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We consider a class of Markov Decision Processes frequently employed to model queueing and inventory

control problems. For these problems, we explore how changes in different system input parameters (transi-

tion rates, costs, discount rates etc.) affect the optimal cost and the optimal policy when the state space of

the problem is multi-dimensional. To address a large class of problems, we introduce two generic dynamic

programming operators to model different types of controlled events. For these operators, we derive sufficient

conditions to propagate monotonicity and supermodularity properties of the value function. These proper-

ties allow to predict how changes in system input parameters affect the optimal cost and policy. Finally, we

explore the case when several parameters are changed at the same time.
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1. Introduction

Many interesting queueing and inventory control problems can be modeled by continuous-time

Markov Decision Processes. A lot of research effort has gone into the investigation of optimal policy

structure in such problems. These problems are especially challenging when the state space of the

problem is multi-dimensional as in the case of queueing systems with multiple queues or inventory

systems with multiple products for example. Even though each new model is different and presents

new challenges, a powerful approach called event-based dynamic programming proposed by Koole

(1998, 2006) provides a way of establishing results on the optimal policy structure for a certain

class of models in a unified manner.

Our main objective in this paper is to further explore optimal policy structure in multi-

dimensional queueing and inventory control problems. In particular, we investigate how the optimal

cost (or reward) and the optimal policy change when problem input parameters change. The input

parameters in question are the transition rates (or probabilities) governing the controlled Markov

chain and the financial parameters such as costs, rewards or discount rates. We are seeking answers

to questions such as: how does the optimal cost and the optimal policy change when the customer

arrival rate or the waiting cost increases in a controlled queueing system? To answer such ques-

tions, we construct a systematic approach that first builds on earlier results to infer optimal policy

structure and then develops a methodology to explore the effects of varying input parameters.

Characterizing and understanding optimal policy structure in queueing and inventory control has

received considerable attention. One reason for this emphasis is that understanding the theoretically

optimal policy for a simplified model of reality is useful in designing near optimal working policies.

This is certainly the case if the optimal policy is not completely defined by a few parameters

(such as a few threshold values) as in most multi-dimensional problems. In this case, the policy

designer would greatly benefit from information about how the working policy parameters should

be adjusted and the cost implications of such adjustments when input conditions change. Our

methodology addresses this question at a fairly general level.

To summarize, in this paper we address the problem of how the changes in input parameters

of a multi-dimensional Markov Decision Process impact the optimal value function in a relatively

model-free setting. This is in contrast with most structural results reported in the literature for

value functions of stochastic dynamic programs which are model specific and usually consider mono-

tonicity only in the state variables but rarely investigate monotonicity properties in terms of the

input parameters. Our contributions can be summarized as follows: First, we propose a general set

of conditions that ensure different monotonicity properties (increasingness, convexity, supermodu-

larity) of the value function in terms of the input parameters. This enables comparative statics type
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results on how the optimal policy and the optimal cost change as certain parameters change. To

our knowledge, this is new in the multi-dimensional setting. In addition, some of the results (con-

vexity/concavity of the value function with respect to an input parameter, compensation between

operators) are novel even for single dimensional problems which are relatively well studied. Second,

because monotonicity properties for multi-dimensional problems are very tedious to check on all

possible commonly used individual dynamic programming operators and under combinations of

different state space constraints (limited buffers, problem specific state space boundaries etc.), we

introduce two generic operators that capture different types of controlled and uncontrolled transi-

tions in the state space. These operators include as special cases several well-known queueing and

inventory control operators from the literature. We present a complete monotonicity investigation

for these two operators which leads to a general set of conditions that that can be expressed in a

concise manner and can be adapted to specific models. This is useful for recovering earlier indi-

vidual results within a general framework but more importantly provides a recipe for establishing

monotonicity results for new problems that can be modeled by the generic operators.

