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Inventory Routing Problem for hazardous and deteriorating 

items in the presence of accident risk with transshipment option 

 

Abstract 

In this study, we address an Inventory Routing Problem for hazardous and deteriorating 

pharmaceutical items in a healthcare network. Each hospital’s demand is assumed to be 

deterministic but time varying over a finite planning horizon. Demand can be satisfied 

through a supply network, either from the main central pharmacy, or from other related 

hospitals' drugstores by allowing the transshipment option. The medicines deteriorate under a 

constant rate during the storage period. The proposed model is a bi-objective mixed integer 

mathematical programming. The first objective aims to minimize the total cost of logistics 

including ordering, transportation, delivery, pickup, shortage and inventory holding costs. 

The second objective function attempts to minimize the maximum accident loss during 

distribution among all periods. To consider the accident loss, for each route, two essential 

parameters are estimated based on historical data; the occurrence probability and severity 

index of accident. The model therefore attempts to utilize the best configuration of the routes 

and transshipment option to satisfy the demand while minimizing the costs and accident loss 

simultaneously. Several numerical examples are generated and solved by CPLEX and 

compared with the solutions of an efficient Hybrid Genetic Algorithm (HGA). The results 

show that the transshipment option not only can be used as a lever to increase the economic 

supply network performance through saving the routes, but also it can help the system to 

avoid risky routes. 

Keywords: Inventory routing problem; deteriorating items; transshipment; accident risk; 

hybrid genetic algorithm 
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1. Introduction  

In recent years, the pharmaceutical sector has undergone profound changes, partially due to 

the aging of the population and rising costs in health care services. With margins that are 

getting lower and lower, the drug distribution problem to pharmacies has become much more 

important, particularly in large metropolitan areas (Magalhães and Sousa, 2006). As 

pharmacies demand shorter delivery times, inventory routing and scheduling problems 

become much more important for distributors. It is even more challenging when they deal 

with deteriorating items. 

In the classic Inventory Routing Problem (IRP), the optimization’s aim is to identify the best 

strategy for the inventory management of products, and determine the best configuration of 

the vehicles, routes, kind of products, and their quantity to be delivered to each customer 

while minimizing the total inventory and transportation costs (Rahimi et al. 2015). It is 

recognized that the traditional distribution system based on merely minimizing cost does not 

fulfil the expectations of pharmacies/hospitals and may, in some cases, be quite inefficient for 

them.  

In the pharmaceutical supply chain, decision makers deal with deteriorating items and it is 

obvious that the deterioration rate of an inventory in stock during the storage period cannot 

be disregarded especially in the healthcare sector. Deteriorating products refer to items that 

get damaged, spoiled, dried, invalid, or degraded over time (Li et al. 2010) and can be 

classified into two groups: perishable items and decaying items. Products such as meat, green 

vegetables, and, flowers are known as perishable products. Commodities like alcohol, 

gasoline and radioactive substances are known as decaying products (Sazvar, et al., 2017, 

Goyal and Giri 2001).  
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 In this paper, we are concerned with the radioactive pharmaceutical products which are 

widely used in the healthcare sector particularly for cancer patients. This kind of products are 

categorized in hazardous materials, the occurrence of an accident may lead to the damages, 

loss of health benefits of products, the inevitable delay in delivery, or even uncompensated 

effects. As stated by Van Raemdonck et al., (2013), the Western Europe is characterized by a 

high population density, a dense transportation network and high volumes of import, export 

and transit of dangerous substances. Although it is not yet mandatory to analyze whether the 

transport along a certain transport route generates a further risk for the society because of its 

cargo, it is quite important to gain an insight in not only the cost, but also the risk of 

hazardous materials transportation (Verma, 2009) and develop a level-headed policy 

concerning the transportation of hazardous goods. 

In order to cope with these challenges as well as the consistency of deliveries, accuracy in 

inventory and demand management, and low-cost safety enhancement in distribution, we 

propose a Transshipment-enabled Inventory Routing Problem (TIRP). Our framework does 

not only focus on the economic performance of the TIRP but it is also concerned with the 

minimization of the accident risk and loss. Indeed, in a case of an accident, the consequence 

can be non-negligible from an environmental, social as well as economic point of view. We 

particularly discuss how the transshipment option can act as a lever to not only increase the 

economic performance of the pharmaceutical network but we will show that it permits to the 

model to manage the accident risk. We investigate the situations when the transshipment 

policy is efficient from economic and accident risk point of views in practice. Besides, the bi-

objective modeling of the problem enables us to identify the link between the economic 

performance and the accident risk and consequently to derive the tradeoff between logistics 

operations costs and minimal accident risk by enabling the transshipment option. 
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The remainder of the paper is organized as follows: in Section 2, the related studies on IRP in 

the literature have been reviewed and the main contributions of this research are compared, in 

Section 3, we provide the assumptions, principles and particular configuration of our 

framework. The mathematical formulation of the problem is then presented in Section 4 and 

followed by Section 5, where a small sized example is illustrated. The proposed hybrid 

genetic algorithm is proposed in Section 6. In Section 7, several sensitivity analyses are 

conducted and the finding and managerial insights of this work are discussed. Finally, the 

conclusions of this research are presented in Section 8 alongside with some promising 

directions for further research in this area. 

2. Literature review and motivation 

The IRP problem is used when routing and inventory decisions must be made 

simultaneously (Persson, and Gothe-Lundgren, 2005, and Sindhuchao et al. 2005). Such a 

joint decision problem has recently attracted the attention of many researchers (e.g. Bertazzi 

and Speranza, 2002, Kleywegt, et al., 2002, Mishra, and Raghunathan, 2004, Cordeau, et al., 

2007, Archetti, et al., 2007, Andersson, et al., 2010, Bertazzi, et al., 2013, Mirzapour Al-e-

hashem, and Rekik, 2012, 2014, 2017). In Table 1, we present an overview of the main IRP 

investigations related to our framework. The Table shows that several studies were concerned 

with the management of deteriorating products. As previously mentioned, deteriorating 

products could be categorized in two different classes; perishable items and decaying ones. 

Despite the fact that the realistic assumption of "deterioration" has recently attracted the 

attention of several researchers (e.g. Coelho and Laporte 2014, Hauge et al. 2014, Mirzaei & 

Seifi  2015, Soysal et al. 2015), the research literature still misses studies investigating the 

impact of decaying products on IRPs. Besides, very few investigations on IRP have been 

devoted to the transshipment policy (Coelho et al. 2012, Jemai et al. 2012, Mirzapour al-e-

hashem and Rekik 2014, Mirzapour al-e-hashem et al., 2017). Traditional IRPs focus mainly 
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on the key logistical cost- related objective (Soysal, 2016), and only scarce studies (Rahimi et 

al., 2015, Dabiri et al. 2017, Mirzapour al-e-hashem and Rekik 2014, Mirzapour al-e-hashem 

et al., 2017) have applied a multi-objective analysis to reflect the possible conflicts which 

may exist between economic and other important aspects of decision making such as social 

issues and environmental concerns. We notice that only the last publication in Table 1 

investigates the contribution of the transshipment option in the presence of different 

optimization criteria. More importantly, we notice that none of these publications considers 

specifically the accident risk and loss as an optimization criterion in the distribution of 

expensive or hazardous items which is the case of radioactive pharmaceutical products. For 

these reasons, our challenge in this paper is threefold: 1) modeling: how to integrate the 

accident risk and loss in the classical IRP, 2) mathematical: how to deal with a bi-objective 

setting of the IRP problem and 3) managerial: what tradeoffs between the classical economic 

performance of the IRP and the accident risk and loss and what is the impact of the 

transshipment option on both optimization criteria.  

