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A hybrid L-shaped method to solve a bi-objective stochastic 

transshipment-enabled inventory routing problem 

 
Abstract 

Recently, ‘greenness’ has become a very much needed condition in the transportation 
industry. In this study we develop a ‘green’, transshipment-enabled model for the Inventory 
Routing Problem (IRP), in a many-to-one distribution network where demand for each 
product is realistically assumed to be uncertain. The proposed framework is a bi-objective 
stochastic programming model. The first objective function aims to minimize the expected 
value of the supply chain costs including inevitable shortage costs. The second objective 
function aims to minimize the total quantity of the greenhouse gas (GHG) emission produced 
by the vehicles and disposed products. We introduce a very practical innovative application 
of transshipment option to control transportation cost, reduce GHG emissions and absorb the 
uncertainty. In order to solve the proposed model an efficient hybrid algorithm combining L-
shaped method (a sort of decomposition approach for stochastic optimization) and 
compromise programming (a well-known approach for multi-objective optimization) is 
proposed. The results show that how companies can make a reasonable tradeoff between the 
cost and environmental concerns and emphasize the role of transshipment option as a lever to 
improve both economic and environmental performance and absorb the demand fluctuations. 
Keywords: Inventory routing problem; stochastic programming; transshipment; 

green supply chain; uncertain demand; hybrid L-shaped method. 

 
1.  Introduction 

The inventory routing problem has attracted considerable attention in the academic literature 

because it integrates two well-studied problems in supply chain management (SCM): 

inventory control and vehicle routing. These two issues have been traditionally dealt with 

independently, but their integration may have an impressive impact on the overall system 

performance (Campbell and Savelsbergh 2004).  

Logistics and supply chain is now a widely-recognized source of added value for the same 

companies that are also under pressure to improve their environmental track record. Freight 

transport, storage, handling of materials, and the inventory management all correspond to 

areas where companies can optimize their service, beat off competition, and boost profits. 

However, this can potentially attainable at an environmental footprint which, in the eyes of 
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customers looking for a greener, more responsible service, could ultimately lead to a financial 

loss. Despite the importance of "green" concept in logistics and supply chain, relatively few 

studies have looked at the integration of this concept in inventory routing problems 

(Alkawaleet et al. 2014, Soysal et al. 2016). We investigate where there is a green will, there 

is a profitable way by reassessing the policies with which companies transport, store and 

deliver supplies to their many clients with stochastic demands from a large number of points. 

We examine this precise dilemma, seeking to identify the happiest possible medium between 

smooth business operations and minimal pollution levels by the help of transshipment policy. 

The remainder of the paper is organized as follows: in Section 2, we review the related 

studies on IRP in the literature and explain the main contributions of this research, in Section 

3, we provide the description of the particular configuration that we consider in our work. 

The mathematical formulation of the problem is provided in Section 4. In section 5, the 

solving procedure is described and followed by a numerical study that is performed in 

Section 6 where we also discuss the managerial insights of this study. The conclusions of our 

work are presented in Section 7 along with some natural avenues for further research in this 

area. 

2. Literature review and motivation 

Recent reviews on the IRP found fewer than a hundred papers addressing the combined 

VRP-inventory management problem (Baitaa et al. 1998, Cordeau et al. 2007, Andersson et 

al. 2010). IRP can be broadly categorized according to the criteria such as single or multi 

products, single or multi-vehicles, finite or infinite planning horizon, single or multi-periods, 

single or multiple customers, single or multi-objective, whether the demand is deterministic 

or stochastic, whether the shortage is ignored or taken to account, whether the environmental 

consideration is considered or neglected and whether the IRP is transshipment-enabled or not. 

An overview of the related studies on IRP is presented in Table 1. Despite the fact that the 
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concept of "green logistics" has recently attracted the attention of the researchers, few studies 

have addressed the environmental concerns in their IRP models (Al Shamsi et al. 2014, 

Soysal et al. 2015 and 2016). Although Soysal et al. (2015) and (2016) have considered CO2 

emissions of the vehicles (as a function of load and speed) but they assumed a homogenous 

fleet, converse to the heterogeneous fleet in our model where the various vehicle types with 

different capacity, environmental index, and fuel consumption rates are available and 

therefore an appropriate vehicle-type assignment should be also taken into account. 

Additionally, very few studies on IRP has been devoted to the transshipment policy 

(Mirzapour al-e-hashem and Rekik 2012, Coelho et al. 2012, Jemai et al. 2012), and none of 

these none-traditional approaches has applied the multi-objective framework to elaborate the 

inherent conflict between economic aspects and environmental concerns in IRP decisions. 

Also, in all variants of IRP, we couldn't find any effort to study the impact of the 

transshipment on GHG emissions except Mirzapour al-e-hashem and Rekik (2012) in which 

the demand is assumed to be deterministic unlike to our problem. Therefore, the question that 

how the transshipment-enabled IRP (TRIP) can be implemented in an uncertain environment 

has been never studied. Our problem is also classified as a many-to-one structure. There are 

very few studies in this category (cf. Soysal et al. 2016) under which a set of suppliers serve a 

single customer (or manufacturer). The other variants of supply networks are one-to-many 

and many-to-many. In the former structure a single supplier serves a set of customers (e.g. Jia 

et al. 2014), and in the latter structure (e.g. Ramkumar et al. 2012) several suppliers serve a 

set of customers. 

According to Table 1, Several other variants of IRP can also be found depending on the 

other assumptions in the models such as IRP with direct deliveries (Mishra and Raghunathan 

2004), the IRP with heterogeneous fleet (Persson and Gothe-Lundgren 2005, Mirzapour al-e-

hashem and Rekik, 2014), the IRP with time windows (Liu and Lee 2011, Iassinovskaia et al. 
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2016 ), the IRP for perishable products (Coelho and Laporte 2014, Hauge et al. 2014, Mirzaei 

& Seifi  2015, Soysal et al. 2015) and cyclic IRPs (Chitsaz et al. 2016). The reader is refereed 

to Andersson et al. 2010 and Coelho et al. 2014 for an excellent and comprehensive overview 

about IRPs. 

Our paper contributes to the existing investigations by considering the transshipment 

impact on both the economic and the environmental performance of a stochastic TIRP in a 

many-to-one supply chain. As mentioned before, in this structure, a set of suppliers serves a 

single assembly plant. In a stochastic transshipment-enabled IRP, a vehicle may provide a 

specific product for the assembly plant, either directly from the main supplier who is the 

original manufacturer of that product or from a temporary storage of some other suppliers 

where this product may be available (temporarily stored there in previous trips (Nonas and 

Jornsten 2005, 2007, Jemai et al. 2012). As Table 1 shows, transshipment option is rarely 

integrated within the context of inventory routing problems (Coelho et al. 2012, Mirzapour 

al-e-hashem and Rekik, 2014, Chrysochoou and Ziliaskopoulos, 2015). It is even more scarce 

when both economic and environmental aspects of transshipment is analyzed (Mirzapour al-

e-hashem and Rekik, 2014). For instance, Mirzapour al-e-hashem and Rekik (2014) 

emphasized that all these investigations considered only the economic performance of the 

IRP without looking after the implication on the environmental footprint of the joint 

inventory and distribution solution. Transshipment option can theoretically result in 

improvement of the performance of the supply chain through reductions of the lead times, 

saving some routes (Economic effects), as well as greenhouse gas emissions (environmental 

effects). However, this policy can be limited in practice, when the suppliers are not 

coordinated very well or compete together. On the other hand, double handling maybe creates 

some operational issues. In this paper, we investigate the important role of transshipment as 

an option dealing with uncertain demand. It is discovered that the transshipment could absorb 
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a lion share of demand's perturbations and suggests appropriate solutions to both economic 

and environmental concerns. We will show cases where transshipment could bring 

conflicting situations to the decision maker and cases where transshipment is aligning both 

the economic and environmental objectives in the presence of uncertainty. Besides, our bi-

objective modeling of the problem and the associated numerical results will give the freedom 

to the decision maker to judgmentally choose between many sets of solutions reflecting 

his/her own preference on the ecological footprint. 

