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A Mountaineering Strategy to Excited States: Highly-Accurate Reference Energies and Benchmarks

Striving to define very accurate vertical transition energies, we perform both highlevel coupled cluster (CC) calculations (up to CCSDTQP) and selected configuration interaction (sCI) calculations (up to several millions of determinants) for 18 small compounds (water, hydrogen sulfide, ammonia, hydrogen chloride, dinitrogen, carbon monoxide, acetylene, ethylene, formaldehyde, methanimine, thioformaldehyde, acetaldehyde, cyclopropene, diazomethane, formamide, ketene, nitrosomethane and the smallest streptocyanine). By systematically increasing the order of the CC expansion, the number of determinants in the CI expansion as well as the size of the one-electron basis set, we have been able to reach near full CI (FCI) quality transition energies.

These calculations are carried out on CC3/aug-cc-pVTZ geometries, using a series of increasingly large atomic basis sets systematically including diffuse functions. In this way, we define a list of 110 transition energies for states of various characters (valence, 1

Introduction

Defining an effective method reliably providing accurate excited-state energies and properties remains a major challenge in theoretical chemistry. For practical applications, the most popular approaches are the complete active space self-consistent field (CASSCF) [START_REF] Hegarty | Application of Unitary Group Methods to Configuration Interaction Calculations[END_REF][START_REF] Taylor | Analytical MCSCF Energy Gradients: Treatment of Symmetry and CASSCF Applications to Propadienone[END_REF] and the time-dependent density functional theory (TD-DFT) [START_REF] Casida | Progress in Time-Dependent Density-Functional Theory[END_REF][START_REF] Ullrich | Time-Dependent Density-Functional Theory: Concepts and Applications; Oxford Graduate Texts[END_REF] methods for systems dominated by static and dynamic electron correlation effects, respectively. When these schemes are not sufficiently accurate, one often uses methods including second-order perturbative corrections.

For CASSCF, a natural choice is CASPT2, [START_REF] Andersson | Second-Order Perturbation Theory With a CASSCF Reference Function[END_REF] but this method rapidly becomes impractical for large compounds. If a single-reference method is sufficient, the most popular second-order approaches are probably the second-order algebraic diagrammatic construction, ADC(2), [START_REF] Dreuw | The Algebraic Diagrammatic Construction Scheme for the Polarization Propagator for the Calculation of Excited States[END_REF] and the second-order coupled cluster, CC2, methods, [START_REF] Christiansen | The Second-Order Approximate Coupled Cluster Singles and Doubles Model CC2[END_REF][START_REF] Hättig | CC2 Excitation Energy Calculations on Large Molecules Using the Resolution of the Identity Approximation[END_REF] that both offer an attractive O(N 5 ) scaling (where N is the number of basis functions) allowing applications up to systems comprising ca. 100 atoms. Compared to TD-DFT, [START_REF] Laurent | Dye Chemistry with Time-Dependent Density Functional Theory[END_REF] these approaches have the indisputable advantage of being free of the choice of a specific exchange-correlation functional. Using ADC (2) or CC2 generally provides more systematic errors with respect to reference values than TD-DFT, although the improvements in terms of error magnitude are often rather moderate (at least for valence singlet states). [START_REF] Winter | Benchmarks for 0-0 Transitions of Aromatic Organic Molecules: DFT/B3LYP, ADC(2)[END_REF][START_REF] Jacquemin | 0-0 Energies Using Hybrid Schemes: Benchmarks of TD-DFT, CIS(D), ADC(2), CC2 and BSE/GW formalisms for 80 Real-Life Compounds[END_REF][START_REF] Oruganti | Assessment of a Composite CC2/DFT Procedure for Calculating 0-0 Excitation Energies of Organic Molecules[END_REF] Importantly, both ADC(n) and CCn offer a systematic pathway for improvement via an increase of the expansion order n. For example, using CCSD, CCSDT, CCSDTQ, etc., allows to check the quality of the obtained estimates. However, in practice, one can only contemplate such systematic approach and the ultimate choice of a method for excited-state calculations is often guided by previous benchmarks. These benchmark studies are either performed using experimental or theoretical reference values. While the former approach allows in principle to rely on an almost infinite pool of reference data, most measurements are performed in solution and provide absorption bands that can be compared to theory only with the use of extra approximations for modeling environmental and vibronic effects. In addition, the most accurate experimental data are obtained for 0-0 energies, whereas obtaining trustworthy experimental estimates of vertical transition energies is an extremely difficult task, generally requiring to back-transform spectroscopic vibronic data through a numerical process, [START_REF] Oddershede | Comparison Between Equation of Motion and Polarization Propagator Calculations[END_REF] an approach that is typically only applicable to diatomics. Consequently, it is easier to use first-principle reference values as benchmarks, as they allow to assess theoretical methods more consistently (vertical values, same geometries, no environmental effects, etc). This is well illustrated by the recent contribution of Schwabe and Goerigk, [START_REF] Schwabe | Time-Dependent Double-Hybrid Density Functionals with Spin-Component and Spin-Opposite Scaling[END_REF] who decided to compute third-order response CC (CC3) [START_REF] Christiansen | Response Functions in the CC3 Iterative Triple Excitation Model[END_REF][START_REF] Koch | The CC3 Model: An Iterative Coupled Cluster Approach Including Connected Triples[END_REF] reference values instead of using the previously collected experimental values for the test set originally proposed by Gordon's group. [START_REF] Leang | Benchmarking the Performance of Time-Dependent Density Functional Methods[END_REF] Whilst many benchmark sets have been proposed for excited states, [START_REF] Winter | Benchmarks for 0-0 Transitions of Aromatic Organic Molecules: DFT/B3LYP, ADC(2)[END_REF][START_REF] Jacquemin | 0-0 Energies Using Hybrid Schemes: Benchmarks of TD-DFT, CIS(D), ADC(2), CC2 and BSE/GW formalisms for 80 Real-Life Compounds[END_REF][START_REF] Leang | Benchmarking the Performance of Time-Dependent Density Functional Methods[END_REF][START_REF] Parac | Comparison of Multireference Möller-Plesset Theory and Time-Dependent Methods for the Calculation of Vertical Excitation Energies of Molecules[END_REF][START_REF] Dierksen | The Vibronic Structure of Electronic Absorption Spectra of Large Molecules: A Time-Dependent Density Functional Study on the Influence of Exact Hartree-Fock Exchange[END_REF][START_REF] Grimme | Calculation of 0-0 Excitation Energies of Organic Molecules by CIS(D) Quantum Chemical Methods[END_REF][START_REF] Rhee | Scaled Second-Order Perturbation Corrections to Configuration Interaction Singles:? Efficient and Reliable Excitation Energy Methods[END_REF][START_REF] Peach | Excitation Energies in Density Functional Theory: an Evaluation and a Diagnostic Test[END_REF][START_REF] Jacquemin | TD-DFT Performance for the Visible Absorption Spectra of Organic Dyes: Conventional Versus Long-Range Hybrids[END_REF][START_REF] Jacquemin | Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules[END_REF][START_REF] Goerigk | Computation of Accurate Excitation Energies for Large Organic Molecules with Double-Hybrid Density Functionals[END_REF][START_REF] Caricato | Electronic Transition Energies: A Study of the Performance of a Large Range of Single Reference Density Functional and Wave Function Methods on Valence and Rydberg States Compared to Experiment[END_REF][START_REF] Jacquemin | A TD-DFT Assessment of Functionals for Optical 0-0 Transitions in Solvated Dyes[END_REF][START_REF] Isegawa | Performance of Recent and High-Performance Approximate Density Functionals for Time-Dependent Density Functional Theory Calculations of Valence and Rydberg Electronic Transition Energies[END_REF][START_REF] Hoyer | Multiconfiguration Pair-Density Functional Theory Is as Accurate as CASPT2 for Electronic Excitation[END_REF] the most praised database of theoretical excited state energies is undoubtedly the one set up by Thiel and his co-workers. In 2008, they proposed a large set of theoretical best estimates (TBE) for 28 small and medium CNOH organic compounds. [START_REF] Schreiber | Benchmarks for Electronically Excited States: CASPT2, CC2, CCSD and CC3[END_REF] More precisely, using some literature values but mainly their own CC3/TZVP and CASPT2/TZVP results computed on MP2/6-31G(d) geometries, these authors determined 104 singlet and 63 triplet reference excitation energies. The same group soon proposed aug-cc-pVTZ TBE for the same set of compounds, [START_REF] Silva-Junior | Basis Set Effects on Coupled Cluster Benchmarks of Electronically Excited States: CC3, CCSDR(3) and CC2[END_REF][START_REF] Silva-Junior | Benchmarks of Electronically Excited States: Basis Set Effecs Benchmarks of Electronically Excited States: Basis Set Effects on CASPT2 Results[END_REF] though some CC3/aug-cc-pVTZ reference values were estimated by a basis set extrapolation technique. In their conclusion, they stated that they "expect this benchmark set to be useful for validation and development purposes, and anticipate future improvements and extensions of this set through further high-level calculations". [START_REF] Schreiber | Benchmarks for Electronically Excited States: CASPT2, CC2, CCSD and CC3[END_REF] The first prediction was soon realized. Indeed, both the TZVP and aug-cc-pVTZ TBE were applied to benchmark various computationally-effective methods, including semi-empirical approaches, [START_REF] Silva-Junior | Benchmark of Electronically Excited States for Semiempirical Methods: MNDO, AM1, PM3, OM1, OM2, OM3, INDO/S, and INDO/S2[END_REF][START_REF] Domínguez | Extensions of the Time-Dependent Density Functional Based Tight-Binding Approach[END_REF][START_REF] Voityuk | /X: A New Semiempirical Method for Excited States of Organic and Biological Molecules[END_REF] TD-DFT, [START_REF] Jacquemin | Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules[END_REF][START_REF] Goerigk | Computation of Accurate Excitation Energies for Large Organic Molecules with Double-Hybrid Density Functionals[END_REF][START_REF] Silva-Junior | Benchmarks for Electronically Excited States: Time-Dependent Density Functional Theory and Density Functional Theory Based Multireference Configuration Interaction[END_REF][START_REF] Rohrdanz | A Long-Range-Corrected Density Functional That Performs Well for Both Ground-State Properties and Time-Dependent Density Functional Theory Excitation Energies, Including Charge-Transfer Excited States[END_REF][START_REF] Jacquemin | Assessment of Functionals for TD-DFT Calculations of Singlet-Triplet Transitions[END_REF][START_REF] Jacquemin | On the Performances of the M06 Family of Density Functionals for Electronic Excitation Energies[END_REF][START_REF] Mardirossian | Benchmark Results for Empirical Post-GGA Functionals: Difficult Exchange Problems and Independent Tests[END_REF][START_REF] Jacquemin | Assessment of the ωB97 Family for Excited-State Calculations[END_REF][START_REF] Huix-Rotllant | Assessment of Dressed Time-Dependent Density-Functional Theory for the Low-Lying Valence States of 28 Organic Chromophores[END_REF][START_REF] Della Sala | Accurate Singlet and Triplet Excitation Energies Using the Localized Hartree-Fock Kohn-Sham Potential[END_REF][START_REF] Trani | Time-Dependent Density Functional Tight Binding: New Formulation and Benchmark of Excited States[END_REF][START_REF] Peverati | Performance of the M11 and M11-L Density Functionals for Calculations of Electronic Excitation Energies by Adiabatic Time-Dependent Density Functional Theory[END_REF][START_REF] Maier | Validation of Local Hybrid Functionals for TDDFT Calculations of Electronic Excitation Energies[END_REF] the second-order polarization propagator approximation (SOPPA), [START_REF] Sauer | Performance of SOPPA-Based Methods in the Calculation of Vertical Excitation Energies and Oscillator Strengths[END_REF] ADC(2), [START_REF] Harbach | The Third-Order Algebraic Diagrammatic Construction Method (ADC(3)) for the Polarization Propagator for Closed-Shell Molecules: Efficient Implementation and Benchmarking[END_REF] the second order N -electron valence perturbation theory (NEVPT2), [START_REF] Schapiro | Assessment of n-Electron Valence State Perturbation Theory for Vertical Excitation Energies[END_REF] the random phase approximation (RPA), [START_REF] Yang | Excitation Energies from Particle-Particle Random Phase Approximation: Davidson Algorithm and Benchmark Studies[END_REF] as well as several CC variants. [START_REF] Sauer | Benchmarks for Electronically Excited States: A Comparison of Noniterative and Iterative Triples Corrections in Linear Response Coupled Cluster Methods: CCSDR(3) versus CC3[END_REF][START_REF] Demel | Additional Global Internal Contraction in Variations of Multireference Equation of Motion Coupled Cluster Theory[END_REF][START_REF] Piecuch | Benchmarking the Completely Renormalised Equation-Of-Motion Coupled-Cluster Approaches for Vertical Excitation Energies[END_REF][START_REF] Tajti | Investigation of the Impact of Different Terms in the Second Order Hamiltonian on Excitation Energies of Valence and Rydberg States[END_REF][START_REF] Rishi | Excited States from Modified Coupled Cluster Methods: Are They Any Better Than EOM CCSD?[END_REF][START_REF] Dutta | Exploring the Accuracy of a Low Scaling Similarity Transformed Equation of Motion Method for Vertical Excitation Energies[END_REF] In contrast, even a decade after the original work appeared, the progresses aiming at improving and/or extending Thiel's set have been much less numerous. To the best of our knowledge, these extensions are limited to the more compact TZVP basis set, [START_REF] Harbach | The Third-Order Algebraic Diagrammatic Construction Method (ADC(3)) for the Polarization Propagator for Closed-Shell Molecules: Efficient Implementation and Benchmarking[END_REF][START_REF] Demel | Additional Global Internal Contraction in Variations of Multireference Equation of Motion Coupled Cluster Theory[END_REF][START_REF] Watson | Benchmarking for Perturbative Triple-Excitations in EE-EOM-CC Methods[END_REF][START_REF] Kánnár | Benchmarking Coupled Cluster Methods on Valence Singlet Excited States[END_REF] but in one case. [START_REF] Kánnár | Accuracy of Coupled Cluster Excitation Energies in Diffuse Basis Sets[END_REF] This diffuse-less basis set offers clear computational advantages and avoids some state mixing.