In real word situations, shortage, in which demand exceeds the inventory level of products, is 

considered in most of the studies in the context of IRP (e.g. Nolz et al., 2014, Etebari and 

Dabiri, 2016), but almost all above researches assumed that the unfulfilled demand is totally 

backordered to the next periods except Mirzaei & Seifi  (2015) who conversely assumed the 

unfulfilled demand is completely lost while in our model partial backordering shortage is 

proposed. Both kinds of full backorder and full lost-sale demand are special cases of our 

approach where an adjusting parameter takes its ultimate values: zero or one. 

As Table 1 shows, several other variants of IRP are also extended such as IRP with split 

deliveries (Yu et al., 2008), the IRP with vehicle failure (Huang and Lin 2010), the IRP with 

time windows (Liu and Lee 2011, Iassinovskaia et al. 2016), the IRP for waste collection 

(Hauge et al. 2014) and the IRP for closed-loop supply chain (Soysal 2016). 
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Table 1. Overview of the related literature on IRP 

 Shortage Deterioration Modeling and resolution particularities 

 Back
order 

Lost 
sales 

Fixed 
shelf life 

Continuous 
decay 

Transshi
pment 

Accident 
risk 

Multi-
objective Modeling Resolution Other 

Sindhuchao et 
al. 2005 

- - - - - - - MIP 
B&P +  

neighborhoo
d search  

Multi-item 

Persson and 
Gothe-Lundgren 

2005 
- - - - - - - MIP 

Column 
generation 

 

Abdelmaguid  
and Dessouky 

2006 
√ - - - - - - MIP GA  

Archetti et al. 
2007 

- - - - - - - MIP B&C  

Yu et al., 2008 - - - - - - - MIP 
Lagrange + 
sub-gradient 

split 
delivery 

Abdelmaguid et 
al. 2009 

√ - - - - - - MIP Heuristic  

Hvattum and 
Løkketangen 

2009 
√ - - - - - - Markov 

Scenario-
tree -

heuristic 
 

Huang and Lin 
2010 

√ - - - - - - MIP ACO 
vehicle 
failure 

Shen et al. 2011 √ - - - √ - - MIP 
Lagrangian 
Relaxation 

Multi-mode 

Moin et al. 2011 - - - - - - - ILP Hybrid GA  
Liu and Lee 

2011 
√ - - - - - - MIP Tabu search 

Time 
window 

Mirzapour al-e-
hashem and 
Rekik 2012 

√ - - - √ - - MIP B&B Greenness 

Jemai et al. 
2012 

√ - - - √ - - (R,s,S) Exact  

Coelho et al. 
2012 

- - - - √ - - MIP 
Neighborho
od search 
heuristic 

 

Solyalı et al. 
2012 

√ - - - - - - MIP B&C Robustness 

Bertazzi et al. 
2013 

√ - - - - - - DP 
B&C + 
Rollout 

 

Le et al. 2013 - - √ - - - - MIP 
Column 

generation 
 

Shukla et al. 
2013 

- - - - - - - NLMIP GA  

Coelho and 
Laporte 2014 

- - √ - - - - MIP B&C 
Age-

dependent 
price 

Hauge et al. 
2014 

- - - - - - - IP 
Column 

generation 
waste 

collection 
Al Shamsi et al. 

2014 
- - √ - - - - MIP Simulation  

Alkawaleet et 
al. 2014 

- - - - - - - IP GAMS  

Jia et al. 2014 √ - √ - - - - MIP 
Decomposit
ion+ Tabu 

Loading 
Cost 
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search 
Mirzaei & Seifi  

2015 
- √ √ - - - - MIP SA  

Soysal et al. 
2015 

√ - √ - - - - 
Chance 
constrai

nt 
Simulation 

Energy 
consumptio

n 
Rahimi et al. 

2015 
√ - √ - - 

Driver 
injury 

√ MIP CPLEX Social issue 

Soysal et al. 
2016 

√ - √ - - - - 
Chance 
constrai

nt 
CPLEX 

Horizontal 
collaboratio

n 

Soysal 2016 √ - - - - - - MIP CPLEX Closed loop 

Dabiri et al. 
2017 

- - - - - - √ MIP MOPSO 
Step cost 
function 

Mirzapour al-e-
hashem et al. 

2017 
√ - - - √ - √ MIP 

L-shaped 
Method 

Disposal 

This research √ √ - √ √ √ √ MIP HGA 
Hazardous 
martials 

 

One of the scientific contributions of this study is examining the transshipment option 

within the proposed inventory routing problem. Under this policy, the hospital orders might 

be provided either directly from the main supplier (radioactive pharmaceutical products 

center), or from the other related hospitals' drugstores (if available). In order to have a 

common sense, consider two retailers that are both in possession of the same company. A 

centralized planning department decides the inventory of both retailers before the start of the 

planning horizon. Due to carrier expenses, vehicles capacity limitations, and/or long lead 

time, the Decision Maker (DM) does not have the possibility to replenish extra inventory 

during the period. Imagine the case when the available inventory of one retailer exceeds its 

demand, and, conversely, the demand of the other retailer is unfulfilled due to the lack of 

inventory. Then, if the benefit surpasses the incurred costs of doing so, it would be 

advantageous, from a system perspective, to have the former retailer transfer some of its 

inventory to the latter retailer. This practice is called "transshipment", and is occasionally 

carried out in a variety of industries (Nonas, Jornsten, (2007)).  

In this paper we show that the transshipment option not only can be used as a lever to 

increase the economic supply network performance through saving the routes, but also it can 

help the system to avoid risky routes and protect the supply network against catastrophic 
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events especially when the cargos are categorized in decaying hazardous materials. Despite 

the existence of a rather wide variety of studies on IRP problem for deteriorating items (e.g. 

Soysal et al., 2015, 2016), the transshipment option has never been studied for hazardous 

items. The challenging research question in this context, therefore, is to identify the linkage 

between the deteriorating rate and the benefit brought by the transshipment policy in terms of 

economic and accident loss. 

3.  Problem Description 

Assume a medicine supply chain composed of a set of hospitals {1, 2, ..., N} that provides 

the radio pharmacy services for the cancer patients and a central pharmacy as the only 

supplier of this type of products. For vital products like pharmaceutical radioactive 

substances, occurrence of an accident may lead to the loss of health benefits of products as 

well as uncompensated environmental effects; the transportation vehicles therefore must be 

endowed with special equipment. This central pharmacy has an internal contract with a 

vehicle rental company to ship the products from the supplier to the hospitals in each period. 

The routes between the supplier and hospitals are predetermined and the accident occurrence 

probability for each designated route as well as the degree of the accident loss severity are 

wisely specified. The network of this medical supply chain is depicted in Fig. 1.  
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Figure 1. General schema of supply network 

In order to manage the medicine availability more smoothly, a transshipment option is 

incorporated in the model with which the demand can be satisfied, either directly from the 

main supplier, or from the other hospitals' drugstores. The optimization problem is to 

determine the ideal configuration of the routes, pickups, deliveries and transshipments in each 

period in order to minimize the total cost of the supply chain (including ordering cost, 

inventory holding cost, fixed and variable transportation cost, shortage cost and pickup cost), 

and to minimize the maximum accident loss of distribution while satisfying the demand of all 

hospitals as much as possible. It should be noted that the shortage is allowed but the 

backordered demands must be satisfied at most in the last period. 

In the proposed model, "partial backordering shortage" is incorporated in the model by 

introducing a parameter (β) which can be estimated based on historical data of patients in 

hospitals. When a hospital's drugstore encounters the shortage, two possible scenarios are 

recognized in real situations; β percent of patients can wait until the next period(s) (period 

can be defined as day, week, etc.) to receive the medications based on their clinical situations. 

Their demands are therefore considered as backorder in the inventory balance. The remaining 

(1-β) percent of the patients, who cannot wait, either use alternative medicines or leave the 

hospital and refer to other medical centers. 