Based on above discussion, the green considerations, the option of transshipments and the 

assumption of demand uncertainty constitute collectively a significant departure from the 

current state of knowledge in this area. 
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Table 1. Overview of the related literature on IRP 

 Shortage Uncertainty Greenness Transshipment Multi-
Objective 

Multi-
period Fleet Modeling 

approach 
Solution 

procedure 
Other 

features 
Bell et al. (1983) - - - - -  Homogeneous MIP Lagrange + B&B  
Federgruen and 
Zipkin 1984 

√ Demand - - -  Homogeneous MIP 
Bender's 

Decomposition 
 

Chien et al. 1989 - - - - -  Homogeneous MIP 
Lagrange + 
Heuristic 

 

Speranza and 
Ukovich 1994 

- - - - -  Homogeneous MIP MPSX solver  

Bertazzi and 
Speranza 2002 

- - - - - √ Homogeneous MIP Relaxation  

Kleywegt et al. 
2002 

√ Demand - - - √ Homogeneous Markov 
DP 

+Approximation 
direct 

deliveries 
Campbell and 
Savelsbergh 2004 

- - - - - √ Homogeneous IP 
Decomposition + 

Heuristic 
 

Kleywegt et al. 
2004 

√ Demand - - - √ Homogeneous Markov 
DP  

+Approximation 
 

Mishra and 
Raghunathan 2004 

√ Demand - - - √ Single MIP Exact 
product 

substitution 

Sindhuchao et al. 
2005 

- - - - - - Homogeneous MIP 
B&P +  

neighborhood 
search heuristic 

 

Persson and Gothe-
Lundgren 2005 

- - - - - √ Heterogeneous MIP 
Column 

generation 
 

Abdelmaguid  and 
Dessouky 2006 

√ - - - - √ Homogeneous MIP GA  

Archetti et al. 2007 - - - - - √ Homogeneous MIP B&C  

Yu et al., 2008 - - - - - √ Homogeneous MIP 
Lagrange + sub-

gradient 
split delivery 

Abdelmaguid et al. 
2009 

√ - - - - √ Homogeneous MIP Heuristic  

Hvattum and 
Løkketangen 2009 

√ Demand - - - - Homogeneous Markov 
Scenario-tree -

heuristic 
 

Huang and Lin 
2010 

√ Demand - - - - Homogeneous MIP ACO vehicle failure 

Shen et al. 2011 √ - - √ - √ Homogeneous MIP Lagrangian  
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Relaxation 
Bertazzi et al. 2011 √ Demand - - - √ Single DP B&C + Rollout  
Moin et al. 2011 - - - - - √ Homogeneous ILP Hybrid GA  
Liu and Lee 2011 √ - - - - - Homogeneous MIP Tabu search Time window 
Mirzapour al-e-
hashem and Rekik 
2012 

√ - √ √ - √ Heterogeneous MIP B&B  

Jemai et al. 2012 √ Demand - √ -  Homogeneous (R,s,S) Exact  

Coelho et al. 2012 - - - √ -  Single MIP 
Neighborhood 
search heuristic 

 

Solyalı et al. 2012 √ Demand - - - √ Homogeneous 
Robust + 

MIP 
B&C  

Shukla et al. 2013 - Demand - - - √ Homogeneous NLMIP GA  
Coelho and Laporte 
2014 

- - - - - √ Homogeneous MIP B&C Perishability 

Hauge et al. 2014 - - - - - - Homogeneous IP 
Column 

generation 
Waste 

collection 
Al Shamsi et al. 
2014 

- - √ - - √ Homogeneous MIP Simulation Perishability 

Alkawaleet et al. 
2014 

- - √ - - - Heterogeneous IP GAMS  

Mirzaei & Seifi  
2015 

Lost Sale - - - - √ Homogeneous MIP 
Simulated 
annealing 

Perishability 

Soysal et al. 2015 √ Demand √ - - √ Homogeneous 
Chance 

constraint 
Simulation Perishability 

Soysal et al. 2016 √ Demand √ - - √ Homogeneous 
Chance 

constraint 
CPLEX Perishability 

Cheng et al. 2016 - - √ - - √ Homogeneous MIP Hybrid GA  
Chitsaz et al. 2016 - - - - - √ Homogeneous MIP Decomposition Cyclic IRP 
Iassinovskaia et al. 
2016 

- - - - - √ Homogeneous MIP B&C + heuristics Closed loop 

Soysal 2016b √ Demand √ - - √ Homogeneous MIP CPLEX Closed loop 

This Study Backorder 
& Lost sale Demand √ √ √ √ Heterogeneous MIP L-shaped Method Disposal 
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3.  Problem description 

Assume a many-to-one supply network consists of one assembly plant and a set of suppliers 

each one providing one product type to the plant. The planning horizon is not limited but for 

modeling purpose it is set to two periods. The demand of the assembly plant for each product 

in each period is uncertain. The company needs to decide on the order quantities before the 

realization of the uncertain demand.  

The company is assumed to have an internal contract with a rental truck company (Depot) 

that ships the forecasted requirements from the suppliers to the assembly plant (without being 

aware of the real demand at the start of each period). This rental truck company has a 

heterogeneous fleet including several types of trucks. Each one is characterized by its own 

capacity, fixed and variable transportation cost and also its GHG emission index (without loss 

of generality we can also consider electrical vehicles or other low GHG emission vehicles). 

At the end of the period, the real demand of the assembly plant is unfolded and the inventory 

or shortage levels in the assembly plant will be specified accordingly. At the start of the next 

period, and according to which scenario has already been occurred, the next requirement 

quantities must be forecasted and consequently the appropriate vehicle routes and vehicle 

types must be selected. The network of this many-to-one supply chain discussed above is 

graphically depicted in Figure 1. 

 

Figure 1. General schema of many-to-one supply network. 
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When a truck visits a supplier, it picks up some parts based on the forecasted demand of 

assembly plant and its own container capacity. It is also assumed a transshipment option 

which allows the vehicle to unload his cargo in supplier store (at least for one period) prior to 

pick up new cargo. Note that the transshipment option is impossible when the supplier has no 

empty places in its warehouse. This transshipment option has two advantages; first it enables 

the vehicle to empty his container partially and copes with his container capacity limitation to 

pick up the new necessary cargo from the supplier. Second, it can help the trucks to save few 

routes, since the cargo was unloaded in the supplier warehouse can be either used by other 

trucks in current period (this state is not an optimal plan as shown in Moein et al. 2011), or in 

the succeeding periods to probably fulfill the future demands of the assembly plant. It should 

be noted that the products type unloaded by the trucks in a supplier store is different from the 

products type produced by that supplier. Keeping these kinds of products at supplier 

storehouse obviously imposes a holding cost to that supplier. In this case assembly plant 

undertakes the payment of this extra holding cost. We will show how the transshipment 

option especially in uncertain environment plays as a low-cost lever to increase the 

performance of the inventory routing problem and simultaneously decrease the GHG 

emissions.    