However, it has a clear tendency to overestimate transition energies, especially for Rydberg states, and it makes comparisons between methods more difficult as basis set dependencies are significantly different in wave function-based and density-based methods. [START_REF] Laurent | Choosing an Atomic Basis Set for TD-DFT, SOPPA, ADC(2), CIS(D), CC2 and EOM-CCSD Calculations of Low-Lying Excited States of Organic Dyes[END_REF] Let us now briefly review these efforts. In 2013, Watson et al. obtained with the TZVP basis set and CCSDT-3 -a method employing an iterative approximation of the triples -transition energies very similar to the CC3 values. [START_REF] Watson | Benchmarking for Perturbative Triple-Excitations in EE-EOM-CC Methods[END_REF] Nevertheless, as noted the same year by Nooijen and coworkers who also reported CCSDT-3/TZVP values, [START_REF] Demel | Additional Global Internal Contraction in Variations of Multireference Equation of Motion Coupled Cluster Theory[END_REF] "the relative accuracy of EOM-CCSDT-3 versus CC3 compared to full CI (or EOM-CCSDT) is not well established ". In 2014, Dreuw and co-workers performed ADC(3) calculations on Thiel's set and concluded that "based on the quality of the existing benchmark set it is practically not possible to judge whether ADC(3) or CC3 is more accurate". The same year, Kannar and Szalay, revisited Thiel's set and proposed CCSDT/TZVP reference energies for 17 singlet states of six molecules. [START_REF] Kánnár | Benchmarking Coupled Cluster Methods on Valence Singlet Excited States[END_REF] Recently the same group reported CCSDT/aug-cc-pVTZ transition energies for valence and Rydberg states of five compact molecules, [START_REF] Kánnár | Accuracy of Coupled Cluster Excitation Energies in Diffuse Basis Sets[END_REF] and used these values to benchmark several simpler CC approaches. To the best of our knowledge, these stand as the highest-level values reported to date. However, it remains difficult to know if these CCSDT transition energies are significantly more accurate than their CC3, CCSDT-3 or ADC(3) counterparts. Indeed, for the π → π valence singlet excited state of ethylene, the CC3/TZVP, CCSDT/TZVP and CCSDTQ/TZVP estimates of 8.37 eV, 8.38 eV, and 8.36 eV (respectively) are nearly identical. [START_REF] Kánnár | Benchmarking Coupled Cluster Methods on Valence Singlet Excited States[END_REF] Herein, we propose to continue the quest for ultra-accurate excited-state reference energies.

First, although this prevents direct comparisons with previously-published data, we decided to use more accurate CC3/aug-cc-pVTZ geometries for all the compounds considered here.

Second, we employ only diffuse-containing Dunning basis sets to be reasonably close from the complete basis set limit. Third, we climb the mountain via two faces following: i) the CC route (up to the highest computationally possible order), and ii) the configuration interaction (CI) route with the help of selected CI (sCI) methods. By comparing the results of these two approaches, it is possible to get some reliable information about how far our results are from the full CI (FCI) ones. Fourth, in order not to limit our investigation to vertical absorption, we also report, in a few cases, fluorescence energies. Of course, such extreme choices impose drastic restrictions on the size of the molecules one can treat with such approaches. However, we claim here that they allow to accurately estimate the FCI result for most excited states.

Computational Details

Geometries

All geometries are obtained at the CC3/aug-cc-pVTZ level without applying the frozen core approximation. These geometries are available in the Supporting Information (SI).

While several structures are extracted from Ref. 61 (acetylene, diazomethane, ethylene, formaldehyde, ketene, nitrosomethane, thioformaldehyde and streptocyanine-C1) , additional optimizations are performed here following the same protocol as in that earlier work. First, we optimize the structures and compute the vibrational spectra at the CCSD/def2-TZVPP level [START_REF] Purvis | A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples[END_REF] with Gaussian16. [START_REF] Frisch | Gaussian 16 Revision A[END_REF] These calculations confirm the minima nature of the obtained geometries. 64 We then re-optimize the structures at the CC3/aug-cc-pVTZ level [START_REF] Christiansen | Response Functions in the CC3 Iterative Triple Excitation Model[END_REF][START_REF] Koch | The CC3 Model: An Iterative Coupled Cluster Approach Including Connected Triples[END_REF] using Dalton [START_REF] Aidas | [END_REF] and/or CFOUR, 66 depending on the size and symmetry of the molecule. CFOUR advantageously provides analytical CC3 gradients for ground-state structures. For the CCSD calculations, the energy and geometry convergence thresholds are systematically tightened to 10 -10 -10 -11 a.u. for the SCF energy, 10 -8 -10 -9 a.u. for the CCSD energy, and 10 -7 -10 -8 a.u. for the EOM-CCSD energy in the case of excited-state geometry optimizations. To check that the structures correspond to genuine minima, the (EOM-)CCSD gradients are differentiated numerically to obtain the vibrational frequencies. The CC3 optimizations are performed with the default convergence thresholds of Dalton or CFOUR without applying the frozen core approximation.

Coupled Cluster calculations

Unless otherwise stated, the CC transition energies 67 are computed in the frozen-core approximation (large cores for Cl and S). We use several codes to achieve our objectives, namely CFOUR, [START_REF] Cfour | Coupled-Cluster techniques for Computational Chemistry[END_REF] Dalton, 65 Gaussian16, [START_REF] Frisch | Gaussian 16 Revision A[END_REF] Orca, 68 MRCC, [START_REF] Rolik | An Efficient Linear-Scaling CCSD(T) Method Based on Local Natural Orbitals[END_REF][START_REF] Kállay | Quantum Chemical Program[END_REF] and Q-Chem. [START_REF] Shao | [END_REF] Globally, we use CFOUR for both CCSDT-3 [START_REF] Watts | Iterative and Non-Iterative Triple Excitation Corrections in Coupled-Cluster Methods for Excited Electronic States: the EOM-CCSDT-3 and EOM-CCSD( T ) Methods[END_REF][START_REF] Prochnow | Parallel Calculation of CCSDT and Mk-MRCCSDT Energies[END_REF] and CCSDT [START_REF] Noga | The Full CCSDT Model for Molecular Electronic Structure[END_REF] calculations, Dalton to perform the CIS(D), [START_REF] Head-Gordon | A Doubles Correction to Electronic Excited States From Configuration Interaction in the Space of Single Substitutions[END_REF][START_REF] Head-Gordon | A Perturbative Correction to Restricted Open-Shell Configuration-Interaction with Single Substitutions for Excited-States of Radicals[END_REF] CC2, 7,8 CCSD, 62 CCSDR(3), [START_REF] Christiansen | Perturbative Triple Excitation Corrections to Coupled Cluster Singles and Doubles Excitation Energies[END_REF] and CC3 [START_REF] Christiansen | Response Functions in the CC3 Iterative Triple Excitation Model[END_REF][START_REF] Koch | The CC3 Model: An Iterative Coupled Cluster Approach Including Connected Triples[END_REF] calculations, Gaussian for the CIS(D) [START_REF] Head-Gordon | A Doubles Correction to Electronic Excited States From Configuration Interaction in the Space of Single Substitutions[END_REF][START_REF] Head-Gordon | A Perturbative Correction to Restricted Open-Shell Configuration-Interaction with Single Substitutions for Excited-States of Radicals[END_REF] and CCSD, [START_REF] Purvis | A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples[END_REF] Orca for the similarity-transformed EOM-CCSD (STEOM-CCSD) [START_REF] Dutta | Exploring the Accuracy of a Low Scaling Similarity Transformed Equation of Motion Method for Vertical Excitation Energies[END_REF][START_REF] Nooijen | A New Method for Excited States: Similarity Transformed Equation-Of-Motion Coupled-Cluster Theory[END_REF] calculations, Q-Chem for ADC (2) and ADC(3) calculations, and MRCC for the CIS(D ∞ ), [START_REF] Head-Gordon | Quasidegenerate Second-Order Perturbation Corrections to Single-Excitation Configuration Interaction[END_REF] CCSDT, 74 CCSDTQ, 80 (and higher) calculations. As we mainly report transition energies, it is worth noting that the linear-response (LR) and equation-of-motion (EOM) formalisms provide identical results. Nevertheless, the oscillator strengths characterizing the excited states are obtained at the (LR) CC3 level with Dalton. Default program setting are generally applied, and when modified they are tightened. For the STEOM-CCSD calculations which relies on natural transition orbitals, it was checked that each state is characterized by an active character percentage of 98% or larger (states not matching this criterion are not reported). Nevertheless, the obtained results do slightly depend on the number of states included in the calculations, and we found typical variations of ±0.01-0.05 eV.