We use the following notations to formulate the proposed IRP model: 

Sets 

N},…  {0,1,=Ω  set of all nodes 

N} ,… 2, {1,=ω
  

set of hospitals 

{0}=O   radio-pharmacy center 

K} ,… 2, {1,=η  fleet size  
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Parameters 

Dit demand of hospital i in period t ∈ T = {1, 2, …,|T|} , (product unit) 

dij distance between nodes i and j, (km) 

vck variable transportation cost for vehicle k, ($/product unit×km) 

fck fixed transportation cost for vehicle k, ($) 

cvk capacity of vehicle k, (product unit) 

c unit cost of product, ($) 

hi unit inventory holding cost in node i, ($/period×product unit) 

πi unit backorder cost in node i, ($/period×product unit) 

π'i unit lost sale cost in node i, ($/product unit) 

prij accident occurrence probability of arc (i, j), (0≤prij≤1) 

Ioi initial inventory level of product in hospital i, (product unit) 

Ici inventory capacity of product in hospital i, (product unit) 

pci the pickup cost (transshipment) in hospital i, ($/product unit) 

θ the deterioration rate of product, 

βi the fraction of unsatisfied demands carried over to future periods 

(backordering ratio) in node i, (product unit) 

γij the severity of accident in arc (i, j) between 0 and 100%, 

fk the value of vehicle k, ($) 

M an arbitrary large number; 

Decisions variables 

I it the inventory level of product in hospital i in period t, 

Sit the shortage level of product in hospital i  in period t, 

Xijkt a binary variable that determines arc (i, j) is visited by vehicle k in period t, 

Yikt a binary variable that determines whether hospital i is visited by 
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vehicle k in period t, 

Qijkt the quantity of product transported by vehicle k trough arc (i, j) in period t, 

Qdikt the quantity of product delivered to hospital by vehicle k in period t, 

Qpikt the quantity of product picked up from node i by vehicle k in period t, 

XQijkt an auxiliary variable for linearization, 

ut an auxiliary binary variable for linearization; 

 

4. Mathematical formulation 

The bi-objective mixed integer programming for the transshipment enabled IRP taking 

into account the accident risk is formulated as follows: 

1
, , ( , ) , , ,

, , ,

.

' (1 ).

k 0ikt k ij ijkt i it i i it
i k t i j k t i t i t

i i it i ikt
i t i k t

Min Z fc X vc d Q h I S

S pc Qp

ω ω ω

ω ω

π β

π β
∈ ∈Ω ∈ ∈

∈ ∈

= ⋅ + ⋅ ⋅ + ⋅ + ⋅ +

⋅ − + ⋅

∑ ∑ ∑ ∑ ∑

∑ ∑
  (1) 

2
, ,

( . )i j i j k t k i j i j k t
t

i j k

M in Z M a x c Q f p r Xγ
∈ Ω

= + × ×∑ 
(2) 

s.t.   

it
k

ikt
k

ikttitiitit DQpQdSISI −−+×−×−=− ∑∑−− )1()1()1( βθ  ti ,ω∈∀ (3) 

∑∑
Ω∈Ω∈

==
j

iktijkt
j

jikt YXX  tki ,,Ω∈∀  (4) 

1iktY ≤  , ,i t kω∀∈ (5) 

∑ ∑
Ω∈ Ω∈

=+−
j j

ijktiktiktjikt QQpQdQ  tki ,,ω∈∀ (6) 

.i jk t k i jk tQ c v x≤  tkji ,,),( Ω∈∀ (7) 

iti
k

ikt IcIQp )1()1( )1( θθ −≤−≤ −∑  
ti ,ω∈∀ (8) 

iktkt YY ≥0
 tki ,,ω∈∀  (9) 
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( , )

1ijkt
i j S

X S
∈

≤ −∑  φω ≠⊆∀ SS , ,k t∀  (10) 

00 == ktiiikt QX  tki ,,Ω∈∀ (11) 

, ,ikt ijkt tY X w {0,1}∈  
tkji ,,),( Ω∈∀ (12) 

, , , , 0i j k t i k t i k t i t i tQ Q p Q d I S ≥  

Constraints: 

Constraints (3) model the inventory balance equation at hospitals and determine that the 

inventory position of product in hospital i in current period (t) is equal to (1-θ) percent of 

previous inventory level (It-1), plus the quantity delivered in period t (transshipped by the 

vehicles), minus the quantity picked up by the vehicles in period t minus the demand of the 

current period and β percent of the shortage in previous period. It is assumed that only β 

percent of the patients, who encounter the lack of medicines, will wait for the next period and 

the demand for the remaining (1-β) percent is definitely lost. It is also assumed that the 

inventory in stock deteriorates at a rate of θ, and only (1-θ) percent of previous inventory 

level remains safe for future use. Constraints (4 and 5) guarantee that each hospital should not 

be visited by one specific vehicle more than once in each period. Even so, a split delivery is 

possible meaning that the hospital can be visited more than one time by different vehicles in a 

period. If the split delivery is forbidden, then one can change this constraint to 1ikt
k

Y ≤∑ . 

Constraint (6) is the inventory balance equation for the vehicle that visits the arc (i, j) in 

period t and ensures that the quantity of product transported by the vehicle from node i to 

node j in period t is equal to the quantity of product shipped to node i, plus the quantity 

picked up by the vehicle from hospital i, minus the quantity delivered to this hospital in 

current period. Constraints (7) guarantee that the vehicle's capacity should not be exceeded 

and imply that the vehicles could visit arc (i, j) only once that the variable xijkt takes value. 

Constraint (8) ensures that the vehicles could not pick up the products from a hospital, more 
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than their inventory level in previous period. This constraint also guarantees that the 

inventory capacity of the hospital cannot be exceeded. Constraint (9) ensures that a trip 

should start and finish at radio-pharmacy center (node 0). Constraint (10) is the classic sub-

tour elimination constraint. Constraint (11) forbids the product returns and determines the 

impossible arcs and, finally constraint (12) defines the variable types. It should be noted that 

in constraints (3) and (8), the variable I i(t-1) for the particular case of t =1, is replaced by 

initial inventory (I0). 

Objective functions: 

Equation (1) is the first objective function of the proposed model, which aims to minimize 

the total supply chain cost including the fixed and variable transportation costs, inventory 

holding cost, shortage cost, and transshipment (pickups) costs. Equation (2) is the second 

objective function and attempts to minimize the maximum expected loss of accident in 

distribution among all periods. The accident loss is computed based on the value of the 

vehicle and its cargo multiplied by an accident severity index ijγ , which is estimated for each 

route. 

We therefore notice that our modeling of the accident risk and loss includes components 

related to: i) where the accident occurs (ijγ ): one can assume that an accident occurring in the 

city center is more severe to handle than a one occurring in a sub urban location. ii) with 

which truck the accidents occurs (kf ): handling an accident of a big truck may be more 

penalizing than a small one, and iii) what is the content of the truck when the accident occurs 

( . ijktcQ ): an accident occurring in the beginning of the vehicle tour (when the truck is still 

full) is more penalizing than an accident occurring at the end. Collectively the term 

( . )ij ijkt kcQ fγ +  can model the unit loss for each arc (i, j) incurred if an accident occurs in this 

arc. 
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Since 
, ,

( . )ij ijkt k ij ijkt
i j k

c Q f pr Xγ
∈Ω

+ × ×∑  has an explicit nonlinear term of ijkt ijktQ X×  , at first, 

it is replaced by a new auxiliary variable, ijktXQ , and converted to a linear form by the help of 

the following additional constraints: 

(1 ).i jk t i jk t i jk t i jk tQ X M X Q Q− − ≤ ≤  ( , ) , ,i j k t∀ ∈Ω (13) 

0 .ijkt ijktXQ X M≤ ≤  ( , ) , ,i j k t∀ ∈Ω (14) 

Then, the minimax structure of Z2 is linearized and rewritten as follows: 

2Min Z   (15) 

s.t. 