 We propose a bi-objective stochastic programming model which aims to find the best 

configuration of the vehicles types and routes, and the ideal quantities of pickups, deliveries 

and transshipments in each period in the presence of the demand uncertainty, and in order to 

meet the two following conflicting criteria, simultaneously; minimizing the weighted sum of 

the expected value of total costs and minimizing the expected GHG emissions. Total costs of 

the supply chain include the inventory holding, shortage, transportation costs and costs of 

disposal process. Also the GHG emission is twofold; the quantity of the GHG level produced 

by the vehicles during transportation and that produced by products during the disposal 
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process. 

4.  Mathematical formulation  

In order to solve the problem discussed in the previous section, a stochastic optimization 

approach is proposed.  

A standard single objective formulation of the two-stage stochastic program is written as 

follows (Kall and Wallace 1994, Sahinidis 2004): 

0

,..

))](,([min:P1

≥
=

+ ∈

x

bAxts

sxQExc s
T

x
ξξ

 

where ))(,( sxQ ξ  is the optimal value of the second stage problem: 
 

0

,..

min:P2

≥
=+

y

hWyTxts

yqT

x

 

where x and y are vectors of the first and second stage decision variables, respectively. The 

second stage problem depends on the data ),,,( WThq=ξ  where any or all elements can be 

random. The expectation in P1 is with respect to the probability distribution of)(sξ where s is 

a random variable. Matrices T and W are called technological and recourse matrices, 

respectively. The second stage problem P2 can be considered as a penalty for the violation of 

the constraint hTx = . 

P1 with variables x also known as design variables constitutes the first stage which needs to 

be decided prior to the realization of the uncertain parameters. P2 with variables y constitutes 

the second stage also known as control variables are those made after the uncertainty 

associated with the random variables is unveiled. Under the assumption of discrete 

distributions of the uncertain parameters, the problem can be equivalently formulated as a 

large-scale linear program which can be solved using standard linear programming 

techniques which is definitely inefficient for large scale problems, so we apply the L-shaped 
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method to solve the problem in a very reasonable time. Since the proposed model is a bi-

objective programming, an iterative framework taking advantage of both L-shape method and 

compromise programming technique is developed. 

The proposed bi-objective stochastic and transshipment-enabled IRP framework uses the 

following notations: 

Sets 

1}N,…  {0,1, +=Ω  set of all nodes 
N} ,… 2, {1,=ω   set of suppliers 

{0}=O   depot  
1}{N +=F   assembly plant 
},…  {1, P=φ  set of product types 
},…  {1, S=ξ  set of scenarios 

},…  {1, K=η  set of vehicle types 
Parameters 

psDF   demand of product type p (1, 2, …,P) at the first period under scenario s. 

psDS   demand of product type p (1, 2, …,P) at the second period under scenario s. 

kv
  

variable transportation cost per unit distance for vehicle type k (1, 2, …, K). 

ku
 

fixed transportation cost for vehicle type k per trip. 

kNT
 

the number of available vehicles type k. 

kcap  capacity of vehicle type k. 
iicap  extra capacity of supplier i which allows vehicles to store the products of other suppliers   

iph  inventory holding cost in node i for product type p per product unit per period. 

pπ
 

unit shortage cost (backorder) for product type p at the first period in the assembly plant. 

pπ ′
 

unit shortage cost (lost sale) for product type p at the second period in the assembly plant. 

ipsc
 

disposal cost in node i for product type p per product unit at the end of the second period. 

ijc
  

length of arc (i, j). 

kG  GHG emission quantity produced by vehicle type k per traveling distance. 

pG ′  
GHG emission quantity produced by disposing product type p at the end of the second 
period. 

sρ
 

occurrence probability of scenario s (1, 2, …, S). 

λ  relative weight of the expected total cost. 

Decision variables     

psIF   
the inventory level of product type p in the assembly plant at the end of the first period 
under scenario s. 

ipsIS   
the inventory level of product type p in supplier i or in the assembly plant at the end of the 
second period under scenario s. 

psBF   the shortage level of product type p in the assembly plant at the end of the first period 
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Minimizing the expected total cost, Z1 as well as minimizing the expected GHGs, Z2, while 

respecting the different constraints could be written as follows: 

4342144444444 344444444 21
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++=
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subject to:  

ps
ki

1)pki(Npsps DFQFBFIF −=− ∑
∈

+
,ω

sp,∀  (4) 

ipsipips PSTFIS −= sipi ,, ≠∈∀ ω  (5) 

under scenario s. 

psBS   
the shortage level of product type p in the assembly plant at the end of the second period 
under scenario s. 

ijkXF   
a binary variable that determines whether arc (i, j) is visited by vehicle type k at the first 
period. 

ijksXS  
a binary variable that determines whether arc (i, j) is visited by vehicle type k at the second 
period under scenario s. 

ikYF  
a binary variable that determines whether supplier i is visited by vehicle type k at the first 
period. 

iksYS 
a binary variable that determines whether supplier i is visited by vehicle type k at the 
second period under scenario s. 

ijpkQF  
the quantity of product type p transported by vehicle type k trough arc (i, j) in the first 
period. 

ijpksQS  
the quantity of product type p transported by vehicle type k trough arc (i, j) in the second 
period under scenario s. 

ipPF  the quantity of product type p picked from supplier i at the first period. 

ipsPS  the quantity of product type p picked from supplier i at the second period under scenario s. 

ipTF  the quantity of product type p transshipped to supplier i at the first period. 

FSC first stage costs. 

SSCs second stage costs under scenario s. 

FSG total GHGs generated in the first stage. 

SSGs total GHGs generated in the second stage under scenario s. 
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0=0ipkQF kpi ,,ω∈∀  (33) 

0=0ipksQS skpi ,,,ω∈∀  (34) 

integerTFPSPFQSQF ipkipksipkijpksijpk ,0,,,, ≥  (35) 
{0,1}XSXFYSYF ijksijkiksik ∈,,, skpji ,,,, Ω∈∀  

 

4.1. Objective function components 

Equation (1) is the first objective function of the proposed model which has three 

components; the first component (1_1) is the fixed and variable transportation cost at the first 

period plus the inventory holding cost of the transshipped products, which is not subject to 

uncertainty (first stage decision variables); this component is hereafter called as “first stage 

costs” (FSC). The second component of the first objective function, Eq. (1_2), is the expected 

value of the second stage costs (E[SSCs]), consisting of inventory holding costs, shortage 

costs, scrap and transportation costs, where 
sSSC is defined in Eq. (3). Therefore the first 

objective function of the proposed model is summarized as ]E[SSCFSCZMin s×+= λ1 . 