For all calculations, we use the well-known Dunning's aug-cc-pVXZ (X = D, T, Q and 5) atomic basis sets, as well as some doubly-and triply-augmented basis sets of the same series (d-aug-cc-pVXZ and t-aug-cc-pVXZ).

Selected Configuration Interaction methods

Alternatively to CC, we also compute transition energies using a selected CI (sCI) approach, an idea that goes back to 1969 in the pioneering works of Bender and Davidson, [START_REF] Bender | Studies in Configuration Interaction: The First-Row Diatomic Hydrides[END_REF] and Whitten and Hackmeyer. [START_REF] Whitten | Configuration Interaction Studies of Ground and Excited States of Polyatomic Molecules. I. The CI Formulation and Studies of Formaldehyde[END_REF] Recently, sCI methods have demonstrated their ability to reach near FCI quality energies for small organic and transition metal-containing molecules. [START_REF] Giner | Using Perturbatively Selected Configuration Interaction in Quantum Monte Carlo Calculations[END_REF][START_REF] Caffarel | Spin Density Distribution in Open-Shell Transition Metal Systems: A Comparative Post-Hartree-Fock, Density Functional Theory, and Quantum Monte Carlo Study of the CuCl 2 Molecule[END_REF][START_REF] Giner | Fixed-Node Diffusion Monte Carlo Potential Energy Curve of the Fluorine Molecule F 2 Using Selected Configuration Interaction Trial Wavefunctions[END_REF][START_REF] Garniron | Alternative Definition of Excitation Amplitudes in Multi-Reference State-Specific Coupled Cluster[END_REF][START_REF] Caffarel | Toward an Improved Control of the Fixed-Node Error in Quantum Monte Carlo: The Case of the Water Molecule[END_REF][START_REF] Holmes | Heat-Bath Configuration Interaction: An Efficient Selected Configuration Interaction Algorithm Inspired by Heat-Bath Sampling[END_REF][START_REF] Sharma | Semistochastic Heat-Bath Configuration Interaction Method: Selected Configuration Interaction with Semistochastic Perturbation Theory[END_REF][START_REF] Holmes | Excited States Using Semistochastic Heat-Bath Configuration Interaction[END_REF][START_REF] Chien | Excited States of Methylene, Polyenes, and Ozone from Heat-Bath Configuration Interaction[END_REF][START_REF] Scemama | Deterministic Construction of Nodal Surfaces Within Quantum Monte Carlo: The Case of FeS[END_REF] To avoid the exponential increase of the size of the CI expansion, we employ the sCI algorithm CIPSI [START_REF] Giner | Using Perturbatively Selected Configuration Interaction in Quantum Monte Carlo Calculations[END_REF][START_REF] Huron | Iterative Perturbation Calculations of Ground and Excited State Energies from Multiconfigurational Zeroth-Order Wavefunctions[END_REF][START_REF] Evangelisti | Convergence of an Improved CIPSI Algorithm[END_REF] (Configuration Interaction using a Perturbative Selection made Iteratively) to retain only the energetically-relevant determinants. To do so, the CIPSI algorithm uses a second-order energetic criterion to select perturbatively determinants in the FCI space. [START_REF] Giner | Using Perturbatively Selected Configuration Interaction in Quantum Monte Carlo Calculations[END_REF][START_REF] Giner | Fixed-Node Diffusion Monte Carlo Potential Energy Curve of the Fluorine Molecule F 2 Using Selected Configuration Interaction Trial Wavefunctions[END_REF][START_REF] Caffarel | Toward an Improved Control of the Fixed-Node Error in Quantum Monte Carlo: The Case of the Water Molecule[END_REF][START_REF] Scemama | Deterministic Construction of Nodal Surfaces Within Quantum Monte Carlo: The Case of FeS[END_REF] In the numerical examples presented below, our CI expansions contain typically about a few millions of determinants. We refer the interested readers to Ref. 92,95 for more details about the general philosophy of sCI methods.

In order to treat the electronic states of a given spin manifold on equal footing, a common set of determinants is used for all states. Moreover, to speed up convergence to the FCI limit, a common set of natural orbitals issued from a preliminary (smaller) sCI calculation is employed. All sCI calculations have been performed in the frozen-core approximation.

For a given basis set, we estimate the FCI limit using the approach introduced recently by Holmes et. al. [START_REF] Holmes | Excited States Using Semistochastic Heat-Bath Configuration Interaction[END_REF] in the context of the (selected) heat-bath CI method, and used with success, even for challenging chemical situations. [START_REF] Sharma | Semistochastic Heat-Bath Configuration Interaction Method: Selected Configuration Interaction with Semistochastic Perturbation Theory[END_REF][START_REF] Chien | Excited States of Methylene, Polyenes, and Ozone from Heat-Bath Configuration Interaction[END_REF][START_REF] Scemama | Deterministic Construction of Nodal Surfaces Within Quantum Monte Carlo: The Case of FeS[END_REF] More precisely, we linearly extrapolate the sCI energy E sCI as a function of E PT2 , which is an estimate of the truncation error in the sCI algorithm, i.e., E PT2 ≈ E FCI -E sCI . When E PT2 = 0, the FCI limit has effectively been reached. Here, E PT2 is efficiently evaluated with a recently-proposed hybrid stochasticdeterministic algorithm. [START_REF] Garniron | Hybrid Stochastic-Deterministic Calculation of the Second-Order Perturbative Contribution of Multireference Perturbation Theory[END_REF] Note that we do not report error bars because the statistical errors originating from this algorithm are orders of magnitude smaller than the extrapolation errors.

In practice, the extrapolation is based on the two largest sCI wave functions, i.e., we perform a two-point extrapolation, which is justified here because of the quasi-linear behavior of the sCI energy as a function of E PT2 . Estimating the extrapolation error is a complicated task with no well-defined method to do so. In practice, we have observed that this extrapolation procedure is robust and provides FCI estimates within ±0.02 eV. When the convergence to the FCI limit is too slow to provide reliable estimates, the number of significant digits reported has been reduced accordingly. From herein, the extrapolated FCI results are simply labeled exFCI. Several illustrative examples are reported in Supporting Information where we compare different types of extrapolations for several molecules (See Fig. S1 and Table S11). In particular, diazomethane and streptocyanine-C1 can be considered as "difficult" cases (vide infra), and the results reported in Supporting Information show that, even in these challenging situations, the two-point linear extrapolation is fairly robust. Moreover, additional points do not significantly alter the exFCI results (typically 0.01 eV or less).

All the sCI calculations are performed with the electronic structure software quantum package, developed in Toulouse and freely available. [START_REF] Scemama | Quantum Package v1.0[END_REF] Additional information about the sCI wave functions, excitations energies as well as their extrapolated values can be found at the end of the Supporting Information.

Results and Discussion

In the discussion below, we first discuss specific molecules of increasing size and compare the results obtained with exFCI and CC approaches, starting with the CC3 method for the latter. This first part is performed applying systematically the frozen-core approximation. We next define two series of TBE, one at the frozen-core aug-cc-pVTZ level, and one close to complete basis set limit by applying corrections for frozen-core and basis set effects. In the following stage, we assess the performances of several popular wave function methods using the former benchmark as reference. Finally, we discuss the performances of basis set extrapolation approaches starting from a compact basis. Unless otherwise stated, we considered the exFCI values as benchmarks.

Water, hydrogen sulfide, ammonia, and hydrogen chloride

Due to its small size and ubiquitous role in life, water is often used as a test case for Rydberg excitations. Indeed, it is part of Head-Gordon's, [START_REF] Rhee | Scaled Second-Order Perturbation Corrections to Configuration Interaction Singles:? Efficient and Reliable Excitation Energy Methods[END_REF] Gordon's [START_REF] Leang | Benchmarking the Performance of Time-Dependent Density Functional Methods[END_REF] and Truhlar-Gagliardi's 29 datasets of compounds, and it has been investigated at many levels of theory. [START_REF] Cai | Time-Dependent Density-Functional Determination of Arbitrary Singlet and Triplet Excited-State Potential Energy Surfaces: Application to the Water Molecule[END_REF]100,103,109 Our results are collected in Table 1. With the aug-cc-pVDZ basis, there is an nearly perfect agreement between the exFCI values and the transition energies obtained with the two largest CC expansions, namely CCSDTQ and CCSDTQP. Indeed, the largest discrepancy is as small as 0.01 eV, and it is therefore reasonable to state that the FCI limit has been reached with that specific basis set. Compared to the exFCI results, the CCSDT values are systematically too low, with an average error of -0.03 eV. The same trend of underestimation is found with CC3, though with smaller absolute deviations for all states. Unsurprisingly, for Rydberg states, increasing the basis set size has a significant impact, and it tends to increase the computed transition energies in water. However, this effect is very similar for all methods listed in Table 1. This means that, on the one hand, the tendency of CCSDT to provide slightly too small transition energies pertains with both aug-cc-pVTZ and aug-cc-pVQZ, and, on the other hand, that estimating the basis set effect with a "cheap" method is possible. Indeed, adding to the exFCI/aug-cc-pVDZ energies, the difference between CC3/aug-cc-pVQZ and CC3/aug-cc-pVDZ results would deliver estimates systematically within 0.01 eV of the actual exFCI/aug-cc-pVQZ values. Such basis set extrapolation approach was already advocated for lower-order CC expansions, [START_REF] Silva-Junior | Basis Set Effects on Coupled Cluster Benchmarks of Electronically Excited States: CC3, CCSDR(3) and CC2[END_REF]110 and it is therefore not surprising that it can be applied with refined models. As it can be seen in Table S1 in the Supporting Information, further extension of the basis set or correlation of the 1s electron have small impacts, except for the Rydberg 1 A 1 state. Eventually, as evidenced by the data from the rightmost columns of Table 1, the present estimates are in good agreement with previous MRCC values determined on the experimental geometry, 100 whereas the experimental values offer qualitative comparisons only, for reasons discussed elsewhere. [START_REF] Ralphs | Excitation of the Six Lowest Electronic Transitions in Water by 9-20 eV Electrons[END_REF] We underline that some of the 2013 measurements reported in Table 1 significantly differ from previous electron impact data, 111 that were used previously as reference, [START_REF] Leang | Benchmarking the Performance of Time-Dependent Density Functional Methods[END_REF] with e.g., a 0.2 eV discrepancy between the two experiments for the lowest triplet state.

As water, hydrogen sulfide was also the subject of several high-level theoretical investigation, 103,112-114 which are necessary, as there are rather few experimental data available for the lowest Rydberg states of H 2 S, 101,102,115,116 especially no accurate value could be measured for the first 1 A 2 state. As can be seen in Table 1, for a given basis set all tested CC methods provide very similar results, systematically within 0.01 eV of the exFCI results. In contrast, the basis set has a significant impact, e.g., the two lowest singlet states switch order when going from aug-cc-pVDZ to aug-cc-pVTZ and the same is true for the two lowest triplet states. Our results are also very consistent with the CASPT2/d-aug-cc-pVQZ values given in Ref. 103, confirming that a near FCI limit has been reached.