In what follows, we present two examples that will be used throughout the paper to illustrate our

approach and results. The first example explores a well-known admission control problem where

the state space is single dimensional. Here, we can contrast the new approach with the existing

methodology and demonstrate how some of the earlier results can be complemented. The second

example is based on the make-to-stock version of a tandem queueing system. In this case, the state

space is multi-dimensional and the optimal policy structure is more complicated.

Example 1: Admission control. Consider the following admission control problem with n classes

of customers, adapted from Stidham (1985) and illustrated in Figure 1. Customers of class−i arrive

according to a Poisson process with rate λi and are either accepted or rejected at cost ci. Once

accepted, customers are not differentiated and the service time of the single server is exponentially

distributed with rate µ. The state is the number x ∈Z+ of customers in the system. The waiting

cost is h per customer per unit of time. The objective is to choose the optimal admission control

policy in order to minimize the expected discounted/average rejection and holding cost over an

infinite horizon (with discount rate η). Stidham (1985) proves that the optimal policy is a threshold

policy where a class-i arrival is accepted if and only if x< ti. In addition ti ≤ tj if ci ≤ cj. Çil et al.

(2009) establish that ti is increasing in µ and decreasing in λ. We will complement these results

by showing that the thresholds are increasing with h and ci and decreasing with η (see Section 6).

For this example, we also explore the effect of a parameter change on the optimal cost. For a

single class of customers, Figure 2a shows that the optimal cost is increasing and concave in the

holding cost h. We also observe that the optimal cost is linear in each interval where the optimal

threshold is constant. We will prove these results, among others, in Section 6. Figure 2b provides
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Figure 1 Admission control model with n classes of customers
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an example where the optimal cost is decreasing in µ but is neither concave nor convex. However

the optimal cost is convex in each interval where the optimal threshold is constant.

Table 1 explores the case when multiple input parameters change simultaneously and illustrates

what we call compensation between several parameters. We consider three instances where we

vary simultaneously the arrival rates of three classes of customers in such a way that the sum of

arrival rates remains equal to 1.8. We observe that the optimal thresholds of Instance 2 are smaller

than in Instance 1. However we can not order the thresholds of Instance 1 and Instance 3 in a

similar manner. In Section 7, we will provide conditions under which we can predict the increase

or decrease of the optimal thresholds and costs.

Table 1 Compensation (µ= 1, h= 1, c1 = 5, c2 = 10, and

c3 = 15)

Instance λ1 λ2 λ3 t1 t2 t3 Optimal cost
1 0.6 0.6 0.6 1 2 5 8.98
2 0.1 0.7 1 0 1 4 12.1
3 0.1 1.6 0.1 0 3 7 10.6

Example 2 : Tandem queue. This second example is to illustrate the effect of changing parameters

on the optimal policy in a two-dimensional problem. The make-to-stock tandem queue model of

Veatch and Wein (1992, 1994) is illustrated in Figure 3. Servers Mi produce items one by one, with

exponentially distributed processing times (rate µi). Produced items at server i are held in buffer

Bi. Demand, if not immediately satisfied, is backlogged in buffer Bd. The state of the system is

described by (x1, x2) with x1 the number of work-in-process products in B1 and x2 the number of

serviceable products in B2 minus the number of backlogged demand in Bd. The system incurs a

holding cost hi per unit of time and unit of product in buffer Bi and a backorder cost b per unit of

time and unit of waiting demand. The objective is to minimize the expected discounted/average

cost over an infinite horizon (with discount rate η). Veatch and Wein (1992) prove that the optimal

production policy is a state dependent base stock policy defined by two switching curves: Produce

at Mi iff x2 < si(x1), for i= 1,2. Please note that unlike a simple optimal threshold policy as in

the previous admission control example, describing the optimal policy requires specifying complete
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functions for the two switching curves. The design of a practical near optimal policy is therefore an

issue. Veatch and Wein (1992) report that two-stage Kanban policies described by two parameters

perform quite well. In designing such practical policies, it is useful to understand how the policy

parameters should be adjusted when problem inputs change.