Equation (2) is the second objective function of the proposed model and it relates to the 

greenhouse gas emission levels produced by the combustion of fuels in vehicles and the 

scraping process of products at the end of the second period. This objective function is also 

composed of the two following components; the first part of this objective function is the 

total quantity of GHG emission level produced by the vehicles at the first period and 

therefore is not subject to uncertainty. In other words, this part of the objective function 

measures the GHG level produced by vehicles when the real demand is unknown. We refer to 

this part as the first stage GHGs (FSG).  

∑∑
∈

=
Ωi,j k

ijkijk XFcGFSG  (36) 

The second part of the second objective function is the expected value of the total amount 

of GHG emissions produced by the vehicles and scraped products under all possible 
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scenarios. Note that the products which remain unused at the end of the second period should 

be scraped, and this process produces additional amounts of GHGs. 

We refer to this term as the second stage GHGs (SSG) and rewrite it as follows: 

( )∑ =
s

sss ]E[SSGSSGρSSG=  (37) 

Therefore the second objective function of the proposed model is summarized as

]E[SSGFSGZMin s×+= λ2 . 

4.2. Constraints 

Constraints (4) are the inventory balance equations for the assembly plant at the first 

period, and determine that for each scenario, the inventory or shortage level for product type 

p is equal to the quantity of that product transported to the assembly plant, minus its demand. 

Constraints (5) are the inventory balance equations at the suppliers’ side at the second period 

and determine the inventory level for product type p at supplier i (i≠p) is equal to the quantity 

of that product transshipped to this supplier in the previous period, minus the quantity picked 

up by the vehicles in the current period. 

Constraints (6) are an inventory balance equation in the assembly plant at the second 

period, and implies that for each scenario, the inventory or shortage level for product type p 

in the current period is equal to its previous level in addition to the total quantity delivered by 

the vehicles, minus its demand in the current period. Constraints (7-8) guarantee that each 

supplier should not be visited by the vehicles more than once at the first period. Constraints 

(9-10) are similar to constraints (7-8) but they refer to the second stage variables under 

scenario s. Constraints (11) are the inventory balance equations for supplier i visited during 

the first period and insure that the quantity of product type p shipped from supplier i is equal 

to the quantity of that product shipped to this supplier, plus the quantity of that product 

picked up by the vehicles, minus the quantity transshipped to this supplier. 
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Constraints (12) are the same as constraints (11) for the second period and specify for each 

scenario that the quantity of product type p shipped from supplier i is equal to the quantity of 

that product shipped to this supplier, plus the quantity of that product picked up by the 

vehicles. Constraints (13-14) guarantee for the first and second period that the vehicle's 

capacity should not be exceeded, and also implies that the vehicles could visit arc (i, j) only 

once that the variables XF and XS take positive values. 

Constraints (15) insure for each scenario that the vehicles could not pick up products from 

suppliers which are not the producer of that product, in a quantity greater than that 

transshipped to them in previous period. Constrains (16) specify that the quantity of products 

transshipped to supplier i cannot exceed the supplier's warehouse capacity which has been 

specifically assigned to transshipment. Constrains (17) imply that the vehicles in the first 

period could pick up each product merely from its own supplier. Constraints (18) state that in 

the case of transshipment, a product must be transported from its producer to the other 

suppliers. Constraints (19-20) limit the number of vehicles type k available in each period to 

a given quantity. Constraints (21-24) are introduced to prevent the formation of sub-tours and 

closed cycles that are not part of the routes between the depot and assembly plant. In other 

words, this set of constraints ensures that a trip should start at depot (node 0) and end at 

assembly plant (node N+1). Constraints (25-32) determine the impossible arcs in each period. 

Constraints (33-34) specify for the first and seconds periods that the vehicles should not ship 

back any quantity to depot (node 0). Finally, constraints (35) define the variable types. 

5. Solving Procedure 

When the uncertainty is assumed to take values in a finite set of small cardinality, the two-

stage problem is tractable, and even for larger cardinality (but still finite) uncertainty sets 

(scenarios), large-scale linear programming techniques, such as Bender’s decomposition, can 

be employed to obtain a tractable formulation. The core challenge in solving two-stage 
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stochastic problems arises from the expectation evaluation of the inner recourse problem. For 

a scenario-based representation of demand uncertainty this is achieved by explicitly 

associating a second-stage variable with each demand scenario and then solving an equivalent 

large-scale extensive formulation of the model. A similar methodology is also applied when 

the uncertainty is described with a probability distribution by discretizing the demand 

distribution using techniques such as Monte Carlo sampling and Gaussian quadrature (Gupta 

and Maranas 2003). Since the proposed model has a bi-objective formulation, it is necessary 

to select an appropriate approach form the well-recognized multi objective decision making 

(MODM) techniques. There are three main categories to deal with multi-objective 

optimization problems: Under the a priori methods, the a posteriori method and the 

interactive methods. In the a priori method, the decision maker states his/her priorities before 

the solution process and the multi-objective optimization problem is transformed into a single 

objective problem. The a posteriori methods rely upon the simultaneous optimization of all 

the objective functions. First the efficient solutions of the problem (Pareto set) are generated. 

Next, at the end of the search process, the decision maker is involved, in order to select the 

most preferred solution among the Pareto set. Under the last methodology (the interactive 

approaches), the decision maker successively drives the search with his/her answers towards 

the most preferred solution (Bozorgi-Amiri et al. 2011, Mirzapour Al-e-Hashem et al. 2012). 

Due to the multi-objective nature of the proposed framework, we use a compromising 

technique to solve the model. In this method the decision maker is questioned to express his 

priorities about the two objectives before the solution process. Then according to his answers 

the weights of each objective (θ) are determined. Therefore, the proposed multi-objective 

optimization problem is transformed into a normalized (dimensionless) single objective 

problem and summarized as follows: 
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On the other hand, the proposed problem is formulated under stochastic programming, so we 

apply an efficient variant of decomposition approach called L-shaped method (Louveaux 

and  Birge, 2009). We merge the proposed compromise programming with L-shaped method 

to cope with multi-objective stochastic model's complexity. In inner loops of the L-shaped 

method, the compromise programming is called. It first solves the model separately with 

single objective functions, Z1, Z2 (setting θ=0 and 1) to obtain Zi min and Zi max (i= 1, 2). Then 

it builds the compromising objective function (Z). The essential steps of the hybrid L-shaped 

method are depicted in Figure 2 and described as follows: 

5.1. Hybrid L-shaped Algorithm 

 1- Set s =0, k1=0, k2 =0, and ϕ = - ∞ ; 
2- Solve master problem, and get first stage variables (��, ��, ��	�	
	��); 
3- Set first stage variables as parameters in Feasibility Problem (FP) (cf. Appendix); 
4- If s=S go to step 7 otherwise set s=s+1 and solve FP under scenario s; 
5- If objective function of FP equals to zero go to step 4 otherwise go to step 6 
6- Set �
 = �
 + 1, � = 0, and calculate parameters for feasibility cut k1 (cf. Appendix) and 
return to step 2. 
7- Set � = 0, and set first stage variables as parameters in Optimality Problem (OP); 
8- If � = �, go to step 9 otherwise set s=s+1, and solve OP under scenario s and calculate

( )Zopt s ; 
9- If  ∑ �� × ����(�)�∈ = ! , the obtained solution is optimal, otherwise proceed; (cf. 
Appendix) 
10- Set	�" = �" + 1, s=0, calculate parameters for Optimality Cut k2 (applying Optimality 
Cut) and return to step 2. 