Ammonia is also another molecule for evaluating Rydberg excitations, and it was previously investigated at several levels of theory. [START_REF] Schwabe | Time-Dependent Double-Hybrid Density Functionals with Spin-Component and Spin-Opposite Scaling[END_REF][START_REF] Rhee | Scaled Second-Order Perturbation Corrections to Configuration Interaction Singles:? Efficient and Reliable Excitation Energy Methods[END_REF]106,117 As in the case of water, we note a nearly perfect match between the CCSDTQ and exFCI estimates with both the aug-cc-pVDZ and aug-cc-pVTZ atomic basis sets, indicating that the FCI limit is reached. Both CC3 and CCSDT are close to this limit, and the former model slightly outperforms the latter. For ammonia, the basis set effects are particularly strong for the third and fourth singlet excited states but these basis set effects are nearly transferrable from one method to another. In fact, as hinted by the large differences between the aug-cc-pVTZ and aug-cc-pVQZ results in who also applied extra diffuse orbitals in their calculations relying on approximate triples (see the footnotes in Table 1). As in water, the experimental values do not provide sufficiently clear-cut results to ultimately decide which method is the most accurate. Indeed, the vertical experimental estimates reported in Table 1 differ significantly from the more trustworthy adiabatic values with variations of ca. 0.5 eV. 106 Consequently, a good match between an experimental measurement and a theoretical calculation determined with a compact basis set is, in the present case, a sign of lucky cancellation of errors.

Hydrogen chloride was less frequently used in previous benchmarks, but is included in Tozer's set as an example of charge-transfer (CT) state. [START_REF] Peach | Excitation Energies in Density Functional Theory: an Evaluation and a Diagnostic Test[END_REF] Again, the results listed at the bottom of Table 1 demonstrate a remarkable consistency between the various theories.

Though large frozen cores are used during the calculations, this does not strongly impact the results, as can be deduced from the data of Table S1. As expected, the absorption band corresponding to this CT state is very broad experimentally (starting at 5.5 eV and peaking at 8.1 eV), 118 making direct comparisons tricky.

Dinitrogen and carbon monoxide

Dinitrogen is a simple diatomic compound for which the low-lying valence and Rydberg states have been investigated at several levels of theory. [START_REF] Oddershede | Comparison Between Equation of Motion and Polarization Propagator Calculations[END_REF][START_REF] Peach | Excitation Energies in Density Functional Theory: an Evaluation and a Diagnostic Test[END_REF]119,121 With a numerical solution of the nuclear Schrödinger equation, it is possible to treat the experimental spectroscopic constants, 118 so as to obtain reliable vertical estimates, and this procedure was applied previously. [START_REF] Oddershede | Comparison Between Equation of Motion and Polarization Propagator Calculations[END_REF]119,123 Whilst such approach is supposedly providing experimental vertical excitedstate energies with a ca. 0.01 eV error only, it remains that significant excitation energy differences have been reported for the two lowest 1 Π u states (see Table 2). As in the previous cases, we find a remarkable agreement between the CCSDTQ and exFCI estimates for most cases in which both could be determined. The only exceptions are the two 1 Π u states with the aug-cc-pVTZ basis, but in these two cases, the CC expansion is also converging more slowly than usual, which is consistent with the relatively small degree of single excitation character in these two states (82.9 and 87.4% according to CC3). In contrast to water and ammonia, CCSDT outperforms CC3 with respective mean absolute deviation (MAD) compared to exFCI of 0.02 eV and 0.04 eV, when using the aug-cc-pVDZ basis set. As it can be deduced from For the isoelectronic carbon monoxide, experimental vertical energies deduced from rovibronic data 118 using a numerical approach are also available. [START_REF] Peach | Excitation Energies in Density Functional Theory: an Evaluation and a Diagnostic Test[END_REF]120 With the aug-cc-pVTZ (aug-cc-pVQZ) atomic basis set, the CCSDT and CC3 results are within 0.02 eV (0.03 eV) and 0.03 eV (0.03 eV) of the exFCI results, whereas the errors made by both CCSDTQ and CCSDTQP are again trifling. As for dinitrogen, all the valence states are rather close from the basis set limit with aug-cc-pVTZ, whereas larger basis sets are required for the Rydberg states (Table S2). By correcting the exFCI/aug-cc-pVQZ (exFCI/aug-cc-pVTZ for the highest triplet state) data with basis set effects determined at the CC3/d-aug-cc-pV5Z level, we obtain TBE values that can be compared to the experimental estimates. The computed MAD is 0.05 eV, the largest deviations being obtained for the ∆ and Σ -excited states of both spin symmetries. The agreement between theory and experiment is therefore very satisfying though slightly less impressive than for N 2 . We note that the CC3/aug-cc-pVTZ C --O bond length (1.134 Å) is 0.006 Å larger than the experimental r e value of 1.128 Å, 118 whereas the discrepancy is twice smaller for dinitrogen: 1.101 Å for CC3/aug-cc-pVTZ compared to 1.098 Å experimentally. This might partially explained the larger deviations noticed for carbon monoxide.

Acetylene and ethylene

Acetylene is the smallest conjugated organic molecule possessing stable low-lying excited-state structures, therefore allowing to investigate vertical fluorescence. This molecule has been the subject of previous investigations at the CASPT2, 124 CCSD, 125 CCSDT, [START_REF] Kánnár | Accuracy of Coupled Cluster Excitation Energies in Diffuse Basis Sets[END_REF] and MR-AQCC 126 levels. Our results are collected in Table 3. With the double-ζ basis set, the differences between the CC3, CCSDT, and CCSDTQ results are negligible, and the latter estimates are also systematically within 0.02 eV of the exFCI results. In contrast to water and ammonia, both CC3 and CCSDT provide similar accuracies compared to higher levels of theory. As expected, for valence states, going from double-to triple-ζ basis set tends to slightly decrease the computed energies (except for the lowest triplet). Nonetheless, as with the smaller basis set, the same near-perfect methodological match pertains with aug-cc-pVTZ. Estimating the exFCI/aug-cc-pVTZ results from the exFCI/aug-cc-pVDZ values and CC3 basis set effects would yield estimates with absolute errors of 0.00-0.02 eV. One also notices that the exFCI/aug-cc-pVTZ values are all extremely close to the previous MR-AQCC estimates, whereas the published CASPT2 values appear to be too low though closer from the electron impact experiment, underlying once more the difficulty to obtain very accurate experimental estimates for vertical energies. This underestimating trend of standard CASPT2 was reported before for other molecules. 127,128 Although our theoretical vertical energy estimates still slightly vary when passing from the aug-cc-pVDZ to aug-cc-pVTZ basis sets, we claim that these vertical energies are probably more trustworthy for further benchmarks than the available experimental values because basis set effects beyond aug-cc-pVTZ seem rather limited (Table S3).

Despite its small size, ethylene remains a challenging molecule and is included in many benchmark sets. [START_REF] Leang | Benchmarking the Performance of Time-Dependent Density Functional Methods[END_REF][START_REF] Caricato | Electronic Transition Energies: A Study of the Performance of a Large Range of Single Reference Density Functional and Wave Function Methods on Valence and Rydberg States Compared to Experiment[END_REF][START_REF] Hoyer | Multiconfiguration Pair-Density Functional Theory Is as Accurate as CASPT2 for Electronic Excitation[END_REF][START_REF] Schreiber | Benchmarks for Electronically Excited States: CASPT2, CC2, CCSD and CC3[END_REF][START_REF] Head-Gordon | A Doubles Correction to Electronic Excited States From Configuration Interaction in the Space of Single Substitutions[END_REF]132 The assignments of the experimental data has been the subject of countless works, and we refer the interested readers to the discussions in Refs. CI calculations. 131 They indeed obtained highly-accurate transition energies for ethylene, including for the valence yet challenging 1 B 1u state. From our data, collected in Table 3, one notices that the differences between exFCI/aug-cc-pVDZ and CCSDTQ/aug-cc-pVDZ results are again trifling, the largest deviation being obtained for the 3 B 3u (π → 3s) Rydberg state (0.02 eV). In addition, given the nice agreement between CC3, CCSDT and exFCI values, one can directly compare our CC3/aug-cc-pV5Z results (Table S3) to the values of reported in Ref. 131: a mean absolute deviation (MAD) of 0.03 eV is obtained. The fact that our transition energies tend to be slightly smaller than Davidson's is likely due to geometrical effects. Indeed, our CC3/aug-cc-pVTZ C --C distance is 1.3338 Å, i.e., slightly longer than the best estimate provided in Davidson's work (1.3305 Å). Recently, a stochastic heat-bath CI (SHCI)/ANO-L-pVTZ work reported 4.59 eV and 8.05 eV values for the 3 B 1u and 1 B 1u states, respectively, [START_REF] Chien | Excited States of Methylene, Polyenes, and Ozone from Heat-Bath Configuration Interaction[END_REF] and we also ascribe the differences with our results to the use of a MP2 geometry in Ref. 91. Interestingly, these authors found quite large discrepancies between their SHCI and their CC results. Indeed, they reported CR-EOMCC(2,3)D estimates significantly larger than their SHCI results with +0.17 eV and +0.20 eV upshifts for the triplet and singlet states, respectively. This highlights that only high-level CC schemes are able to recover the exFCI (or SHCI) results for ethylene.

Formaldehyde, methanimine and thioformaldehyde

Similarly to ethylene, formaldehyde is a very popular test molecule, [START_REF] Leang | Benchmarking the Performance of Time-Dependent Density Functional Methods[END_REF][START_REF] Peach | Excitation Energies in Density Functional Theory: an Evaluation and a Diagnostic Test[END_REF][START_REF] Caricato | Electronic Transition Energies: A Study of the Performance of a Large Range of Single Reference Density Functional and Wave Function Methods on Valence and Rydberg States Compared to Experiment[END_REF][START_REF] Hoyer | Multiconfiguration Pair-Density Functional Theory Is as Accurate as CASPT2 for Electronic Excitation[END_REF][START_REF] Schreiber | Benchmarks for Electronically Excited States: CASPT2, CC2, CCSD and CC3[END_REF][START_REF] Kánnár | Accuracy of Coupled Cluster Excitation Energies in Diffuse Basis Sets[END_REF][START_REF] Head-Gordon | A Doubles Correction to Electronic Excited States From Configuration Interaction in the Space of Single Substitutions[END_REF][START_REF] Head-Gordon | A Perturbative Correction to Restricted Open-Shell Configuration-Interaction with Single Substitutions for Excited-States of Radicals[END_REF]132,[137][138][139][140][141][142] and stands as the prototype carbonyl dye with a low-lying n → π transition. Nevertheless, even for this particular valence state, well-separated from higher-lying excited states, the choice of an experimental reference remains difficult. Indeed, values of 3.94 eV, [START_REF] Peach | Excitation Energies in Density Functional Theory: an Evaluation and a Diagnostic Test[END_REF] 4.00 eV, [START_REF] Caricato | Electronic Transition Energies: A Study of the Performance of a Large Range of Single Reference Density Functional and Wave Function Methods on Valence and Rydberg States Compared to Experiment[END_REF][START_REF] Hoyer | Multiconfiguration Pair-Density Functional Theory Is as Accurate as CASPT2 for Electronic Excitation[END_REF]138 4.07 eV, 17,75,139 and 4.1 eV, 137,140 have been used in previous theoretical benchmarks. In contrast to their oxygen cousin, both methanimine and thioformaldehyde were the subject of less attention from the theoretical community. 135,143,144 The results obtained for these three molecules are collected in Table 4. Considering all transitions listed in this Table, one obtains a MAD of 0.01 eV between the CCSDTQ/aug-cc-pVDZ and exFCI/aug-cc-pVDZ results, the largest discrepancies of 0.03 eV being observed for two states for which the difference between CCSDT and CCSDTQ is also large (0.05 eV). As in water, using the exFCI/aug-cc-pVDZ values as reference, we found that CC3 delivers slightly more accurate transition energies (MAD of 0.02 eV, maximal deviation of 0.06 eV) than CCSDT (MAD of 0.03 eV, maximal deviation of 0.07 eV). By adding the difference between CC3/aug-cc-pVTZ and CC3/aug-cc-pVDZ results to the exFCI/aug-cc-pVDZ values, we obtain good estimates of the actual exFCI/aug-cc-pVTZ data, with a MAD of 0.02 eV for formaldehyde. Compared to the CC3/aug-cc-pVQZ results of Thiel, [START_REF] Schreiber | Benchmarks for Electronically Excited States: CASPT2, CC2, CCSD and CC3[END_REF] the transition energies reported in Table 4 slightly larger, which is probably due to the influence of the ground-state geometry rather than basis set effects (see Table S4). Indeed, the carbonyl bond is significantly more contracted with CC3/aug-cc-pVTZ (1.208 Å) than with MP2/6-31G(d) (1.221 Å). In particular, for the hallmark n → π , our best estimate is 3.97 eV (vide infra), nicely matching a previous MR-AQCC value of 3.98 eV, 134 but significantly below the previous DMC/BLYP estimate of 4.24 eV. 135 The latter discrepancy is probably due to the use of both different structures and pseudo-potentials within DMC calculations.

