted lines). The raw data are reported in Table S10.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	asis c-pVQZ c-pVTZ	$\begin{array}{c} \text{State} \\ \hline 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$\begin{array}{c} \label{eq:2-point linear} \\ -76.363\ 312 \\ -76.081\ 152 \\ -76.081\ 152 \\ -76.015\ 753 \\ -75.994\ 943 \\ -114.196\ 920 \\ -114.047\ 737 \\ -114.044\ 721 \\ -114.024\ 737 \\ -114.004\ 606 \\ -113.996\ 698 \\ \end{array}$	$\begin{array}{r} \mbox{Total energies} (a) \\ \hline 3-point linear \\ -76.362 851 \\ -76.080 586 \\ -76.015 753 \\ -75.994 943 \\ -114.342 705 \\ -114.342 705 \\ -114.07 213 \\ -114.07 213 \\ -114.039 965 \\ -114.039 965 \\ -114.004 206 \\ -113.995 874 \\ -113.995 874 \\ \end{array}$	$\begin{array}{c} \textbf{1.u.} \\ \hline \textbf{3-point quadratic} \\ \hline -76.364088 \\ \hline -76.364088 \\ \hline -76.082105 \\ \hline -76.082105 \\ \hline -75.995900 \\ \hline -114.342924 \\ \hline -114.342924 \\ \hline -114.078352 \\ \hline -114.078352 \\ \hline -114.078352 \\ \hline -114.025248 \\ \hline -114.004960 \\ \hline -113.998357 \\ \hline \end{array}$	$\begin{array}{c c} & E_{\rm X} \\ \hline & -2 \text{-point linear} \\ & - \\ & - \\ & - \\ & - \\ & - \\ & - \\ & 3.98 \\ & 3.98 \\ & - \\ & 3.98 \\ & - \\ & 3.98 \\ & 8.13 \\ & 8.13 \\ & 8.13 \\ & 8.13 \\ & 8.13 \\ & 8.13 \\ & 8.13 \\ & 8.13 \\ & 8.13 \\ & 8.13 \\ & 8.13 \\ & 8.67 \\ & 9.22 \\ & 9.22 \\ & 9.43 \end{array}$	citation energie <u>3-point linear</u> 7.68 9.46 10.01 3.98 8.14 8.14 8.14 8.24 8.24 8.24 9.21 9.21 9.44	s (eV) <u>3-point quadratic</u> 7.67 9.46 10.02 10.02 3.96 7.20 8.38 8.13 8.64 9.20 9.20 9.38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$^{1}A_{1}$	-148.505218	-148.503165	-148.511381			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 1	4_{2}	-148.389825	-148.387654	-148.396857	3.14	3.14	3.12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	'~	-148.301533	-148.299769	-148.307723	5.54	5.53	5.54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		-148.288384	-148.285649	-148.297847	5.90	5.92	5.81
-149.876489 -149.875113 -149.884967 7.22 7.24 7.08	^{1}A		-150.141796	-150.141081	-150.145289			
	1B_2		-149.876489	-149.875113	-149.884967	7.22	7.24	7.08

Table S10: Total energies (in a.u.) and excitation energies (in eV) of several singlet states of water, formaldehyde, diazomethane and streptocyanine-C1 for various extrapolations: i) two-point linear fit, ii) three-point linear fit, and iii) three-point quadratic