Where ϕ is the auxiliary variable for Master Problem (Representing second stage part of 

objective function), and 1 1
{1,  …, }Kκ = , 2 2

{1,  …, }Kκ =  are set of all feasibility and 

Optimality cuts respectively. 
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Figure 2. Flowchart of the proposed L-shaped method. 

6. Numerical study and managerial insights 

The aims of this section is fourfold: 1) to demonstrate the straightforward application of the 

model discussed in the previous section; 2) to analyze the impact of transshipment on 

economic and ecological aspects, and study its role in presence of uncertainty, 3) to conduct 

sensitivity analyses for different parameters and derive managerial insights on the model’s 

application and 4) to show the efficiency of the proposed hybrid L-shaped method. 

We consider the case of a typical hospital which is assumed to be supplied by eight 

drugstores (S1, S2, ..., S8) that provide five different medicines. A single fleet (O) with a triple 
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type of special trucks ships the medicines from the drugstores (suppliers) to the hospital in 

each period. Since the demand for this kind of products are highly variable, the forecasted 

demand is merely reliable for few periods. The planning time horizon is therefore assumed to 

be 2 periods and demand follows a pre-specified distribution function. The products are 

assumed highly perishable with certain expiration dates (two periods). Therefore, the 

products at the end of the second period should be disposed. For some chemical products 

such as medicines the disposal procedure (incineration) itself creates GHGs. All 

computations were run by using GAMS software on a workstation with 3.2 GHz i5 and 4 GB 

RAM under Win 7. 

The information about the capacity and cost rates for the truck types, as well as the rest of 

the data are summarized in Table 2. The variable transportation costs are estimated based on 

fuel consumption rates and fuel price. The fixed transportation costs are mainly function of 

the truck capacity. Since in this study a scenario-based approach is used to represent demand 

uncertainty, we randomly generate finite scenarios. 

Table 2. Vehicles Data. 

Vehicle type k kv (monetary unit/km) ku ( monetary unit) kNT 
kcap ( product unit) GHGk (kg/km) 

1 8.0 320 4 150 5 
2 7.5 700 4 250 12 
3 7.0 2000 4 450 30 

 

The travel distances are provided in Table 3. We also assume that the unit inventory 

holding cost per period is the same for all drugstores, equal to 5, and we assume a unit 

holding cost of 20, for the hospital. As previously discussed, the medicines may not be stored 

at the depot. The unit backorder and lost sale shortage costs π, π' and the GHG emission 

quantity produced by disposed products are provided in Table 4. The GHG emissions for 

different vehicle types can be determined based on standard measures as presented in Figure 

3. 
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Figure 3. GHG emission levels for different vehicle types (Mirzapour Al-e-hashem et al. (2013)). 

Table 5 shows the demand for each medicine, each period and each scenario. 5 different 

scenarios are generated based on a normal distribution function with parameters µ=50, 60, 

70, 80, 90, σ=15, 17, 20, 25, 27, and occurrence probability of 0.15, 0.20, 0.30, 0.20 and 

0.15, respectively. 

Table 3. Travel distances ( ijc ) between nodes (km). 
 Depot S1 S2 S3 S4 S5 S6 S7 S8 Main store 

Depot 0 306 228 162 129 222 249 418 319 322 
S1 306 0 136 168 203 143 285 114 118 100 
S2 228 136 0 66 182 189 322 219 92 217 
S3 162 168 66 0 129 165 280 269 157 224 
S4 129 203 182 129 0 93 155 317 257 197 
S5 222 143 189 165 93 0 144 250 234 106 
S6 249 285 322 280 155 144 0 384 378 218 
S7 418 114 219 269 317 250 384 0 150 170 
S8 319 118 92 157 257 234 378 150 0 218 
Main store 322 100 217 224 197 106 218 170 218 0 

 

Table 4. Shortage costs and GHG emission quantity produced by disposed product 
product type p 1 2 3 4 5 6 7 8 

πp 10 10 20 20 15 10 10 15 
π'p 20 20 40 40 30 20 20 30 

pG ′
 

3 4 5 5 4 3 5 6 
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Table 5. Demand under different scenarios. 
 Scenario 
 1 2 3 4 5 

P / Period 1 2 1 2 1 2 1 2 1 2 

1 65 63 91 45 78 71 70 88 76 78 
2 35 86 80 130 68 62 61 77 89 81 
3 54 120 86 74 68 82 113 76 84 41 
4 50 140 65 85 79 103 78 122 95 98 
5 135 176 53 133 102 136 105 135 84 121 
6 88 80 65 54 79 103 78 102 95 88 
7 91 106 53 103 92 106 92 94 80 101 
8 88 52 65 45 79 71 78 88 95 78 

 

As shown in Table 6, the test problem is solved for θ, P equal to 1, and the obtained results 

are reported for the first and second stages costs as well as GHGs. θ=1 is equivalent to the 

single objective version of the proposed model; that is, the decision maker is not concerned 

with the environmental challenges. 

Table 6. Objective function components for θ=1.   
 First stage Second stage  

θ=1 
FSC 

SSCs 
E[SSCs]  

Z*
1= 23518.6 

1 2 3 4 5 
10152.8 13881.3 12055.9 13565.4 13815.4 13598.1 13365.8  

Z2= 51691.3 
FSG   SSGs   E[SSGs]  

24453.4 21590.0 20823.0 32163.1 32163.1 25021.4 27237.9  

 

As shown, the optimum value for the first objective function (Z*
1) is equal to 23518.6. The 

worst value for GHGs (Z2) is also obtained in this state (51691.3). The value for the second 

stage costs varies based on which scenario takes place, for example if scenario 2 is occurred 

the second stage costs (SSC2) that will be incurred is equal to 12055.9, and the corresponding 

GHGs are therefore equal to 20823.0. 

The optimal configuration of the vehicle routes as well as the vehicles types for the first 

and second stage of the planning horizon are reported in Table 7. For example, {2} 0 < 2 < 4 

< 3 <9 means that a vehicle type 2 must start from the depot (0) and visit the suppliers 2, 4 

and 3, then it ends the trip by going to the main store (9). 
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Table 7. Solution configuration for θ=1.  

First stage {2} 0 ►4(814↑) ►5(1355↑) ►9 
{3}0 ►3(863↑) ►2(742↑) ►8(1068↑) ►7 (1847↑)►1(911↑,128

*↓,797
*↓) ►9 

Second 
stage 

sc
en

ar
io 

1 {2} 0 ►3(883↑) ►2(342↑) ►1(371↑,128↑,797↑) ►9  
{3} 0 ►4(1094↑) ►6(1656↑) ►5(1655↑) ►9 

2 {3} 0 ►4(694↑) ►5(515↑) ►3(743↑) ►2(1362↑) ►1(451↑, 128↑,517↑) ►9 

3 {3} 0 ►4(1014↑) ►6(1826↑) ►5(1035↑) ►9 
{3} 0 ►3(643↑) ►2(563↑) ►8(448↑) ►1(581↑, 128↑,797↑) ►9 

4 {3} 0 ►4(1194↑) ►6(1806↑) ►5(1055↑) ►9 
{3} 0 ►3(1033↑) ►2(642↑) ►8(608↑) ►1(671↑, 128↑,797↑)  ►9 

5 {3} 0 ►4(1124↑) ►3(392↑) ►2(812↑) ►8(678↑) ►1(631↑, 128↑,767↑) ►9 
{k} i(mp↑) ►j means that a truck type k picks up m units of product type p from node i and goes to 
node j. 
 In case i ≠ p (i(mp↑) ►j), it also implies that, this m units is previously transshipped to node i, 
from node p. 
i(mp

*↓) means that m units of product type p is transshipped (unloaded)  to node i by the vehicle. 
 