2
, ,

( . )ij ijkt k ij ijkt
i j k

Z c Q f pr Xγ
∈Ω

≥ + × ×∑  t∀ (16) 

2
, ,

( . ) .ij ijkt k ij ijkt t
i j k

Z c Q f pr X u Mγ
∈Ω

≤ + × × +∑  t∀ (17) 

| | 1t
t T

u T
∈

≤ −∑   (18) 

Constraints (16) state that Z2 should be greater than the right hand side for all t, since Z2 is 

the maximum of
, ,

( . )ij ijkt k ij ijkt
i j k

c Q f pr Xγ
∈Ω

+ × ×∑ . Constraints (17) and (18) ensure that Z2 

must be lower than or equal to
, ,

( . )ij ijkt k ij ijkt
i j k

c Q f pr Xγ
∈Ω

+ × ×∑ at least for a single t, and 

prevent Z2 approaching infinity. It should be noted that when the objective function is 

“minimization”, these two constraints are not necessary, but when the objective function is 

“maximization” and/or the model structure is “multi-objective”, these are very important 

constraints and should not be neglected. 

Since the proposed model is a multi-objective integer programming model where the two 

objective functions are completely inconsistent, it is not possible to provide the decision 

makers with a single optimal solution, which contains the simultaneous minimum values for 
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all objective functions. Instead, we attempt to approximate the set of all Pareto optimal 

solutions named the Pareto frontier. It contains the best compromise solutions that cannot be 

improved in any objective without causing degradation in another. Compromise 

programming (lp-metrics) is one of the well-known Multi Objective Decision Making 

methods (MODM) in solving multi-objective problems with inconsistent objective functions 

(Aryanezhad et al., 2009, Mirzapour Al-e-Hashem et al., 2012). According to the 

compromise programming method, first the primary bi-objective model, with respect of each 

objective function, is solved separately, then a single objective model (lp-metrics) is 

reformulated in order to minimize the weighted sum of each objective functions' normalized 

deviation from its optimum value.  

Let us assume a multi-objective model as 

Min Z1 
Min Z2 

⁞ 
Min Zn 

 

If the best and nadir values of the single objective functions Z1, Z2, …, Zn are equal to (Z1
min, 

Z1
max), (Z2

min, Z2
max) … and (Zn

min, Zn
max), respectively, the equivalent single objective 

compromise programming (lp-metrics) can be therefore written as: 

 

1
minmin min

1 1 2 2
1 2max min max min max min

1 1 2 2

-metrics ...
pp p p

n n
p n

n n

Z ZZ Z Z Z
l w w w

Z Z Z Z Z Z

 −− −
 = × + × + + ×
 − − −
 

, where iw  is the 

relative weights of ith component and p is an arbitrary positive integer number, both of them 

are chosen by the decision maker (Sazvar et al., 2014). 

5. Numerical illustration 

We propose in this section a small-sized illustrative example to numerically show the 

implication of the accident concern in the optimal solution as well as the contribution of the 

transshipment option on both the economic and accident objectives. 
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Assume a medicine supply network consists of 5 hospitals H1, …, H5. The travel distances are 

given in Table 2. The matrix of routes is an asymmetric directed graph that meaning the roads 

can be one-way. The occurrence probability and the severity index of accident for each 

segment are provided in Table 3. These parameters can be obtained from governmental or 

community databases like as the data on road accidents which are collected through CARE 

(Community database on Accidents on the Roads in Europe), the European centralized 

database on road accidents resulting in death or injury across the EU. For the USA, one could 

use the NASS (National Accident Sampling System) which contains information on every 

police-reported accident including nonfatal accident and property damages. Generally, the 

occurrence probability and severity index of accidents to occur on each road segment, can be 

estimated based on the present infrastructure characteristics, the average speed of vehicles, 

the presence of vulnerable locations (e.g. schools, residential complexes, etc.) and the 

proximity to emergency services (Panwhar et al., 2000).  

The deterioration and backorder ratios are assumed to be equal to 0.05 and 0.2, 

respectively. Table 4 shows the unit holding cost, unit backorder and lost sale costs (in terms 

of monetary unit per period per product), the initial inventories (product unit), and the 

forecasted demand (product unit) for each hospital in 5 periods. The fixed and variable 

transportation costs (in terms of monetary unit per product per km), the capacity (product 

unit) and value of each vehicle (monetary unit) are given at Table 5. For practical reasons, the 

delivery lots (Qd) and pickups (Qp) are assumed as multiplayers of 50 and 5, respectively. 

The unit pickup cost for all vehicles are set at 0.1 (monetary unit). The price of each unit of 

product is equal to 1000 (monetary unit). It is also assumed that the orders can be 

backordered at most until the last period (SiT=0).  

Table 2. The distance between the nodes, dij (km)  
 0 H1 H2 H3 H4 H5 
0 - 31 - 73 21 31 
H1 31 - - - 13 62 
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H2 78 - - - 90 - 
H3 73 - - - 62 96 
H4 21 13 90 62 - - 
H5 31 62 - 96 - - 

- means that there is no direct road between the respected nodes. 
 
Table 3. The occurrence probability (prij) and severity index of accident (γij) 

  0  H1  H2  H3  H4  H5 
  pr γ  pr γ  pr γ  pr γ  pr γ  pr γ 
0  - -  0.2 0  - -  0.08 0.12  0.05 0  0.08 0.04 
H1  0 0  - -  - -  - -  0.01 0.09  0 0.12 
H2  0.2 0.12  - -  - -  - -  0.16 0.03  - - 
H3  0.2 0.12  - -  - -  - -  0 0.06  0.09 0.02 
H4  0 0.08  0.15 0.08  0.19 0.12  0.28 0  - -  - - 
H5  0.14 0.03  0.2 0.06  - -  0.15 0.04  - -  - - 
 
Table 4. Hospitals Data 

Hospital ICi I0 
Demand in Period t  π'i πi hi 

1 2 3 4 5 
1 300 0 0 470 310 100 0 200 20 22 
2 500 0 500 0 120 480 120 100 10 12 
3 300 0 0 150 320 0 390 400 40 25 
4 500 0 210 0 230 0 115 200 20 30 
5 300 0 330 120 0 180 0 100 10 15 

 
Table 5. The vehicles’ data 

Vehicle k fk fck vck cvk 

1 50000 400 0.1 120 
2 70000 600 0.08 210 
3 90000 700 0.06 270 
4 100000 800 0.04 380 
5 150000 900 0.02 530 

The proposed TRIP model and lp-metric reformulation are coded under the Optimization 

Programming Language (OPL) and the CPLEX script accessed via IBM ILOG CPLEX 

Optimization Studio 12.6. 

Considering only 3 periods, and solving the given example twice for each objective function, 

the optimum values of each one are obtained which allow to build the lp-metric model,

1 214509 6696

326070 14509
(

669
1 )

28551 6p

Z Z
l metrics w w

− −− = × + − ×
−−

. Here, 1-w means that how much the decision 

maker is concerned about the accident loss when compared to total costs. We then solve the 

lp-metric problem under 0.8w=  (as an illustrative example) and the result is shown in Table 
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6. Tables 7 and 8 report the details of the optimal solution of the problem for w=1 and w=0.8, 

for the most important decision variables, deliveries (Qd), Pickups (Qp) and the routes (X).  