Figures 4a and 4b show the influence of the demand rate λ and the service rate µ2 on the optimal

switching curves. We observe that λ has a monotonic effect on the switching curves. The switching

curve s1 (resp. s2) for λ= 1 is systematically below the one for λ= 1.1. We will prove in Section

6 that this result holds in general. On the other hand, we observe that µ2 has a non-monotonic

effect on the switching curve s1: The curve for µ2 = 1.2 crosses the curve for µ2 = 2. This implies

that different input parameters may have different monotonicity consequences.

The rest of the paper is organized as follows. Next section reviews the literature and our con-

tributions. Section 3 presents the class of problems and operators under consideration. Section 4

introduces several properties of value functions and state spaces. Section 5 presents our approach

and main results to study the effect of changing parameters on the optimal cost and policy. Sec-

tion 6 applies our results to the admission control and tandem queue problems. Section 7 exhibits

compensation phenomena when several parameters are changed simultaneously.

2. Literature review

Structure of the optimal policy. In a number of queueing control problems, the optimal policy

can be described by thresholds, switching curves, or hyperplanes. Several papers develop gen-

eral approaches for deriving structural properties of the optimal policy (Weber and Stidham 1987,

Veatch and Wein 1992, Smith and McCardle 2002, Zhuang and Li 2012). In particular Koole (1998,

2006) presents the so-called event-based dynamic programming framework to study queueing con-

trol problems. In this framework, an operator is associated to each type of event (demand arrival,

end of service, processor failure, etc) and can be studied individually. To characterize the struc-

ture of the optimal policy, some properties of the value function such as monotonicity, convex-

ity/concavity and supermodularity/submodularity are needed. If each individual event operator

propagates a desired property, then the optimal value function, which is a composition of different

individual operators, will also possess this property.

Effect of system parameters on the optimal cost. Many papers investigate numerically the effect

of some problem input parameters on the optimal cost and the optimal policy in specific queueing

control problems. There is a rich literature on how average performance measures change in terms

of the input parameters for uncontrolled queueing systems. However, very few papers investigate

this question in the context of controlled queueing systems from a theoretical point of view. Müller
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Figure 2 Effect of parameters on the optimal cost

(a) Concavity and piecewise linearity in h (n = 1,

λ1 = 0.6, c1 = 5, µ= 1, η= 0)
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(b) Piecewise convexity in µ (n= 1, λ1 = 0.6, c1 = 5,

h= 1, η= 0).
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Figure 3 Tandem make-to-stock queue model
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Figure 4 Effect of parameters on the optimal policy

(a) Monotonic effect of λ (µ1 = 2, µ2 = 1.2, h1 = 1,

h2 = 2, b= 4, η= 0.1)
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(1997) compares the optimal value function of discrete time Markov decision processes that differ

only in their transition probabilities. His method requires establishing some complex and restrictive

stochastic orders and exploiting some (a priori) known properties of the value function. Koole

(2006) employs the event-based dynamic programming framework to address the problem but the

relevant monotonicity and convexity results of the optimal value function are obtained for operators

with no decision (arrival, departure, etc).

Effect of system parameters on the optimal policy. The implications on the optimal policy

of changes in input parameters is less studied. Some papers such as Ku and Jordan (1997),

Gans and Savin (2007), Aktaran-Kalaycı and Ayhan (2009) investigate the policy effects of chang-

ing input parameters in specific queueing control examples. Zhuang and Li (2012) propose a method

based on the general property of multimodularity to establish structural results on the optimal

policy for a class of problems. For a specific example, they show that multimodularity also enables

obtaining monotonicity results on the parameters of the optimal policy with respect to the input

parameters. In contrast, Çil et al. (2009) develop a general approach using the framework of event-

based dynamic programming to systematically study the effects of changing input parameters.

However, their analysis is mostly restricted to problems where the state space is single dimensional

and the optimal policy can be described by thresholds. Their results have been employed in sev-

eral recent papers for different applications (see e.g. Aydin et al. (2009), Zerhouni et al. (2013),

Benjaafar et al. (2010), Satir et al. (2012), Ozkan et al. (2013)).