As shown in Table 7, at the first stage a vehicle type 3 (the largest one) starts its trip from 

node 0 and continues to suppliers 3, 2, 8, 7 and 1 and picks up 86, 74, 106, 184 and 91 units 

of their products, respectively. Moreover, the truck transships 12 units of product 8 and 79 

units of product 7 to supplier 1 (shown by stars). The trip ends when the truck goes to the 

main store (node 9) and delivers the pickups. Also a vehicle type 2 visits the suppliers 4 and 5 

and picks up 81 and 135 units of the related products. 

At the second stage depends on what scenario is occurred, the trips, the vehicle types and 

the pickups vary accordingly. For instance, in scenario 2 a vehicle type 3 visits the suppliers 

4, 5, 3, 2 and 1 and picks up 69, 51, 74, 136 and 45 units of their products, respectively. In 

addition, the truck picks up 12 and 51 units of products types 8 and 7 from the supplier 1, 

where these quantities previously stored (transshipped) there during the first period. 

Therefore, it can be shown that the transshipment is an effective strategy to reduce the total 

supply chain cost and could be adopted in an uncertain environment to absorb the demand 

fluctuations. 

To show how considering the second objective Z2 can positively impact the environmental 

footprint of the solution, let us resolve the test problem by setting θ=0.5. That is, the decision 
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maker is now concerned with GHGs as much as the costs. The results are presented in Tables 

8 and 9. 

Table 8. Objective function components for θ=0.5.   

 First stage Second stage 

θ = 0.5 
FSC 

SSCs E[SSCs]  
Z1=30189.4 

1 2 3 4 5 

7915.1 22915.6 19238.9 22904.6 23410.3 22904.6 22274.2  

Z2=13192.7 
FSG   SSGs   E[SSGs]  

10392.8 3936.9 2169.0 1640.4 5187.1 1640.4 2799.9  
 

According to Table 8, as expected, the first objective function, Z1, in this state (θ =0.5) in 

comparison with that of θ =1 increases (Z1: 23518.6�30189.4) while the GHG emission 

level is decreased (Z2: 51691.3�13192.7). The GHG emission level at the first stage (FSG) is 

decreased to 10392.8, while for θ=1 it was 24453.4. This reduction is a result of appropriate 

selection of vehicle types as well as the environmentally oriented pickups and trips 

configuration.  

As seen in Table 9, in the first stage of current solution (θ=0.5), the bigger but not very 

fuel-efficient vehicle (vehicle type 3) and vehicle type 1 were used in previous solution (θ=1) 

to handle distribution issues are replaced by two more fuel-efficient vehicle types (2). The 

transportation cost therefore remains unchanged because the number of vehicles is the same. 

Due to the fact that the both new vehicle types are less spacious than type 3, transshipment 

strategy cannot be useful as much as before. In other words, to take the advantage of 

transshipment strategy as an option to reduce the total travel distance and GHGs through 

merging the trips, the truck capacity is an important factor which impacts the transportation's 

fixed and variable costs. Thus the model tries to make a tradeoff between the amounts of 

GHGs which could be saved by transshipment option (more practical for bigger vehicles) and 

the amount saved by using less spacious (and more expensive) vehicles. Besides, more 

transshipment will lead to more holding costs too. On the other hand, the model attempts to 

make a tradeoff between the GHGs could be saved by partially cancelling some orders which 
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entails a high risk of unfulfilled demand and the extra charges must be paid for consequential 

shortage costs. 

 
Table 9. Solution configuration for θ=0.5. 

First stage {2} 0 ►4(1524↑) ►5(1055↑ ,74 ↓
*) ►9  

{2} 0 ►3(863↑) ►2(202↑) ►8(798↑)►1(651↑)►9 

Second stage 

#s
ce

na
rio

 1 {2} 0 ►4(384↑) ►5(2055↑,74↑) ►9 
2 {1} 0 ►3(743↑) ►5(715↑, 54↑) ►9 
3 {2} 0 ►4(304↑) ►5(1135↑,74↑) ►9 
4 {2} 0 ►3(1033↑) ►5(1355↑,74↑) ►9 
5 {1} 0 ►4(414↑) ►5(1002↑,74↑) ►9 

{k} i(mp↑) ►j means that a truck type k picks up m units of product type p from node i and goes to 
node j.  
In case i ≠ p (i(mp↑) ►j), it also implies that, this m unit is previously transshipped to node i, from 
node p.  
i(mp

*↓) means that m units of product type p is transshipped (unloaded)  to node i by the vehicle. 
 

According to Table 9, in the first period, a vehicle type 2 begins its trip from depot (node 

0), then visits the supplier 4 and picks up 152 units of product type 4, afterward continues to 

supplier 5 and picks up 105 units of product type 5 and also takes down (transshipped) 7 units 

of the product type 4 to store temporary there for one period which will be carried to the main 

store in succeeding period. On the other hand, another truck type 2 starts its trip from depot 

and goes to suppliers 3, 2, 8 and 1 and picks up 86, 20, 79 and 65 units of their products, 

respectively, and finish the trip by going to main store. At the second stage, depends on what 

scenario takes place, an appropriate solution is prepared. For example, in scenario 4 only one 

truck of type 2 is arranged to handle transportation issues.  

In order to elaborate upon the difference between the solutions under θ=1 and θ=0.5, the 

problem is solved for a lost sale cost #́ = 100 and the configurations obtained for the first 

and second stage (Scenario 3) are illustrated in Figure 4. 
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mp means that a truck type k picks up m units of product type p from node i, in case i ≠ p, it also 
implies that, this m units is previously transshipped to node i, from node p. mp

* means that m units of 
product type p is transshipped (unloaded)  to node i 
 Figure 4. Comparison between the solutions obtained for θ=1 vs. θ=0.5. 

 

 

As shown in Figure 4, in case of θ=1 the model takes full advantage of the transshipment 

to cause a considerable saving in trips at the second period where the truck goes directly from 

node 4 to node 9 and never visit node 1. But as mentioned before since truck type 3 has not a 

desire GHG index, this solution is not very suitable from the environmental aspect. In case of 

θ=0.5, the model takes advantage of both transshipment and appropriate vehicle selection, to 

not only save some trips but also to make use of more fuel-efficient vehicles (vehicles type 1 

is more fuel-efficient than types 2 and 3) to reduce the GHGs as well as the total costs. 
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6.1. Sensitivity analysis 

In this section several sensitivity analyses are performed to study how the proposed model 

makes a trade-off between the greenhouse gas emission levels and the total cost of supply 

chain especially in the presence of uncertainty; and to investigate when the transshipment 

option can play its significant role in the supply chain performance while different parameters 

are varying, including holding cost, shortage cost, disposal cost and even truck's capacity.  