Table 6. Payoff table  
 Min Z1 (w=1) Min Z2 (w=0) Min lp-metrics (w=0.8) 
Z1 (total cost) 14509 326070 29596 
Z2 (accident loss) 28551 6696 8466 

 
 

Table 7. The optimal solution for w=1 
Period 1  Period 2  Period 3 

X(i, j, k, t) value  X(i, j, k, t) value  X(i, j, k, t) value 
X(0, 4, 3, 1) 1  X(0, 1, 4, 2) 1  X(0, 4, 3, 3) 1 
X(4, 1, 3, 1) 1  X(1, 5, 4, 2) 1  X(4, 0, 3, 3) 1 
X(0, 5, 4, 1) 1  X(5, 0, 4, 2) 1  X(0, 1, 4, 3) 1 
X(5, 0, 4, 1) 1  X(0, 1, 5, 2) 1  X(1, 4, 4, 3) 1 
X(0, 4, 5, 1) 1  X(1, 4, 5, 2) 1  X(4, 2, 4, 3) 1 
X(4, 2, 5, 1) 1  X(4, 3, 5, 2) 1  X(2, 0, 4, 3) 1 
X(2, 0, 5, 1) 1  X(3, 0, 5, 2) 1  X(0, 3, 5, 3) 1 
-   -   X(3, 5, 5, 3) 1 
-   -   X(5, 1, 5, 3) 1 
-   -   X(1, 4, 5, 3) 1 
-   -   X(4, 2, 5, 3) 1 
-   -   X(2, 0, 5, 3) 1 
Qd(i,, k, t) value  Qd(i,, k, t) value  Qd(i,, k, t) value 
Qd(4, 3, 1) 250  Qd(1, 4, 2) 150  Qd(4, 3, 3) 250 
Qd(5, 4, 1) 350  Qd(5, 4, 2) 100  Qd(1, 4, 3) 300 
Qd(2, 5, 1) 500  Qd(1, 5, 2) 350  Qd(2, 4, 3) 50 
-   Qd(3, 5, 2) 150  Qd(3, 5, 3) 350 
-   -   Qd(2, 5, 3) 100 
Qp(i, k, t) value  Qp(i, k, t) value  Qp(i, k, t) value 
Qp(4, 5, 1) 40  -   Qp(1, 5, 1) 15 

 

Table 8. The optimal solution for w=0.8 
Period 1  Period 2  Period 3 

X(i, j, k, t) value  X(i, j, k, t) value  X(i, j, k, t) value 
X(0, 4, 2, 1) 1  X(0, 4, 2, 2) 1  X(0, 4, 2, 3) 1 
X(4, 2, 2, 1) 1  X(4, 2, 2, 2) 1  X(4, 2, 2, 3) 1 
X(2, 0, 2, 1) 1  X(2, 0, 2, 2) 1  X(2, 0, 2, 3) 1 
X(0, 4, 4, 1) 1  X(0, 4, 3, 2) 1  X(0, 1, 4, 3) 1 
X(4, 0, 4, 1) 1  X(4, 3, 3, 2) 1  X(1, 4, 4, 3) 1 
X(0, 1, 5, 1) 1  X(3, 5, 3, 2) 1  X(4, 0, 4, 3) 1 
X(1, 5, 5, 1) 1  X(5, 0, 3, 2) 1  X(0, 1, 5, 3) 1 
X(5, 0, 5, 1) 1  X(0, 1, 5, 2) 1  X(1, 4, 5, 3) 1 
-   X(1, 0, 5, 2) 1  X(4, 3, 5, 3) 1 
-   -   X(3, 5, 5, 3) 1 
-   -   X(5, 0, 5, 3) 1 
-   -   -  
Qd(i,, k, t) value  Qd(i,, k, t) value  Qd(i,, k, t) value 
Qd(2, 2, 1) 200  Qd(2, 2, 2) 200  Qd(4, 2, 3) 50 
Qd(4, 4, 1) 350  Qd(3, 3, 2) 150  Qd(2, 2, 3) 150 
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Qd(5, 5, 1) 400  Qd(5, 3, 2) 50  Qd(1, 4, 3) 300 
-   Qd(1, 5, 2) 500  Qd(4, 4, 3) 50 
-   -   Qd(4, 5, 3) 150 
      Qd(3, 5, 3) 350 
Qp(i, k, t) value  Qp(i, k, t) value  Qp(i, k, t) value 
Qp(4, 2, 1) 140  -   Qp(1, 5, 1) 15 
 

For 0.8w= , the economic performance of the system accounts for 80% of the decision maker 

concern and the accident loss accounts for 20%. Under this value of w, according to Table 6, 

the values for Z1 and Z2 are respectively equal to 29596 and 8466. By changing the relative 

weight (w), a Pareto set solutions can be obtained. In order to investigate the integration of 

the accident loss in the optimization procedure, let’s compare a 100% economic performance 

optimization based only on the first objective function (Z*1) with a lp-metrics* ( 0.8w= ) for 

the first period (Figure 2). 

 

 Period 1 

W=1 

 

T
ype

 5 

Type 3 

T
yp

e
 4

 

H1 

H2: 500 ↓ 

H3 

H5: 350 
↓ 

H4: 40 ↑ 250 ↓ 
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W=0.8 

 

a↑: means that the truck picks up “a” product units from the related hospital(transshipment). 
b↓: means that the truck delivers “b” product units to the related hospital. 
 Figure 2. Optimum solution obtained for w=0.8 vs. w=1. 

As illustrated in Figure 2, the transshipment option plays a significant role in the optimal 

solutions. In the first solution in which the accident risk is ignored, a truck type 3, at first 

period, begins its tour by visiting to hospital 4 to deliver 250 units of medication. A truck 

type 4 visits hospital 5 and delivers 350 units, and finally a truck type 5 visits hospital 4, and 

picks up 40 units and then goes to hospital 3 and delivers 500 units of medication. It should 

be noted that hospital 4 is visited twice in the first period, with truck type 3 and 5. The former 

truck delivers the medication to this hospital and the latter one picks up medication 

(transshipment). Despite that the two last tours (0 � 5 � 0 and 0 � 4 � 2 �0 ) are among 

the risky tours (estimated occurrence probability and severity index of accident for the route 

2�0, are very high and equal to 0.2 and 0.12, respectively), the model ignores the accident 

concern (see Table 3) and the trucks use the mentioned risky routes, since the model only 

minimizes the total cost (w=1). 

In the second solution (obtained by solving the lp-metrics method for w=0.8), first, a truck 

type 4 delivers 350 units of product to hospital 4, then a vehicle type 2 visits this hospital and 

Type 4 

Type 5 

H5: 400 
↓ 

H3 

H1 

H4: 140 ↑ 350 ↓ 

H2: 200 ↓ 



21 
 

picks up 140 units and left this hospital to hospital 2, and delivers 200 units. It is observed 

that in this solution, the transshipment (Qp) increases that meaning it helps the system to 

adopt with changes in decision maker’s preferences about total cost versus accident loss. 

Finally, a truck type 5 (the biggest one), visits hospital 5 and delivers 400 units and returns to 

the central pharmacy. Although there is a direct road between nodes zero and 5, but the truck 

chooses middle node 1, and takes the tour 0 � 1 � 5, rather than 0 � 5. The former tour 

seems reasonable when we discover that the accident severity indexes or occurrence 

probability of accident for this tour is zero. Besides, when passing a route like as 4 � 2 is 

inevitable, in contrast with the first solution, a small truck (type 2) cross this risky route to 

avoid a costly accident. 

It is worthwhile to notice that by taking into account the second objective function 

(minimizing the maximum accident loss) with a relative weight of 0.2 (1- 0.8=0.2), the 

accident loss decreases from 28551 to 8466 (~ two third saved), and this is even more 

interesting to notice that this considerable reduction in the accident loss occurs when the total 

cost is almost doubled (the total cost shifts up from 14509 to 29596). 