For methanimine and thioformaldehyde, the basis set effects are rather small for the states considered here (see Table S4) and the data reported in the present work are probably the most accurate vertical transition energies reported to date. For the latter molecule, these vertical estimates are systematically larger than the known experimental 0-0 energies, 136 which is the expected trend.

Larger compounds

Let us now turn our attention to molecules that encompass three heavy (non-hydrogen) atoms. We have treated seven molecules of that family, and all were previously investigated at several levels of theory: acetaldehyde, 26,29,127,138-140,158,159 cyclopropene, [START_REF] Schreiber | Benchmarks for Electronically Excited States: CASPT2, CC2, CCSD and CC3[END_REF][START_REF] Silva-Junior | Basis Set Effects on Coupled Cluster Benchmarks of Electronically Excited States: CC3, CCSDR(3) and CC2[END_REF][START_REF] Silva-Junior | Benchmarks of Electronically Excited States: Basis Set Effecs Benchmarks of Electronically Excited States: Basis Set Effects on CASPT2 Results[END_REF][START_REF] Kánnár | Benchmarking Coupled Cluster Methods on Valence Singlet Excited States[END_REF]132,160 diazomethane, 149,150,158,161 formamide, [START_REF] Schreiber | Benchmarks for Electronically Excited States: CASPT2, CC2, CCSD and CC3[END_REF][START_REF] Silva-Junior | Basis Set Effects on Coupled Cluster Benchmarks of Electronically Excited States: CC3, CCSDR(3) and CC2[END_REF][START_REF] Silva-Junior | Benchmarks of Electronically Excited States: Basis Set Effecs Benchmarks of Electronically Excited States: Basis Set Effects on CASPT2 Results[END_REF][START_REF] Kánnár | Benchmarking Coupled Cluster Methods on Valence Singlet Excited States[END_REF][START_REF] Kánnár | Accuracy of Coupled Cluster Excitation Energies in Diffuse Basis Sets[END_REF]162,163 ketene, 150,153,154,164 nitrosomethane, 156,157,165,166 and the shortest streptocyanine. 128,[167][168][169][170] The results are gathered in Table 5. Note that, for these molecules containing three heavy atoms, it is sometimes challenging to obtain reliable exFCI estimes, especially for the largest basis set.

Experimentally, the lowest singlet and triplet n → π transitions of acetaldehyde are located 0.3-0.4 eV above their formaldehyde counterparts, 116,145 and this trend is accurately reproduced by theory, which also delivers estimates very close to the NEVPT2 values given in Ref. 127.

For cyclopropene, the lowest singlet σ → π and π → π are close from one another, and both CCSDT and exFCI predict the former to be slightly more stabilized, which is consistent with the large basis set CC3 results obtained previously by Thiel. [START_REF] Silva-Junior | Benchmarks of Electronically Excited States: Basis Set Effecs Benchmarks of Electronically Excited States: Basis Set Effects on CASPT2 Results[END_REF] For the isoelectronic diazomethane and ketene molecules (see Table 5), one notes, yet again, consistent results with, however, differences between the exFCI/aug-cc-pVTZ and CCSDT/aug-cc-pVTZ results larger than 0.05 eV for the two lowest singlet states of diazomethane. There is also a reasonable match between our data and previous theoretical results reported for these two molecules. 149,150,153,154 The basis set effects are significant for the Rydberg transitions, especially for the π → 3s states of diazomethane (Table S5).

In formamide, we found strong state mixing between the lowest singlet valence and Rydberg states of A symmetry. This is consistent with the CCSDT/TZVP analysis of Kannar and Szalay, 58 who reported, for example, a larger oscillator strength for the lowest Rydberg state than for the π → π transition. This state-mixing problem pertains with aug-cc-pVTZ, making unambiguous assignments impossible. Consequently, we have decided to classify the three lowest 1 A transitions according to their dominant orbital character, which gives a picture consistent with the computed oscillator strengths (vide infra) but yields state inversions compared to Thiel's and Szalay's assignments. [START_REF] Silva-Junior | Basis Set Effects on Coupled Cluster Benchmarks of Electronically Excited States: CC3, CCSDR(3) and CC2[END_REF][START_REF] Kánnár | Benchmarking Coupled Cluster Methods on Valence Singlet Excited States[END_REF] This strong state mixing also prevented the convergence of several state energies with the exFCI/aug-cc-pVTZ approach.

Despite these uncertainties, we obtained transition energies for the Rydberg states that are much closer from experiment 151 as well as from previous multireference CC estimates, 142

than the TZVP ones. [START_REF] Kánnár | Benchmarking Coupled Cluster Methods on Valence Singlet Excited States[END_REF] Nitrosomethane is an interesting test molecule for three reasons: i) it presents very low-lying n → π states of A symmetry, close to ca. 2.0 eV (singlet) and 1.2 eV (triplet), amongst the smallest absorption energies found in a compact molecule; 171 ii) it changes from an eclipsed to a staggered conformation of the methyl group when going from the ground to the lowest singlet state; 157,172,173 iii) the lowest-lying singlet A state corresponds to an almost pure double excitation of (n, n) → (π , π ) nature. 156 Indeed, CC3 returns a 2.5% single excitation character only for this second transition, to be compared to more than 80% (and generally more than 90%) in all other states treated in this work (vide infra). For example, the notoriously difficult A g dark state of butadiene has a 72.8% single character. [START_REF] Schreiber | Benchmarks for Electronically Excited States: CASPT2, CC2, CCSD and CC3[END_REF] For the A state of nitrosomethane, CC3, CCSDT and exFCI yield similar results, and the corresponding transition energies are slightly larger than previous CASPT2 estimates. 156 In contrast, the CC approaches are expectedly far from the spot for the (n, n) → (π , π ) transition: they yield values significantly blue shifted and large discrepancies between the CC3 and CCSDT values are found. For this particular state, it is not surprising that the exFCI result is indeed closer to the CASPT2 value, 156 as modeling double excitations with single-reference CC models is not a natural choice.

Finally for the shortest model cyanine, a molecule known to be difficult to treat with TD-DFT, 170 all the theoretical results given in Table 5 closely match each other for both the singlet and triplet manifolds. For the former, the reported CASPT2 (with IPEA) value of 7.14 eV also fits these estimates. 128

Theoretical best estimates

We now turn to the definition of theoretical best estimates. We decided to provide two sets for these estimates, one obtained in the frozen-core approximation with the aug-cc-pVTZ atomic basis set, and one including further corrections for basis set and "all electron" (full) effects. This choice allows further benchmarks to either consider a reasonably compact basis set, therefore allowing to test many levels of theory, or to rely on values closer to the basis set limit. For the former set, we systematically selected exFCI/aug-cc-pVTZ values except when explicitly stated. For the latter set, both the "all electron" correlation and the basis set corrections (see Supporting Information for complete data) were systematically obtained at the CC3 level of theory and used d-aug-cc-pV5Z for the nine smallest molecules and slightly more compact basis sets for the larger compounds. At least for Rydberg states, the use of d-aug-cc-pVQZ apparently delivers results closer to basis set convergence than aug-cc-pV5Z, and the former basis set was used when technically possible. The interested readers may find in Supporting Information the values obtained with and without applying the frozen-core approximation for several basis sets. Clearly, the largest amount of the total correction originates from basis set effects. In other words, "full" and frozen-core transition energies are typically within 0.01-0.02 eV of each other for a given basis set. The results are listed in states, with an energetic span from 0.70 to 13.27 eV. Amongst these 110 excitation energies, only 13 are characterized by a single-excitation character smaller than 90% according to CC3.

As expected, [START_REF] Schreiber | Benchmarks for Electronically Excited States: CASPT2, CC2, CCSD and CC3[END_REF] the dominant single-excitation character is particularly pronounced for triplet excited states. Therefore, this set is adequate for evaluating single-reference methods, though a few challenging cases are incorporated. Consequently, we think that the TBE listed in Table 6 contribute to fulfill the need of more accurate reference excited state energies, as pointed out by Thiel one decade ago. [START_REF] Schreiber | Benchmarks for Electronically Excited States: CASPT2, CC2, CCSD and CC3[END_REF] However, the focus on small compounds and the lack of charge-transfer states constitute significant biases in that set of transition energies.

Table 6: TBE (in eV) for various states and wave function approaches. For each state, we provide the oscillator strength and percentage of single excitations obtained at the CC3(FC)/aug-cc-pVTZ level. Unless otherwise stated, the TBE(FC)/aug-cc-pVTZ have been obtained directly from exFCI. For the basis-set-corrected TBE, we provide the method used to determine the starting value and the basis set used at the CC3(full) level to correct it. CC3(full)/aug-cc-pVTZ geometries and abbreviated forms of Dunning's basis set are systematically used. a exCI/aug-cc-pVDZ data corrected with the difference between CCSDT/aug-cc-pVTZ and CCSDT/aug-cc-pVDZ values; b CCSDT/aug-cc-pVTZ value; c exCI/aug-cc-pVDZ data corrected with the difference between CC3/aug-cc-pVTZ and CC3/aug-cc-pVDZ values; d CCSDTQ/aug-cc-pVDZ data corrected with the difference between CCSDT/aug-cc-pVTZ and CCSDT/aug-cc-pVDZ values.

Benchmarks

We have used the TBE(FC)/aug-cc-pVTZ benchmark values to assess the performances of twelve wavefunction approaches, namely, ADC(2), ADC(3), CIS(D), CIS(D ∞ ), CC2, STEOM-CCSD, CCSD, CCSDR(3), CCSDT-3, CC3, CCSDT and CCSDTQ. The complete list of results can be found in Table S6 in the Supporting Information. As expected, only the approaches including iterative triples, that is, ADC(3), CCSDT-3, CC3 and CCSDT are able to predict the presence of the doubly excited (n, n) → (π , π ) transition in nitrosomethane (see Tables 5 andS6), but they all yield large quantitative errors. Indeed, the TBE value of 4.72 eV is strongly underestimated by ADC(3) (3.00 eV) and significantly overshot by the three CC models with estimates of 6.02 eV, 5.76 eV and 5.29 eV with CCSDT-3, CC3, and CCSDT, respectively. This 0.26 eV difference between the CCSDT-3 and CC3 values is also the largest discrepancy between these two models in the tested set. Obviously, from a general perspective, one should not use the standard single-reference wavefunction methods to describe double excitations. Therefore, the (n, n) → (π , π ) transition of nitrosomethane was removed from our statistical analysis. Likewise, for the three lowest 1 A excited states of formamide, strong state mixing -involving two or three states -are found at all levels of theory, making unambiguous assignments impossible. Consequently, they are also excluded from our statistics.