We solve the problem by changing the relative weight (θ) from zero to one. The results are 

depicted in Figure 5. As can be seen in Figure 5, when θ increases, the expected value of the 

total supply chain cost decreases, and conversely, the expected value of the GHG emission 

level (produced by the vehicles and scraped products) increases. In spite of the fact that 

considering "green logistics" (θ<1) makes a shift up in the total cost of supply chain, a 

significant reduction takes place in the GHG emission level. In other words, the slope of 

reduction in GHG level approximately fit the exponential trend while the slop of increasing in 

the total cost is almost linear. 

 

Figure 5. GHG emission level (Z1) against total cost (Z2). 

This Figure could also be interpreted as a Pareto set where the decision maker could select 
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the most preferred solutions according to his/her preferences. 

In order to shed more light on the importance of the transshipment option in the presence of 

uncertain demand, we compare the solutions with and without transshipment option to 

demonstrate that the transshipment is not only beneficial for the first objective function (total 

cost) through saving in routes and shortages but also it enables the model to reduce the 

environmental concerns by creating environmentally-friendly solutions. Thus several 

numerical examples are generated and solved by using the proposed hybrid L-shaped method 

to study the impact of transshipment option on the optimal solution in the presence of 

uncertainty. We generate 10 test problems and solve them twice; with transshipment option 

(Zi
*
TIRP) and without transshipment option (Zi

*
IRP). The optimal solutions for the problems 

with and without transshipment option are then reported for each scenario and the gap 

between them is calculated by	∆& =
'(∗*+,-'.	/*+,

∗ 	

'(∗*+,
. As seen in Table 10, the average, minimum 

and maximum of ∆
 are 0.051, 0.011 and 0.088, respectively. With no exception, the 

transshipment option leads to better solutions with regards the total cost. Similarly, the 

average, minimum and maximum of ∆" are 0.071, -0.03 and 0.173, respectively. Except 

problem number 8, in other cases the transshipment option has a positive effect on the 

environmental footprint.  For example, in problem 4 the transshipment option causes 5% 

saving in total cost, and the environmental objective is reduced about 5.2%. 

Table 10. The overall impact of transshipment on objective functions  

#Problem   

Transshipment-enabled 
(TIRP) 

 
Without Transshipment 

(IRP) 
∆1 ∆2 

Z1 Z2   Z1  Z2  
1 

  
30256.9 13208.1 

 
 33166.2 15961.9 

 
0.088 0.173 

2 
  

27791.2 24426.6 
 

 29036.9 24574.5 
 

0.043 0.006 
3 

  
28648.1 12284.5 

 
 29507.6 12889.4 

 
0.029 0.047 

4 
  

33409.3 29861.9 
 

 35152.3 31483.9 
 

0.050 0.052 
5 

  
45952.7 33968.8 

 
 47700.3 38917.3 

 
0.037 0.127 

6 
  

33466.0 38287.6 
 

 35936.5 38324.7 
 

0.069 0.001 
7 

  
30673.7 21031.8 

 
 31983.1 25113.7 

 
0.041 0.163 

8 
  

30971.1 27388.4 
 

 33858.8 26585.8 
 

0.085 -0.03 
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9 
  

28761.8 15195.7 
 

 29067.7 17614.9 
 

0.011 0.137 
10 

  
43409.3 39861.9 

 
 46152.3 41483.9 

 
0.059 0.039 

average          0.051 0.071 
 

Figure 6-a shows the effect of number of scenarios on total transshipments occurred. In this 

figure, 5 test problems with different number of scenarios are studied. As seen in Figure 6-a, 

the total amount of transshipment increases by increasing the number of scenarios. It implies 

that the transshipment can act as an absorber of uncertainty. The horizontal axis is the number 

of scenarios and its lowest value is one which represents the deterministic condition with 

merely one scenario. Moreover, the occurrence probability of all scenarios are assumed the 

same, for instance in a problem with 5 scenarios the occurrence probability of each scenario 

is 0.2. 

 

(a) (b) 

Figure 6. Transshipment versus the number of scenarios(a) and shortage costs(b) 
 

We then study the importance of transshipment when the shortage is allowed. The unit 

backorder cost (π) and the unit lost sale cost (π') are both multiplied by a coefficient (that we 

vary from 0.8 to 1.7) to analyze the transshipment significance for an increasing shortage 

cost. This coefficient is shown in the horizontal axis of Figure 6-b. As observed in this figure, 

for increasing shortage penalties, the total transshipped amount increases. In other words, the 
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model uses transshipment in order to prevent shortage occasions. The trend of increase in 

transshipment is non-decreasing, and when the shortage cost is nearly doubled, the 

transshipped quantity is no longer increasing. It implies that the transshipment's benefit is 

limited by the truck capacity. 

We investigate the latter observation and perform a sensitivity analysis to show that the more 

the capacity of trucks is, the more the use of transshipment policy will be. We multiply the 

trucks' capacity (Capk) by a coefficient illustrated in the horizontal axis of Figure 7. As seen 

in Figure 7, the truck capacity is an important factor to successfully apply the transshipment 

policy. We observe that when the trucks' capacity increases, the total amount of 

transshipment increases until reaching a certain threshold before decreasing. To understand 

the slope change, it should be noticed that the fixed cost of a truck is directly linked to its 

capacity. Therefore, the transshipment option is better off with more a capacitated truck until 

the cost of the latter starts to negatively impact the total cost function. A tradeoff exists 

between the transshipment opportunity offered by more capacitated trucks and their 

associated fixed costs. 

 

Figure 7. Transshipment vesus the trucks' capacity 

 

In Figure 8-a, we analyze the attractiveness of the transshipment option as a function of the 
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suppliers' holding cost when compared to the factory holding cost. The transshipment can be 

considered as a key factor to increase the performance of the supply network particularly 

when the holding cost values are significantly different from one location to another.  The 

factory's unit holding cost is fixed at 10 and the suppliers' unit holding cost increases from 2 

to 26 and the ratio of the latter to the former is illustrated in the horizontal axis of Figure 8-a. 

As seen in Figure 8-a, the results show that by increasing this ratio, the total transshipped 

quantity decreases up to finally reaching zero at point 2.6. We can therefore conclude that for 

a supply network where the holding costs in the supplier side are very high when compared to 

the factory one, the transshipment is not an attractive option. 

 

(a) (b) 

Figure 8. Transshipment versus the disposal and holding costs 

We finally perform a sensitivity analysis on the disposal cost (Scip), to show the 

attractiveness of the transshipment option when the disposal cost increases. We multiplied the 

unit disposal cost by a coefficient ranges from 0.5 to 5 as illustrated in the horizontal axis of 

Figure 8-b.  As intuitively expected, when the disposal cost increases, the total transshipment 

decreases very smoothly, and therefore transshipment is not very sensitive to the disposal 

cost. 
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In order to analysis the proposed model in larger scales, ten more test problems with different 

dimensions are solved. Table 11 reports the optimal solutions obtained for θ=1 and θ=0.5. 

The first column represents the problem number. The second column represents the 

dimension of the problem in terms of number of periods, vehicle types, scenarios and nodes, 

respectively. The next columns compare the two objective functions' components for θ=1 and 

θ=0.5. Finally, the last two columns compare these two solutions based on economic (∆Z1) 

and environmental (∆Z2) criteria. ∆Z1 measures the growing ratio of the expected total costs 

after applying green concept, and ∆Z1 explains the rate of saving in expected total GHG 

emissions produced over the planning horizon, after taking into account the green concept.  