Enabling the transshipment option has an important impact on the tradeoff between the two 

objective functions. One may ask the question that whether without considering 

transshipment option the above solution (provided in Figure 2) is applicable. The answer is 

"NO". When we solve the problem without the transshipment option, the accident loss 

average decreases but the total cost increases to reach 30600, which is about 4% more 

expensive than the transshipment enabled case for this small example. 

Our framework permits consequently to the decision maker to judgmentally integrate the 

accident concern in his/her optimization of the IRP problem: this could be done by letting 

him/her judgmentally choosing the value of w. More importantly, thanks to this illustrative 
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example, it is clear that transshipment option may allow the system to reduce the accident 

loss without an equivalent increase in the logistics costs. It would be interesting to investigate 

in a more detailed manner (in Section 7) at which level the transshipment option operates as a 

coordinator between the two objective functions. 

6. Solving procedure (HGA) 

As shown by Zhao, et al., (2007), the IRP is NP-hard. As a consequence, exact solution 

methods cannot find the optimum solution for large-sized problems in a reasonable time. 

Alternatively, several heuristic (Siswanto et al., 2011; Nambirajan et al., 2016) and 

metaheuristic approaches have been developed in the last few decades to discover the near 

optimal solutions. The most widely adopted methods are: genetic algorithm (Moin et al., 

2011; Park, 2016), simulated annealing (Shaabani and Nakhai Kamalabadi, 2016; Ghorbani 

and Akbari Jokar, 2016), particle swarm optimization (Kumar et al., 2016; Chen and Lin, 

2009), ant colony (Huang and Lin, 2010), and hybrid approaches (Avci and Topaloglu, 

2016). 

Since the proposed model is a multi-objective IRP and the computation time of determining 

the optimal solution is heavily dependent on the dimensions of the problem, we develop a 

Hybrid Genetic Algorithm (HGA) by taking the advantage of compromise programming (lp-

metrics) which makes the proposed HGA capable to generate the Pareto solutions. The 

flowchart of the proposed metaheuristic is depicted in Figure 3. As seen in Figure 3 in each 

inner loop of the proposed algorithm, GA is recalled five times. In the first four times, it is 

executed to obtain the best and worst values of each objective function separately, and last 

time it is executed to solve the problem with a compromise fitness function called lp-metrics. 
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Figure 3. The flowchart of hybrid GA 

 

 

6.1. Fitness function 

In genetic algorithm, the fitness function is a criterion to evaluate the quality of the feasible solutions 

(chromosomes). Since the proposed model is a bi-objective programming, we have two inconsistence 

fitness functions. As previously explained, we merge both objectives to create a single fitness function 

called lp-metrics (see Figure 3).  This fitness function is the weighted sum of each objective 

functions' normalized deviation from its optimum value. The optimum values themselves are 

obtained separately by running GA where the fitness function is set to its respected objective 

function. 

6.2. Chromosome structure (Solution encoding) 
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A chromosome is composed of a set of genes. A solution of the developed model is consisting of 

some variables presented in Figure 4-a, where gvt=[X, Qp, Qd]vt are matrices with dimensions of i × j, 

1 × i and 1× i and show the routes (i 
�

 j), pickups and deliveries of vehicle v in hospital i and in 

period t, respectively. It is obvious that there are many zeros in above matrices. So, in order to make 

the algorithm more efficient, the encoding of a feasible solution is proposed differently as Figure 4-b. 

(4-a) 

 Period 

V
e

hi
cl
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 1 2 … T 

1 [X,Qp,Qd]
11 

[X,Qp,Qd]
12 

… 
[X,Qp,Qd]

1T 
2 [X,Qp,Qd]

21 
[X,Qp,Qd]
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… 

[X,Qp,Qd]
2T …

.. … … … …

V [X,Qp,Qd]
V1 

[X,Qp,Qd]
V2 

… 
[X,Qp,Qd]

VT 
 

  

(4-b) 

 

Figure 4. The solution and chromosome structure 

 

In Figure 4-b, a network composed of 12 hospitals is considered.  First, a random permutation 

between one and the number of hospitals is generated. Then a random number between 1 and 

the number of available vehicles are generated. In this example, three vehicles are selected. 

After that two (i.e. 3-1=2) random cuts (e.g. 4 and 9) are generated between 1 and the number 

of hospitals minus one (11) which are shown by the arrows, then the hospitals separated by 

the cuts create the routes for each vehicle. Therefore, vehicle 1, for example, visits the 

hospitals 10, 5, 8, and 6, respectively. 

6.3. Initial population 
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Genetic algorithm is inspired by the natural biological evolution of a population during many 

generations. Although convergence of the genetic algorithm is not dependent on its initial population 

but it is important enough to create a diversified initial population to get a better result. For this 

purpose, we define the following steps: 

1- Set n=1 as the counter of population. 
2- Calculate the average demand (��) and its standard deviation (��) for each period (t). 
3- Vehicles in each period are selected based on probability ��/�� and the upper bound (fleet 

size). 
4- The routes for the selected vehicles are generated randomly, and the hospitals which should 

be visited are determined accordingly (Figure 4-b). 
5- Matrix Qp (pickups) is generated by the random numbers between zero and the hospital's 

previous period inventory minus its current demand, on condition that the truck has enough 
empty places, otherwise a random number between zero and the empty places of the truck is 
instead generated. 

6- Matrix Qd (deliveries) is generated by the random numbers in interval (	̅ ± ��),  on 
conditions that: 1) the vehicle has enough cargo, 2) the hospital's available inventory cannot 
satisfy its current demand, and 3) the pickup operation is not already planned for this hospital 
in this period. If condition (2) is not met a random number in interval (0, the truckload) is 
instead generated. 

7- Determine the inventory and shortage levels of the hospitals for the chromosome generated 
and check if it meets the hospital capacity constraint (Equations 29-30).  

8- If the created chromosome violates the constraints, then modify it by the modification 
procedure (explained in sub-section 4.6). 

9- If n=N, stop; otherwise set n=n+1 and go to step 3. 

In this way, N feasible chromosomes are generated, which form the initial population. 

6.4. Crossover Operator 

In random crossover operation, the first two parent chromosomes are randomly paired, and 

then a new offspring chromosome is generated such that it inherits part of the genes from 

each parent. According to Figure 5, a route in Parent 2 is first chosen randomly and a sub-

route is randomly selected from that route. The sub-route contains at least one hospital and at 

most the whole route. Before inserting the sub-route into Parent 1, if the split delivery is 

forbidden, all its hospitals are deleted from this parent to avoid duplications in the solution, 

otherwise; only the hospitals visited with same vehicles are deleted. Then, the sub-route is 

inserted in the best possible place, which is found by a greedy heuristic called Best-Insertion 

(Bjarnadóttir, 2004). The heuristic finds both the route in which the sub-route is inserted and 

the two hospitals it is inserted between. Consider H1 denoting the first hospital in the sub-
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route and Hn the last one and hm and hm+1 being two consecutive hospitals in a route in the 

offspring. The payoff of inserting the sub-route between hm and hm+1 is measured by the 

formula: 

�����(�) 	= 		(ℎ�. ℎ���) 	− 		(ℎ�. ��) 	− 		(��. ℎ���) 

where 	(ℎ�. ℎ���)	 is the cost/distance of the arc m
�

m+1. The algorithm searches through 

the whole offspring and inserts the sub-route in the place giving the largest payoff, and a new 

offspring has been generated. Then this operator is applied again to the other parent, to create 

the second offspring. 