In Table 7, we report, for the entire set of compounds, the mean signed error (MSE), mean absolute error (MAE) root mean square deviation (RMS), as well as the positive [Max(+)] and negative [Max(-)] maximum deviations. A graphical representation of the errors obtained with all methods can be found in Figure 1. Note that only singlet states could be computed with the programs used for CCSDR(3) and CCSDT-3. As shown in Fig. 1, CCSDTQ is on the spot with tiny MSE and MAE, which is consistent with the analysis carried out for individual molecules. With this method, the negative and positive maximum deviations are as small as -0.05 eV (singlet n → 4s Rydberg transition of thioformaldehyde) and +0.06 eV ( 1 Σ + u Rydberg transition of dinitrogen), respectively. The three other CC models with iterative triples (CCSDT-3, CC3, and CCSDT) also deliver extremely accurate transition energies with MAE of 0.03 eV only. In agreement with the analysis of Watson and co-workers, we do not find any significant (statistical) differences between CCSDT-3 and CC3, [START_REF] Watson | Benchmarking for Perturbative Triple-Excitations in EE-EOM-CC Methods[END_REF] and although the former theory is formally closer to CCSDT, it does not seem more advantageous nor disadvantageous than CC3 in practice. The very good performance of CC3 is also consistent with the analysis of Thiel and coworkers, who reported a strong agreement with CASPT2, [START_REF] Silva-Junior | Benchmarks of Electronically Excited States: Basis Set Effecs Benchmarks of Electronically Excited States: Basis Set Effects on CASPT2 Results[END_REF] as well as with the conclusion of Szalay's group who found it very close to CCSDT. [START_REF] Kánnár | Accuracy of Coupled Cluster Excitation Energies in Diffuse Basis Sets[END_REF] Nevertheless, CCSDT is not, on average, significantly more accurate than CC3

nor CCSDT-3. In other words, CCSDT is probably not a sufficiently accurate benchmark to estimate the accuracy of CCSDT-3 nor CC3. The perturbative inclusion of triples via CCSDR(3) stands as a good compromise between computational cost and accuracy with a MAE of 0.04 eV, a conclusion also drawn in the benchmark study performed by Sauer and coworkers. [START_REF] Sauer | Benchmarks for Electronically Excited States: A Comparison of Noniterative and Iterative Triples Corrections in Linear Response Coupled Cluster Methods: CCSDR(3) versus CC3[END_REF] These very small average deviations are related to the fact that the majority of our set is constituted of large single-excitation character transitions (see %T 1 in Table 6).

Reasonably, we predict that they would slightly deteriorate for larger compounds. For the second-order CC series, as expected, the errors increase when one uses more approximate models. Indeed, the MAE are 0.08, 0.10, and 0.22 eV with CCSD, STEOM-CCSD and CC2, respectively. The magnitude of the CC2 average deviation is consistent with previous estimates obtained for Thiel's set (0.29 eV for singlets and 0.18 eV for triplets), [START_REF] Schreiber | Benchmarks for Electronically Excited States: CASPT2, CC2, CCSD and CC3[END_REF] for fluorescence energies (0.21 eV for 12 small compounds), 174 as well as for larger compounds (0.15 eV for 0-0 energies of conjugated dyes). [START_REF] Jacquemin | 0-0 Energies Using Hybrid Schemes: Benchmarks of TD-DFT, CIS(D), ADC(2), CC2 and BSE/GW formalisms for 80 Real-Life Compounds[END_REF] Likewise, the fact that CCSD tends to overestimate the transition energies (positive MSE) was also reported previously in several works. [START_REF] Caricato | Electronic Transition Energies: A Study of the Performance of a Large Range of Single Reference Density Functional and Wave Function Methods on Valence and Rydberg States Compared to Experiment[END_REF][START_REF] Schreiber | Benchmarks for Electronically Excited States: CASPT2, CC2, CCSD and CC3[END_REF][START_REF] Watson | Benchmarking for Perturbative Triple-Excitations in EE-EOM-CC Methods[END_REF][START_REF] Kánnár | Benchmarking Coupled Cluster Methods on Valence Singlet Excited States[END_REF][START_REF] Kánnár | Accuracy of Coupled Cluster Excitation Energies in Diffuse Basis Sets[END_REF]159,174 It can be seen that Nooijen's STEOM approach, which was much less benchmarked previously, delivers an accuracy comparable to CCSD, with a smaller MSE but a large dispersion. More surprisingly, we found a MAE smaller with CCSD than with CC2, which contrasts with the results reported for Thiel's set, [START_REF] Sauer | Benchmarks for Electronically Excited States: A Comparison of Noniterative and Iterative Triples Corrections in Linear Response Coupled Cluster Methods: CCSDR(3) versus CC3[END_REF] but is consistent with Kannar, Tajti and Szalay conclusion. [START_REF] Kánnár | Accuracy of Coupled Cluster Excitation Energies in Diffuse Basis Sets[END_REF] We attribute this effect to the small size of the compounds treated herein. Indeed, analyzing the TZVP values of Ref. 30, it appears clearly that CC2 more regularly outperforms CCSD for larger compounds.

As expected, the results for CIS(D ∞ ) and ADC(2), two closely related theories, [START_REF] Dreuw | The Algebraic Diagrammatic Construction Scheme for the Polarization Propagator for the Calculation of Excited States[END_REF]144 are nearly equivalent, with only 4 (out of 106) cases for which a difference of 0.01 eV could be evidenced (Table S6). In addition, Table 7 evidences that ADC(2) provides an accuracy similar to CC2 for a smaller computational cost, whereas CIS(D) is slightly less accurate. Both outcomes perfectly fit previous benchmarks. [START_REF] Winter | Benchmarks for 0-0 Transitions of Aromatic Organic Molecules: DFT/B3LYP, ADC(2)[END_REF][START_REF] Jacquemin | 0-0 Energies Using Hybrid Schemes: Benchmarks of TD-DFT, CIS(D), ADC(2), CC2 and BSE/GW formalisms for 80 Real-Life Compounds[END_REF][START_REF] Harbach | The Third-Order Algebraic Diagrammatic Construction Method (ADC(3)) for the Polarization Propagator for Closed-Shell Molecules: Efficient Implementation and Benchmarking[END_REF]144,174 Conversely, we found that ADC (3) results are rather poor with average deviations larger than the ones obtained with ADC (2) and a clear tendency to provide red-shifted transition energies with a MSE of -0.15 eV. This observation is in sharp contrast with a previous investigation which concluded that ADC(3) and CC3 have very similar performances, 48 though the ADC(3) excitation energies were also found to be, on average, smaller by 0.20 eV compared to their CC3 counterparts. At this stage, it is difficult to know if the large MAE of ADC(3) reported in Table 7 originates solely from the small size of the compounds treated herein. However, the fact that the CCSD MSE is relatively small compared to previous benchmarks hints that the choice of compact compounds has a non-negligible effect on the statistics.

Let us analyze the ADC(3) errors more thoroughly. First, ADC(3) deviations are quite large for all subsets (vide infra). Second, we have found that, for the 46 transition energies for which ADC(2) yields an absolute error exceeding 0.15 eV compared to our TBE, the signs of the ADC(2) and ADC(3) errors systematically differ (see Figure 2), i.e., ADC (3) goes in the right "direction" but has the tendency to over-correct ADC(2). This is clearly reminiscent of the well-known oscillating behavior of the Møller-Plesset perturbative series for ground state properties. Third, this overestimation of the corrections pertains for the We provide a more detailed analysis for several subsets of states in Table S7 in the SI.

Globally, we found no significant difference between the singlet and triplet transitions, though all CC models (except STEOM-CCSD) provide slightly smaller deviations for the latter transitions, in line with their larger single-excitation character. With the computationally lighter methods, CIS(D), CIS(D ∞ ), ADC(2), and CC2, the MAEs are significantly smaller for the valence transitions (0.20, 0.15, 0.15, and 0.18 eV, respectively) than for the Rydberg transitions (0.32, 0.29, 0.29, and 0.26 eV, respectively). We also found MSE of opposite signed for valence and Rydberg transitions with CC2, which fits the results of Kannar and coworkers. [START_REF] Kánnár | Accuracy of Coupled Cluster Excitation Energies in Diffuse Basis Sets[END_REF] Surprisingly, ADC(3) gives 0.28 and 0.17 eV MAE for valence and Rydberg, respectively. All CC methods including triples theories deliver similar deviations for both sets of states. All methods provide smaller (or equal) MAE for the n → π than for the π → π transitions, which was already found for Thiel's set. [START_REF] Schreiber | Benchmarks for Electronically Excited States: CASPT2, CC2, CCSD and CC3[END_REF] The differences are particularly significant with CIS(D), CC2, STEOM-CCSD and ADC(3) with errors twice larger for π → π than n → π states. Finally, when considering the few states with %T 1 smaller than 90%, we logically found larger statistical errors with, for example, MAE of, e.g., 0.03 eV for CCSDTQ, 0.04 eV for CC3, and 0.06 eV for CCSDT-3.

On the use of a compact basis set

In several of the molecules considered here, we have found that adding corrections for basis set effects determined at the CC3 level to exFCI/aug-cc-pVDZ results effectively provides accurate estimates of the exFCI values directly determined with larger bases. Nevertheless, the dreadful scalings of both exFCI and CCSDTQ make the size of the atomic basis the central bottleneck. For this reason, we have tested the use of one of most compact basis encompassing both diffuse and polarization functions, namely Pople's 6-31+G(d). We have performed CC3, CCSDT, and CCSDTQ calculations with this particular basis. The results are collected in the Supporting Information (Table S8). First, we compare the 6-31+G(d) results to those obtained with the same theoretical method in conjunction with the aug-cc-pVTZ basis set.

As expected, large discrepancies are found with mean absolute deviation of 0.20, 0.19, and 0.25 eV, for CC3, CCSDT, and CCSDTQ, respectively. 175 Secondly, by adding the differences between the CC3/aug-cc-pVTZ and CC3/6-31+G(d) results to the CCSDT/6-31+G(d) and CCSDTQ/6-31+G(d) values, we obtained improved values. Such procedure yields very good estimates of the actual aug-cc-pVTZ results, as the MAE are down to 0.01 eV with no error larger than 0.04 eV for both CCSDT and CCSDTQ. This is a particularly remarkable result for Rydberg states that are extremely basis set dependent. For example, for the 3 A 2 (n → 3p) transition in water, the CCSDTQ/6-31+G(d) value of 10.34 eV is more than 1 eV above its CCSDTQ/aug-cc-pVTZ counterpart (9.23 eV, see Table 1). Applying the CC3 basis set correction makes the final error as small as 0.03 eV. This composite methodology opens the way to calculations on larger systems without significant loss of accuracy.

Conclusions and outlook

We have defined a set of more than 100 vertical transition energies, as close as possible to the FCI limit. To this end, we have used both the coupled cluster route up to the highest computationally-possible order and the selected configuration interaction route up to 32 the largest technically-affordable number of determinants, that is here about few millions.

These calculations have been performed on 18 compounds encompassing one, two or three non-hydrogen atoms, using geometries optimized at the CC3 level and a series of diffuse Dunning's basis sets of increasing size. It was certainly gratifying to find extremely good agreements between the results obtained independently with these two distinct approaches with typical differences as small as 0.01 eV between CCSDTQ and exFCI transition energies.