Table 11. Objective function components for θ=1 versus θ=0.5 in different problems. 
 

Dimension 
T×K×S×N 

θ =1 θ =0.5 
∆Z1 -∆Z2 #P Z*

1(w=1) Z*
2(w=1) Z*

1(w=0.5) Z*
2(w=0.5) 

FSC E(SSC)  FSG E(SSG) FSC E(SSC)  FSG E(SSG) 

1 2×3×5×5 3125 3305  4800 1668 3440 3823  1550 1164 0.12 0.58 
2 2×3×5×7 4645 5021  7341 2794 5411 5586  3100 2230 0.15 0.47 
3 2×3×5×9 7673 9909  15306 18691 11104 10631  9481 5237 0.21 0.57 
4 2×3×5× 11 12178 11154  25362 14632 12253 15428  11086 8116 0.21 0.52 
5 2×3×7×13 13335 13467  30333 23887 13789 17987  14667 12443 0.20 0.50 
6 2×5×7×15 16005 15552  36118 24445 18270 18957  17990 13998 0.18 0.47 
7* 2×5×9×15 15882 16531  48456 26723 18888 19034  19992 19418 0.19 0.48 
8* 3** ×5×11×15 23456 24987  78891 39044 28761 26273  34957 29898 0.15 0.45 
9* 3** ×7×11× 15 27631 25245  91918 45711 33372 30593  47105 32694 0.21 0.42 
10* 5** ×7×11× 15 45171 41072  155620 74827 50545 50031  88821 41749 0.17 0.43 
* the best solution obtained after one and half hour is reported. 
**  a rolling horizon planning policy is used to solve the problem 
T: #periods, K: #vehicles, S: #scenarios, N: #nodes 
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Problems 7, 8, 9 and 10 in Table 11 are the samples for multi-period cases that the 

proposed framework is applicable by using rolling horizon approach. As Table 11 shows, if 

companies allow a reduction in the system’s profits, they enable to improve their GHG 

criteria significantly. For example, in problem 7, the supply chain needs to tolerate at least 

19% reduction in expected total profits, in order to achieve a 48% reduction in expected total 

GHGs. This reduction, as discussed in previous section, might be a result of appropriate 

selection of fuel-efficient vehicles, optimal routes and the ideal levels of inventories, 
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shortages and transshipments under different scenarios. 

As seen in Table 11 the applicability of the proposed model is not limited merely to problems 

comprising just two periods. That is, it may also be applied to problems referring to more 

periods using a rolling horizon planning process. Rolling horizon decision making is a 

common business practice for making decisions in a dynamic stochastic environment (Sethi 

and Sorger 1991). There are two principal reasons why rolling horizon might be appropriate 

for decision-making in uncertain environments. 1) The forecasts for the remote future tend to 

be unreliable and are, therefore, of inadequate usefulness, 2) for practical reasons, the 

decisions must be made based on limited information about the future (Baker 1977). Under 

this policy, at the end of second period, the demand for the succeeding period would be 

forecasted. The model therefore could be run by including the new period's data and 

excluding the unveiled first period one. This procedure repeats every period justifying the 

term rolling horizon method (Sazvar et al. 2014). So, we can produce the optimal plan even 

for multi-period cases. It should also be noted that when the rolling horizon approach is 

applied, the disposal and the lost-sale shortage may only be considered for the last period, 

and for internal periods, the inventory is treated to meet the demand of the next period. 

7. Conclusions and future research 

In this study a novel bi-objective two-stage stochastic programming model is proposed for a 

stochastic transshipment-enabled IRP. The first objective of the model attempts to find the 

best configuration of the vehicles, routes, pickups, deliveries and transshipment in order to 

minimize the total cost of the supply network. The other objective function considers the 

green logistics and attempts to find the best solution in order to minimize the total GHGs.  

We studied that how transshipment can act as a low-cost lever to increase the performance of 

the supply chain in both economic and environmental aspects. Results showed that when the 

demand fluctuations are considerable, transshipment option plays a significant role to absorb 
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the perturbations and help the company to control the environmental concerns by taking 

advantage of the suppliers' warehouses. Although extra holding costs and double truck 

loading are incurred when we use transshipment policy, but these extra costs are 

compensated, to some extent, by saving in travelling distances, and consequently the total 

associated GHGs produced by the vehicles decrease substantially. Therefore, using 

transshipment in practice especially when the demand is highly variable is strongly 

recommended on the ground that the suppliers have a relative degree of harmonization. This 

policy helps them to achieve coordination in the long term. Then, we introduced a hybrid 

algorithm composed of an L-shaped method and compromise programming, and finally 

provided the numerical and sensitivity analyses permitting to show the applicability of the 

proposed model. 

Applying the proposed model to other supply chain structures like many-to-many supply 

networks, considering other sources of uncertainty such as lead-time and developing other 

meta-heuristics to efficiently solve the model are some promising areas for further research. 

Appendix 

In this section the formulations of the master, optimality and feasibility sub-problems of the 

hybrid L-shaped method are presented.  

min2max2
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In order to incorporate feasibility and optimality cuts into the master problem, we need to 

declare further notations, such as coefficient for first stage variables and right hand sides in 
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feasibility and optimality cuts. According to the main model formulation, first stage variables 

which impact the second stage part of the model are QF and TF, therefore in construction of 

optimality and feasibility cuts these variables would take coefficients, and coefficients for 

other first stage variables would be zero. In the formulation of the feasibility problem, 

auxiliary variables would be also needed only in constraints that contain first stage variables 

(i.e. QF and TF). 

 

   
L-Shaped Notations 

ϕ
 Auxiliary variable for Master Problem (Representing second stage part of objective 

function)  
2k

ip
OCTF  

Coefficient of variable ip
TF  in optimality cut 2

k . 

2k
OCR  

Right hand side of optimality cut2k . 
2k

ijpk
OCQF  

Coefficient of variable ijpk
QF   in optimality cut 2

k . 
1k

ip
FCTF  

Coefficient of variable  ip
TF  in feasibility cut 1

k . 

1k
FCR  

Right hand side of feasibility cut1k . 
1k

ijpk
FCQF  

Coefficient of variable ijpk
QF  in feasibility cut 1

k . 
*

ip
TF  

value of variable ip
TF  as parameter in optimality and feasibility problems 

*

ijp k
QF  

value of variable ijpk
QF  as parameter in optimality and feasibility problems 

1

(F #)

k

−µ  

Dual value of constraint (F-#) in feasibility problem in constructing feasibility cut k1 
# ={1,2,8} 

2

( #)O

k

−µ  Dual value of constraint (O-#) in optimality problem in constructing optimality cut k2. 
# ={2,3,9} 

1 , 1 ,

2 , 2 ,

3

ps ps

ips ips

ips

P N

P N

N

 Auxiliary variables for feasibility problem. 

1- Master Problem 
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3- Optimality Problem 
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4- Feasibility and Optimality Cuts  

In order to calculate parameters of feasibility cut, k1, we use the following equations; 
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Similarly, for parameters of optimality cut, k2, we have following equations: 
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