 

6.5. Mutation operator 

The mutation operation increases the possibility that the whole feasible space to be explored, 

and reduces the tendency of being trapped in local optimal solutions by changing the contents 

 

Figure 5. Random Crossover operator 
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of one or more genes of the chromosomes. In our proposed HGA three parallel mutation 

operators are developed. Under mutation type 1 (���), one random vehicle at a random 

period is first selected and its designated routes and associated pickups/deliveries are 

completely omitted. Under mutation type 2 (�� ), one hospital is selected randomly, at its 

deliveries at a random period converted to pickups and vice versa, and finally, under mutation 

type 3 (��!), the deliveries (pickups) are randomly altered ("#("$) ± 	0.1 × "#("$)). 

6.6. Inversion 

Similar to the mutation operator, it is applied to a single chromosome at a time. Two random 

cuts are first chosen within a randomly selected tour of an offspring. The order of the nodes 

between the cuts is then reversed. 

6.7. Modification 

Since the offsprings generated by either crossover/mutation operators or the initial population 

procedure may not satisfy the hospital/vehicle capacity constraints, we check these two 

limitations and alter the pickups and deliveries accordingly till reach the feasible solution. If 

after many attempts of this procedure (e.g. 10 times) the chromosome is still remained 

infeasible, either the infeasible chromosome is completely removed and a substitute 

chromosome is randomly generated by the help of initial population procedure or penalized 

in fitness function. 

6.8. The proposed Genetic Algorithm (GA) 

The essential steps of the proposed hybrid genetic algorithm are summarized as follows: 

1. Initialize GA parameters; P (population size), N (the number of generations), αc (the 
probability of the crossover operation), αm1 and αm2 (the probability of mutation type 
1 and 2, respectively). 

2. Initialize the division parameter for lp-metrics (() 
3. Generate the initial feasible population of size P according to algorithm given in 

Section 6.3. 
4. Initialize counter n=1 (counter of generation). 
5. Set up the mating pool including P parents (chromosomes). 
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6. Pair the P chromosomes (parents) randomly and exercise crossover to create 
offsprings according to algorithm given in Section 6.4. 

7. Pick the chromosomes randomly and apply mutation and inversion operation to create 
new offsprings according to algorithm given in Sections 6.5 and 6.6. 

8. Check the feasibility of new offsprings and modify the infeasible ones to satisfy the 
constraints (Section 6.7). 

9. Update the mating pool with all parents and feasible offsprings. 
10. Compute the fitness values for each chromosome based on ( and the given function in 

Figure 3, and rank them accordingly (the ties are removed). 
11. If n=N; stop and report the first ranked solution, otherwise; go to next step. 
12. Transfer the first one-third of ranked chromosomes (P/3) directly to the next 

generation's mating pool (elitism) and fill the rest of mating pool by randomly 
selection of remaining chromosomes (2P/3). 

13.  Set n=n+1, and go to step 6. 
 

7. Sensitivity analysis and managerial implications  

In order to demonstrate the efficiency of the proposed metaheuristic, and to derive 

managerial insights about our proposed framework, several numerical examples are 

generated and solved using both CPLEX and the hybrid GA. Then, three sensitivity analyses 

are performed; 1) to study the role of transshipment option to reduce the total cost as well as 

the accident loss, 2) to identify the range of deterioration rate over which the transshipment is 

still cost effective and, 3) to discuss the impact of unit transportation costs (fixed and 

variable), and backorder ratio on the optimal solution and the associated two objective 

functions. 

7.1. Performance of HGA 

In order to show the efficiency of the proposed metaheuristic, 15 test problems with different 

dimensions are generated and solved by the HGA presented in the previous section and then 

compared with the lower bound of CPLEX. The proposed HGA is coded in MATLAB 

R2015a, and all computations are run on a workstation with 3.3 GHz and 4 GB RAM under 

Microsoft Windows 7.  
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The number of hospitals and periods are respectively ranging from 5, 2 (in small sized 

problems) to 50, 12 (in large sized problems). Each problem is first solved by using the lp-

metrics method accessed via CPLEX script and then solved by the proposed hybrid GA. the 

variable cost and demand are randomly generated between (0-130) and (0-500), respectively. 

The relative weights are set as 0.2, 0.4, 0.6 and 0.8 to generate Pareto solutions and the 

results are reported in Table 9. The Gap1 (in percentage) in Tables 9 is the percentage 

deviation of the average first objective function's best values (Total cost) among Pareto 

solutions obtained by HGA (AOV1HGA) from the one obtained by CPLEX (AOV1
LB) and 

calculated as follows: 

)�� =
*+,-./

� − *+,01
�

*+,01
� × 100 

Similarly, Gap2 is defined as the deviation of the average of the second objective function's 

best values (Accident risk) among Pareto solutions obtained by HGA (AOV2
HGA) from that 

obtained by CPLEX (AOV2
Opt). 

)� =
*+,-./

 − *+,01
 

*+,01
 × 100 

Except some large sized instances in which the workstation could not even generate the 

model to solve it, wherever the CPLEX cannot solve the problem in two hours, the lower 

bound reported by CPLEX is used to compute the gaps. As seen in Table 8, in all cases the 

reported gaps are reasonable and never exceed 13%. 

Table 9. Performance of the proposed metaheuristics 

# 
Problem 

# 
Hospitals 

# 
Period 

HGA  CPLEX 
GAP1 GAP2 

AOV1
HGA AOV2

HGA CPU Time*  
AOV1

LB AOV2
LB CPU Time***  

1 5 2 210,742 1240 0:15:00:00  186497 1218 0:17:44:09 0.13 0.018 

2 5 3 299,038 1938 0:15:49:00  97725 317 0:22:19:21 2.06 5.111 

3 6 3 381,444 2774 0:15:20:00  45682 441 0:47:52:03 7.35 5.290 

4 10 5 588,906 14337 0:22:22:00  70443 2233 1:17:26:93 7.36 5.421 

5 12 6 614,333 17673 0:55:18:00  55798 2773 1:22:12:17 10.01 5.374 

6 15 6 721,110 25385 1:05:29:00  72039 3504 1:48:47:23 9.01 6.244 

7 18 9 1,006,555 49111 1:55:50:00  96321 5371 1:59:59:59 9.45 8.144 
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8 20 9 1,165,445 55373 2:20:00:00  115620 6912 1:59:59:59 9.08 7.011 

9 22 9 1,502,606 59012 2:20:00:00  123367 6318 1:59:59:59 11.18 8.348 

10 24 10 1,719,024 67614 2:30:00:00  154867 5315 1:59:59:59 12.10 11.721 

11 26 10 1,880,417 69935 2:17:00:00  153880 5413 1:59:59:59 11.22 11.92 

12 28 10 2,099,907 71375 2:26:10:00  165347 6456 1:59:59:59 11.70 10.056 

13 30 11 2,330,447 105493 2:25:09:00  210139 8454 1:59:59:00 10.09 11.478 

14 30 12 2,924,103 112776 2:45:00:00  N/A N/A 3:00:00:00 - - 

15 50 12 5,666,211 289998 5:00:00:00  N/A N/A 3:00:00:00 - - 
*  Running time is reported for the best experience in the format of hr:min:sec:millisec. 
** The time taken to generate the initial population and respected lp-metrics parameters are both excluded from the solving time. 
***  For large scale problems the lower bounds (LB) of CPLEX, reported after two hours, are used for comparison. 

 

N/A: CPLEX cannot reach the feasible solution after three hours.  

7.2. Transshipment vs no transshipment scenarios 

In order to shed more light on the importance of the transshipment policy, we compare the 

solutions with and without the transshipment option to demonstrate that the latter is not only 

beneficial for the first objective function (total cost) through saving in routes but also it 

enables the model to avoid the routes with higher degree of accident loss, and ensures the 

supply against catastrophic consequences of possible accident. Thus, several numerical 

examples are generated and solved by using the proposed hybrid algorithm to study the 

impact of the transshipment option on the optimal solution for a given weight w. We solve 10 

more test problems twice; with transshipment option (Zi
*
TR) and without transshipment option 

(Zi
*
WTR).  The optimal solutions for the problems with and without transshipment option are 

then reported and the gap between them is calculated by	∆3 =
45	67
∗ 94:∗;67	

4:∗;67
. As seen in Table 

10, the average, minimum and maximum of ∆� are 0.196, 0.11 and 0.31, respectively. 