In fact, during the course of this joint work, the two groups involved in this study were able to detect misprints or incorrect assignments in each others calculations even when the differences were apparently negligible. For the two diatomic molecules considered in this work, N 2 and CO, the mean absolute deviation between our theoretical best estimates and the "experimental" vertical transition energies deduced from spectroscopic measurements using a numerical solution of the nuclear Schrödinger equation is as small as 0.04 eV, and it was possible to resolve previous inconsistencies between these "experimental" values. A significant share of the remaining error is likely related to the use of theoretically-determined geometries. Although, it is not possible to provide a definitive error bar for the 110 TBE listed in this work, our estimate, based on the differences between the two routes as well as the extrapolations used in the sCI procedure, is ±0.03 eV.

In another part of this work, we have used the TBE(FC)/aug-cc-pVTZ values to benchmark a series of twelve popular wavefunction approaches. For the computationally most effective approaches, CIS(D), CIS(D ∞ ), ADC(2), and CC2, we found average deviations of ca. 0.21-0.25 eV with strong similarities between the ADC(2) and CC2 results. Both conclusions are backed up by previous works. Likewise, we obtained the expected trend that CCSD overestimates the transition energies, though with an amplitude that is quite small here, likely due to the small size of the compounds investigated. More interestingly, we could demonstrate that STEOM-CCSD is, on average, as accurate as CCSD, and we were also able to benchmark the methods including contributions from triples using reliable theoretical references. Interestingly, we found no significant differences between CCSDT-3, CC3, and CCSDT, that all yield a MAE of 0.03 eV. In other words, we could not demonstrate that CCSDT is statistically more accurate than its approximated (and computationally more effective) forms, nor highlight significant differences between CCSDT-3 and CC3. We have observed that the use of perturbative triples, as in CCSDR(3), allows to correct most of the CCSD error. This evidences that CCSDR(3) is a computationally appealing method as it gives average deviations only slightly larger than with iterative triples. In contrast, for the present set of molecules, ADC(3) was found significantly less accurate than CC3, and it was showed that ADC(3) over-corrects ADC (2). Whether this surprising result is related to the size of the compounds or is a more general trend remains to be confirmed.

As stated several times throughout this work, the size of the considered molecules is certainly one of the main limitations of the present effort, as it introduces a significant bias, e.g., charge-transfer over several Å are totally absent of the set. Obviously, the respective O(N 10 ) and O(e N ) formal scalings of CCSDTQ and FCI do not offer an easy pathway to circumvent this limit. Nevertheless, it appears that performing exFCI calculations with a relatively compact basis, e.g., aug-cc-pVDZ or even 6-31+G(d), and correcting the basis set effects with a more affordable approach, e.g., CC3, might be a valuable and efficient approach to reach accurate vertical excitations energies for larger molecules, at least for the electronic transitions presenting a dominant single excitation character. Indeed, we have shown here that such basis set extrapolation approach is trustworthy. We are currently hiking along that path.
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 12 Figure 1: Histograms of the error patterns for several wavefunction methods compared to TBE(FC). Note the variation of scaling of the vertical axes.

Table 1 :

 1 Vertical transition energies for the three lowest singlet and three lowest triplet excited states of water (top), the four lowest singlet and the lowest triplet states of ammonia (center), and the lowest singlet state of hydrogen chloride (bottom). All states of water and ammonia have a Rydberg character, whereas the lowest state of hydrogen chloride is a charge-transfer state. All values are in eV.

	Water	aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ Litt.	State CC3 CCSDT CCSDTQ CCSDTQP exFCI CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI Exp. a Th. b Th. c	1 B 1 (n → 3s) 7.51 7.50 7.53 7.53 7.53 7.60 7.59 7.62 7.62 7.65 7.64 7.68 7.41 7.81 7.57	1 A 2 (n → 3p) 9.29 9.28 9.31 9.32 9.32 9.38 9.37 9.40 9.41 9.43 9.41 9.46 9.20 9.30 9.33	1 A 1 (n → 3s) 9.92 9.90 9.94 9.94 9.94 9.97 9.95 9.98 9.99 10.00 9.98 10.02 9.67 9.91 9.91	3 B 1 (n → 3s) 7.13 7.11 7.14 7.14 7.14 7.23 7.22 7.24 7.25 7.28 7.26 7.30 7.20 7.42 7.21	3 A 2 (n → 3p) 9.12 9.11 9.14 9.14 9.14 9.22 9.20 9.23 9.24 9.26 9.25 9.28 8.90 9.42 9.19	3 A 1 (n → 3s) 9.47 9.45 9.48 9.49 9.49 9.52 9.50 9.53 9.54 9.56 9.54 9.58 9.46 9.78 9.50	Hydrogen sulfide	aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ Litt.	State CC3 CCSDT CCSDTQ CCSDTQP exFCI CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI Exp. d Exp. e Th. f	1 A 2 (n → 4p) 6.29 6.29 6.29 6.29 6.29 6.19 6.18 6.18 6.18 6.16 6.15 6.15 6.12	1 B 1 (n → 4s) 6.10 6.10 6.10 6.10 6.10 6.24 6.24 6.24 6.24 6.29 6.29 6.29 6.33 6.27	3 A 2 (n → 4p) 5.91 5.90 5.90 5.90 5.90 5.82 5.81 5.81 5.81 5.80 5.79 5.79 5.8 5.78	3 B 1 (n → 4s) 5.75 5.75 5.75 5.75 5.75 5.88 5.88 5.88 5.89 5.93 5.93 5.93 5.4 5.92	Ammonia	aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ Litt.	State CC3 CCSDT CCSDTQ CCSDTQP exFCI CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI Exp. g Exp. h Th. i	1 A 2 (n → 3s) 6.46 6.46 6.48 6.48 6.48 6.57 6.57 6.59 6.59 6.61 6.61 6.64 6.38 6.39 6.48	1 E(n → 3p) 8.06 8.06 8.08 8.08 8.08 8.15 8.14 8.16 8.16 8.18 8.17 8.22 7.90 7.93 8.02	1 A 1 (n → 3p) 9.66 9.66 9.68 9.68 9.68 9.32 9.31 9.33 9.11 9.10 9.14 8.14 8.26 8.50	1 A 2 (n → 4s) 10.40 10.39 10.41 10.41 10.41 9.95 9.94 9.96 9.77 9.77 9.03	3 A 2 (n → 3s) 6.18 6.18 6.19 6.19 6.19 6.29 6.29 6.30 6.31 6.33 6.33 6.35 6.02 j	Hydrogen chloride	aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ Litt.	State CC3 CCSDT CCSDTQ CCSDTQP exFCI CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI Th. k	1 Π(CT) 7.82 7.81 7.82 7.82 7.82 7.84 7.83 7.84 7.84 7.89 7.88 l 7.88 8.23	a Energy loss experiment from Ref. 98; b MRCI+Q/aug-cc-pVTZ calculations from Ref. 99; c MRCC/aug-cc-pVTZ calculations from Ref. 100; d VUV	experiment from Ref. 101; e Electron impact experiment from Ref. 102; f CASPT2/d-aug-cc-pVQZ results from Ref. 103; g Electron impact experiment	from Ref. 104; h Electron impact experiment from Ref. 105; i EOM-CCSD( T )/aug-cc-pVTZ with extra diffuse calculations from Ref. 106; j Deduced	from the 6.38 eV value of the 1 A 2 (n → 3s) state and the -0.36 eV shift reported for the 0-0 energies compared to the corresponding singlet state in

Ref. 107, a splitting consistent with an earlier estimate of -0.39 eV given in Ref. 108; k CC2/cc-pVTZ from Ref. 22; l The CCSDTQ/aug-cc-pVQZ value is 7.88 eV as well.

Table 1

 1 

, these two high-lying states require the use of additional diffuse orbitals to attain convergence. The CC3/t-aug-cc-pVQZ values of 8.60 and 9.15 eV (see Table

S1

in the Supporting Information), are close from the previous results of

Bartlett and coworkers, 106 

Table S2

 S2 in the Supporting Information, the basis set corrections are negligible for all valence states, but significant for some of the Rydberg states, especially, 1 Σ + g that requires two sets of diffuse orbitals to be reasonably close from the basis set limit. Applying CC3/d-aug-cc-pV5Z corrections to the most accurate exFCI data, once can determine TBE values (vide infra)

	that deviate only by 0.02 eV on (absolute) average compared to the experimental estimates
	for the seven valence states of dinitrogen. Considering the expected inaccuracy of 0.01 eV

of the reference values, chemical accuracy is obviously reached without any experimental input. The deviations are about twice larger for the Rydberg states. Nevertheless, for the

Table 2 :

 2 Vertical transition energies for various excited states of dinitrogen (top) and carbon monoxide (bottom). R stands for Rydberg state. All values are in eV. Only one digit reported for that state, see Ref. 120.two 1 Π u states, our TBE values, determined on the basis of exFCI/aug-cc-pVTZ are 12.73 eV and 13.27 eV (vide infra). This indicates that for the lowest 1 Π u state the estimate of Ref.13 (12.78 eV) is probably more accurate than the one of Ref. 119 (12.90 eV), whereas the opposite is likely true for the highest 1 Π u state that was reported to be located at 13.10 eV and 13.24 eV in Refs. 13 and 119, respectively. One could argue that reaching agreement between CI and CC is particularly challenging for these two states. However, performing the basis set extrapolation starting from the CCSDTQP/aug-cc-pVDZ results would yield similar TBE of 12.77 eV and 13.22 eV.

	Dinitrogen	aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ Litt.	State CC3 CCSDT CCSDTQ CCSDTQP exFCI CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI Exp. Th. c	1 Π g (n → π ) 9.44 9.41 9.41 9.41 9.41 9.34 9.33 9.32 9.34 9.33 9.31 9.34 9.31 9.31 9.27	1 Σ -u (π → π ) 10.06 10.06 10.06 10.05 10.05 9.88 9.89 9.88 9.88 9.87 9.88 9.92 9.92 9.92 10.09 1 ∆ u (π → π ) 10.43 10.44 10.43 10.43 10.43 10.29 10.30 10.29 10.27 10.28 10.31 10.27 10.27 10.54	1 Σ + g (R) 13.23 13.20 13.18 13.18 13.18 13.01 13.00 12.97 12.98 12.90 12.89 12.89 12.2 12.20	1 Π u (R) 13.28 13.17 13.13 13.13 13.12 13.22 13.14 13.09 13.03 13.17 13.1 d 12.78 12.90 12.84	1 Σ + u (R) 13.14 13.13 13.11 13.11 13.11 13.12 13.12 13.09 13.09 13.09 13.09 13.2 d 12.96 12.98 12.82 1 Π u (R) 13.64 13.59 13.56 13.56 13.56 13.49 13.45 13.42 13.46 13.42 13.37 13.7 d 13.10 13.24 13.61	3 Σ + u (π → π ) 7.67 7.68 7.69 7.70 7.70 7.68 7.69 7.70 7.70 7.71 7.71 7.74 7.75 7.75 7.56 3 Π g (n → π ) 8.07 8.06 8.05 8.05 8.05 8.04 8.03 8.02 8.01 8.04 8.04 8.03 8.04 8.04 8.05	3 ∆ u (π → π ) 8.97 8.96 8.96 8.96 8.96 8.87 8.87 8.87 8.87 8.87 8.87 8.88 8.88 8.88 8.93	3 Σ -u (π → π ) 9.78 9.76 9.75 9.75 9.75 9.68 9.68 9.66 9.66 9.68 9.66 9.67 9.67 9.86	Carbon monoxide	aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ Litt.	State CC3 CCSDT CCSDTQ CCSDTQP exFCI CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI Exp. Th. g	1 Π(n → π ) 8.57 8.57 8.56 8.56 8.57 8.49 8.49 8.48 8.49 8.47 8.48 8.50 8.51 8.54 8.83	1 Σ -(π → π ) 10.12 10.06 10.06 10.06 10.05 9.99 9.94 9.93 9.92 9.99 9.94 9.99 9.88 10.05 9.97	1 ∆(π → π ) 10.23 10.18 10.17 10.17 10.16 10.12 10.08 10.07 10.06 10.12 10.07 10.11 10.23 10.18 10.00	1 Σ + (R) 10.92 10.94 10.93 10.92 10.94 10.94 10.99 10.96 10.95 10.90 10.95 10.96 10.78 10.98	1 Σ + (R) 11.48 11.52 11.51 11.51 11.52 11.49 11.54 11.52 11.52 11.46 11.51 11.53 11.40	1 Π(R) 11.74 11.77 11.76 11.75 11.76 11.69 11.74 11.72 11.72 11.63 11.69 11.70 11.53	3 Π(n → π ) 6.31 6.30 6.29 6.28 6.29 6.30 6.30 6.28 6.28 6.30 6.30 6.41 6.29 6.32	3 Σ + (π → π ) 8.45 8.43 8.44 8.44 8.46 8.45 8.42 8.44 8.45 8.48 8.45 8.39 8.49 8.51	3 ∆(π → π ) 9.37 9.33 9.34 9.34 9.33 9.30 9.26 9.26 9.27 9.31 9.26 9.23 9.29 9.36	3 Σ -(π → π ) 9.89 9.83 9.82 9.80 9.82 9.60 9.78 9.88	3 Σ + (R) 10.39 10.42 10.42 10.41 10.41 10.45 10.50 10.48 10.47 10.44 10.49 10.4 h

a Exp. b e Th. f a Experimental vertical values given in Ref. 13 and computed from the spectroscopic constants of Ref. 118; b Experimental vertical values given in Ref. 119 and computed from the spectroscopic constants of Ref. 118; c MRCCSD/6-311G with one additional d calculations from Ref. 119; d CI convergence too slow to provide reliable estimates; e Experimental vertical values given in Ref. 120 and computed from the spectroscopic constants of Ref. 118; f CCSDT/PVTZ+ results from Ref. 121; g CASSCF(10,10)/cc-pVTZ results from Ref. 122; h

Table 3 :

 3 Vertical (absorption) transition energies for the five lowest low-lying valence excited states of acetylene (top) and the three lowest singlet and triplet excited states of ethylene (bottom). For acetylene, we also report the vertical emission (denoted [F]) obtained from the lowest trans and cis isomers. All values are in eV. Note that the 7.1 eV value for the Σ - u singlet and triplet states should be viewed as a tentative assignment; b LS-CASPT2/aug-ANO calculations from Ref. 124; c MR-AQCC/extrap. calculations from Ref. 126; d Experimental values collected from various sources from Ref. 116 (see discussions in Refs. 30,130 and 131); e Best composite theory from Ref. 131, close to FCI; f CI convergence too slow to provide reliable estimates.

					Acetylene					
			aug-cc-pVDZ			aug-cc-pVTZ			Litt.
	State	CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI Exp. a Th. b Th. c
	1 Σ -u (π → π ) 1 ∆ u (π → π )	7.21 7.51	7.21 7.52	7.21 7.52	7.20 7.51	7.09 7.42	7.09 7.43	7.10 7.44	7.1 7.2	6.96 7.10 7.30 7.43
	3 Σ + u (π → π ) 3 ∆ u (π → π )	5.48 6.46	5.49 6.46	5.50 6.46	5.50 6.46	5.50 6.40	5.51 6.39	5.53 6.40	5.2 6.0	5.26 5.58 6.20 6.41
	3 Σ -u (π → π ) 1 A u [F](π → π ) 3.70 7.13	7.14 3.72	7.14 3.70	7.14 3.71	7.07 3.64	3.66	7.08 3.64	7.1	6.90 7.05
	1 A 2 [F](π → π ) 3.92	3.94	3.93	3.93	3.84	3.86	3.85		
					Ethylene					
			aug-cc-pVDZ			aug-cc-pVTZ		Litt.
	State	CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI Exp. d Th. e
	1 B 3u (π → 3s)	7.29	7.29	7.30	7.31	7.35	7.37	7.39	7.11	7.45
	1 B 1u (π → π )	7.94	7.94	7.93	7.93	7.91	7.92	7.93	7.60	8.00
	1 B 1g (π → 3p)	7.97	7.98	7.99	8.00	8.03	8.04	8.08	7.80	8.06
	3 B 1u (π → π )	4.53	4.54	4.54	4.55	4.53	4.53	4.54	4.36	4.55
	3 B 3u (π → 3s)	7.17	7.18	7.18	7.16	7.24	7.25	f	6.98	7.29
	3 B 1g (π → 3p)	7.93	7.94	7.94	7.93	7.98	7.99	f	7.79	8.02

30,91, 116,130,131,133

. On the theoretical side, the most complete and accurate investigation dedicated to the excited states of ethylene is due to Davidson's group who performed refined a Electron impact experiment from Ref. 129.

Table 4 :

 4 are Vertical (absorption) transition energies for various excited states of formaldehyde (top), methanimine (center), and thioformaldehyde (bottom). All values are in eV.

					Formaldehyde					
			aug-cc-pVDZ			aug-cc-pVTZ			Litt.	
	State	CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI Exp. a Th. b Th. c
	1 A 2 (n → π )	4.00	3.99	4.00	3.99	3.97	3.95	3.98	4.07	3.98	3.88
	1 B 2 (n → 3s)	7.05	7.04	7.09	7.11	7.18	7.16	7.23	7.11	7.12	
	1 B 2 (n → 3p)	8.02	8.00	8.04	8.04	8.07	8.07	8.13	7.97	7.94	8.11
	1 A 1 (n → 3p)	8.08	8.07	8.12	8.12	8.18	8.16	8.23	8.14	8.16	
	1 A 2 (n → 3p)	8.65	8.63	8.68	8.65	8.64	8.61	8.67	8.37	8.38	
	1 B 1 (σ → π )	9.31	9.29	9.30	9.29	9.19	9.17	9.22		9.32	9.04
	1 A 1 (π → π )	9.59	9.59	9.54	9.53	9.48	9.49	9.43		9.83	9.29
	3 A 2 (n → π )	3.58	3.57	3.58	3.58	3.57	3.56	3.58	3.50		3.50
	3 A 1 (π → π )	6.09	6.08	6.09	6.10	6.05	6.05	6.06	5.86		5.87
	3 B 2 (n → 3s)	6.91	6.90	6.95	6.95	7.03	7.02	7.06	6.83		
	3 B 2 (n → 3p)	7.84	7.82	7.86	7.87	7.92	7.90	7.94	7.79		
	3 A 1 (n → 3p)	7.97	7.95	8.00	8.01	8.08	8.06	8.10	7.96		
	3 B 1 (n → 3d)	8.48	8.47	8.48	8.48	8.41	8.40	8.42			
	1 A [F](n → π ) 2.87	2.84	2.86	2.86	2.84	2.82	2.80			
					Methanimine					
			aug-cc-pVDZ			aug-cc-pVTZ			Litt.	
	State	CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI Th. d	Th. e	
	1 A (n → π )	5.26	5.24	5.25	5.25	5.20	5.19	5.23	5.32	5.18	
	3 A (n → π )	4.63	4.63	4.63	4.63	4.61	4.61	4.65			
				Thioformaldehyde					
			aug-cc-pVDZ			aug-cc-pVTZ		Litt.	
	State	CC3 CCSDT CCSDTQ exFCI CC3 CCSDT exFCI Exp. a Exp. f	
	1 A 2 (n → π )	2.27	2.25	2.26	2.26	2.23	2.21	2.22		2.03	
	1 B 2 (n → 4s)	5.80	5.80	5.82	5.83	5.91	5.89	5.96	5.85	5.84	
	1 A 1 (π → π )	6.62	6.60	6.51	6.5 g	6.48	6.47	6.4 g	6.2	5.54	
	3 A 2 (n → π )	1.97	1.96	1.96	1.97	1.94	1.93	1.94		1.80	
	3 A 1 (π → π )	3.43	3.43	3.44	3.45	3.38	3.38	3.43	3.28		
	3 B 2 (n → 4s)	5.64	5.63	5.65	5.66	5.72	5.71	5.6 g			
	1 A 2 [F](n → π ) 2.00	2.00	1.98	1.98	1.97	1.98	1.95			

a Various experimental sources, summarized in Ref. 116; b MR-AQCC-LRT calculations from Ref. 134; c CC3/aug-cc-pVQZ calculations from Ref. 30; d DMC results form Ref. 135; e CCSDT/aug-cc-pVTZ calculations from Ref. 59; f 0-0 energies collected in Ref. 136; g CI convergence too slow to provide reliable estimates.

Table 5 :

 5 Vertical (absorption) transition energies for various excited states of diazomethane (top) and ketene (bottom). All values are in eV. Electron impact experiment from Ref. 145; b NEVPT-PC from Ref. 127; c CI convergence too slow to provide reliable estimates; d Maximum in the gas UV from Ref. 146; e CCSDT/TZVP from Ref. 58; f Electron impact experiment from Ref. 147; g CC3/aug-cc-pVTZ from Ref. 32; h VUV maxima from Ref.

	aug-cc-pVDZ	aug-cc-pVTZ	Litt.

a p Electron impact experiment from Ref. 116; q STEOM-CCSD/Sad+//CCSD/Sad+ results from Ref. 154. r Maximum in the gas UV from Ref. 155; s CASPT2/ANO results from Ref. 156; t CASSCF/cc-pVDZ results from Ref. 157; u exCC3//MP2 result from Ref. 128.

Table 6

 6 and provide a total of 110 transition energies. This set of states is rather diverse with 61 singlet and 45 triplet states, 60 valence and 45 Rydberg states, 21 n → π and 38 π → π

Table 7 :

 7 Mean signed error (MSE), mean absolute error (MAE), root-mean square deviation (RMS), positive [Max(+)] and negative [Max(-)] maximal deviations with respect to TBE(FC)/aug-cc-pVTZ for the transition energies listed in TableS6. All values are in eV and have been obtained with the aug-cc-pVTZ basis set.

	Method	Nb. States MSE MAE RMS Max(+) Max(-)
	CIS(D)	106	0.10 0.25 0.32	-0.63	1.06
	CIS(D ∞ )	106	-0.01 0.21 0.28	-0.76	0.57
	CC2	106	0.03 0.22 0.28	-0.71	0.63
	STEOM-CCSD	102	0.01 0.10 0.14	-0.56	0.40
	CCSD	106	0.05 0.08 0.11	-0.17	0.40
	CCSDR(3)	59	0.01 0.04 0.05	-0.07	0.25
	CCSDT-3	58	0.01 0.03 0.05	-0.07	0.24
	CC3	106	-0.01 0.03 0.04	-0.09	0.19
	CCSDT	104	-0.01 0.03 0.03	-0.10	0.11
	CCSDTQ	73	0.00 0.01 0.02	-0.05	0.06
	ADC(2)	106	-0.01 0.21 0.28	-0.76	0.57
	ADC(3)	106	-0.15 0.23 0.28	-0.79	0.39
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