Similarly, the average, minimum and maximum of ∆  are 0.176, 0.10 and 0.28, respectively. 

With no exception, the transshipment policy leads to better solutions based on total cost and 

accident loss, concurrently.  For instance, in test problem 4, the transshipment option enables 

a 23% saving in the total cost, and a decrease of 16% in the accident loss. 

Table 10. The overall impact of transshipment on objective functions   

#Problem   With  Without ∆1 ∆2 
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Transshipment Transshipment 

Z1 Z2  
 Z1  Z2  

1 
  60261 7576  

 76532 9394 
 0.27 0.24 

2 
  49102 14455  

 54503 15900 
 0.11 0.1 

3 
  44646 10833  

 50896 12783 
 0.14 0.18 

4 
  48621 15662  

 59804 18168 
 0.23 0.16 

5 
  52241 10455  

 61122 11500 
 0.17 0.1 

6 
  57540 5980  

 70774 7056 
 0.23 0.18 

7 
  61630 14105  

 80735 17490 
 0.31 0.24 

8 
  65144 15040  

 72961 17747 
 0.12 0.18 

9 
  54308 7560  

 67342 8316 
 0.24 0.1 

10 
  69289 10888  

 78990 13937 
 0.14 0.28 

Average          0.196 0.176 

7.3. Impact of the deterioration rate 

Due to the perishability nature of the products under study, the transshipment benefit is upper 

bounded by the deterioration occurring during the horizon periods. In this section a sensitivity 

analysis is performed to discuss the impact of the deterioration rate (θ) on the optimal 

solution and to identify the appropriate range of θ over which the transshipment option keeps 

on its beneficial role. For this purpose, the test problem with 18 periods is solved for different 

values of θ ranging from zero (Non-deteriorating items) to 0.1 while the other parameters 

remain unchanged. The number of periods is assumed equal to 18, such that the impact of 

deterioration rate can be observed. The results are depicted in Figure 6. As illustrated in 

Figure 6, although the deterioration rate has no meaningful impact on the accident loss, it is 

determinant to distinguish the positive role of the transshipment option (pickups) on the total 

cost. Since we consider in Z2 the min max of accident loss and not the cumulative sum of the 

accident loss, there is small variations in cumulative sum but the max boundary is almost the 

same for changing θ.  As illustrated, for higher rates of θ, the transshipment option is more 

solicited (higher pickup quantities) leading to increasing values of the first objective. If the 

transshipment option is not enabled, the situation would be worse since the products may 

perish and more logistics costs may be incurred. Indeed, for higher values of θ, the extra 
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inventories of medications in hospitals' drugstore (when the available inventory in a hospital 

exceeds its demand) are rapidly perishing. So, it would be advantageous, from a system 

perspective, to transfer some of its inventory to other hospitals where its demand is 

unsatisfied due to the lack of inventory, and prevent a great part of medications from 

perishing of the deterioration process. 

 

 

Figure 6. Accident loss and total cost as a function of the deterioration rate 

7.4. Impact of the backorder rate 

As previously discussed, one significant characteristic of the proposed model is the modeling 

and the integration of the partial backordering β. It is very helpful to identify at which range 

of β, the ratio of demand backlogged, the need to use transshipment option is more profitable 

and for which reason. For this purpose and to study the impact of the backorder ratio on the 
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optimal strategy, we solve the test problem under different values of β ranging from zero (all 

unfulfilled demand is lost) to 1 (all unfulfilled demand completely backordered) while we 

keep the other parameters unchanged. The objective values Z1 and Z2 as a function of the 

transshipment quantity (pickups) are depicted in Figure 7. This Figure shows that the 

transshipment option is more beneficial for the lost sale shortage case rather than the case in 

which demand is totally backordered. That means that the transshipment option acts as an 

excellent emergency solution to avoid lost sales. The less the ratio of unsatisfied demand is 

backordered, the more often transshipment will be visible in optimal solutions for range 

0.3<β<0.7. Afterward, the trend is inverted and the transshipment option is first satiated, and 

then decreased but never collapsed. The rationale behind this observation is that the 

transshipment option generally depends on the vehicle capacity, so in order to take advantage 

of the transshipment; the inventory manager has rather to utilize vehicles that are more 

spacious. 

By observing the stable behavior of the accident loss (in Figures 6 and 7) for increasing 

pickup quantities and associated total cost, we notice that the transshipment option plays the 

role of a coordinator between the economic and the safety criteria of the problem. For 

instance, for increasing values of β, one could expect the use of more routes (including risky 

ones) to fulfill the backordered demands and as a consequence, we may expect a worse 

evolution of the accidents loss for higher β. As shown in Figure 6, this is not the case, 

because the system is soliciting more the transshipment option in order to avoid the risky 

routes. Besides, in our test problems, the unit lost sale penalty cost is assumed almost ten 

times larger than that of backorder cost. 
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Figure 7. Transshipment for different backorder ratios. 

7.5. Impact of the fixed and variable transportation cost 

We finally perform a sensitivity analysis on the fixed (dk) and variable transportation cost 

(vck), to show the attractiveness of the transshipment option when they increase. We 

multiplied the unit fixed and variable cost by a coefficient ranges from 1 to 3 as illustrated in 

the horizontal axis of Figure 8. As intuitively expected, when the fixed cost increases, the 

total pickups (transshipment) increases rapidly. The rationale behind this observation is that 

when the fixed cost increases, the transshipment policy attempts to merge the cargos to 

reduce the number of vehicles utilized. It implies that the transshipment option is an 

interesting option in the presence of a small fleet of vehicles. Conversely, the transshipment 

is not very attractive when the variable cost increases, especially when the variable cost 

depends on the both distance and the size of vehicle’s cargo. 
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Figure 8. Transshipment versus fixed and variable transportation cost 

8. Conclusion and future research 

In this research, a mixed integer mathematical model is presented to deal with a bi-objective 

transshipment enabled inventory routing problem for deteriorating items in a supply chain 

network. Two distinguishing features of the proposed model are; i) transshipment option is 

incorporated in the model as a possible solution to increase the performance of the 

distribution, ii) minimizing the maximum accident loss as an additional objective function is 

added to the classic form of IRP model to avoid the possible catastrophic accidents that may 

lead to uncompensated effects that is particularly vital for radio pharmaceutical products. 

These features enable the model to select the appropriate routes as well as the transshipment 

alternative to reduce the total costs of supply chain and keep the distribution as safe as 

possible. The results show that the model is capable to make a rational balance between the 

conflicting criteria. The model permits to decision maker to judgmentally choose the tradeoff 

between the safety and the economic performance by setting the weight assigned for each 

optimization criterion. A problem modeling effort is performed in order to integrate the 

accident issue in the classical IRP. We formulate it as an average loss function based on the 
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location of the accident as well the type and the content of the truck when the accident 

happens. 

An efficient hybrid Genetic Algorithm is developed as a resolution procedure and sensitivity 

analyses are conducted to derive managerial insights for decision makers. We particularly 

illustrate the particular cases where the transshipment option brings an important added value 

to the economic performance while the accident loss is kept under control. The transshipment 

option does not only play the role of a lever to decrease the costs but also, it operates as a 

coordinator between the economic and the safety criteria. 

 Examining other heuristic and metaheuristic methods, extending the model for multi-product 

situation and under uncertain conditions, and developing the model for reverse side of the 

supply network are some promising directions for future research. 
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