Contributions with respect to the literature. We explore the effects of changing input parameters

in a general class of queueing or inventory control problems. This is in contrast with the rich

literature on queueing and inventory control that only explores monotonicity properties of the value

function in terms of the state variables. It is also much more general in scope than the problem

specific analysis with respect to input parameters as in Ku and Jordan (1997), Gans and Savin

(2007), Aktaran-Kalaycı and Ayhan (2009). Koole (1998, 2006) propose a quite general approach to

study monotonicity in the state variables which includes multi-dimensional models but report some

relatively limited results on monotonicity in the input parameters only for uncontrolled models

(i.e. queueing systems with no dynamic decisions). Çil et al. (2009) obtain monotonicity results in

the input parameters for both controlled and uncontrolled models but their analysis is limited to

single-dimensional models. Our level of generality in modeling is close to Koole (1998) in that we

can address a fairly large class of multi-dimensional models. On the other hand, our approach is

different because unlike Koole (1998) and Çil et al. (2009) we do not study monotonicity properties

individually for a long list of individual dynamic programming operators but focus on two generic

operators that cover most of that long list (and some other models that may not be part of

the list). We are then able to obtain general conditions for monotonicity for these two operators
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that can be adapted to all special cases. To our knowledge, the results pertaining to the effects

of input parameters are new. In addition, we think the level of generality is useful even when

monotonicity in the state variables is sought for new models and/or under arbitrary state space

boundary structures.

3. The operators

The main notations used in this work are summarized in Table 2.

Consider a continuous-time MDP with the objective to minimize the expected discounted cost

over an infinite horizon with discount rate η. Our results can be easily adapted to maximization

problems, finite horizon problems or average cost problems.

The state is an m1-dimensional vector s1 ∈ S1 ⊂ Zm1 where Z is the set of all integers. We

assume that the system parameters (transition rates, costs, discount rate) can be summarized in a

m2-dimensional vector s2 ∈ S2 ⊂Rm2 where R is the set of real numbers. We can aggregate s1 and

s2 in an (m1 +m2)-dimensional vector x= (s1, s2) ∈ X = S1 ×S2. In the rest of the paper, vector

x will be referred to as the system state while s1 will be simply called the state. The set X will be

referred to as the system state space. We illustrate below the system state on our two examples.

Admission control x= ( x︸︷︷︸
s1

, µ,λ1, · · · , λn, h, c1, · · · , cn, η︸ ︷︷ ︸
s2

).

Tandem queue x= (x1, x2︸ ︷︷ ︸
s1

, µ1, µ2, λ,h1, h2, b, η︸ ︷︷ ︸
s2

).

Let v⋆(x) = v⋆(s1, s2) be the optimal expected discounted cost over an infinite horizon when the

initial state is s1 and system parameters are given by s2.

v⋆(x) =Mv⋆(x), (1)

where M is the optimal operator.

We assume that the optimal operator can be decomposed as a convex combination of individual

operators corresponding to each event, using the well-known method of uniformization (Lippman

1975):

Mv(x) =
1

η+
∑l

i=0 pi

(
H(x)+

l∑
i=1

piOiv(x)+ p0v(x)

)
. (2)

The operator H is a cost rate function which does not depend on decisions. The operator Oi is

associated to the i-th type of event which occurs with rate pi. The last term p0v corresponds to a

fictitious event which occurs with rate p0 and affects neither the state nor the cost of the system.

This term will be useful to compare systems with different event rates or discount rates in order to

keep constant the quantity η+
∑l

i=0 pi. For instance, if the arrival rate increases by ϵ, the fictitious
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Z Set of integers
Z+ Set of positive integers
R Real numbers
s1 State (s1 ∈ S1)
s2 Vector of system parameters (s2 ∈ S2)
x System state (x= (s1, s2)∈X )
ϵ System parameter perturbation (same dimension as x, can change only s2)

a,b,d State translation (same dimension as x, can change only s1)
α,β System state translation (same dimension as x, can change s1 and s2)

y = x+b
ei = (0, . . . ,0,1,0, . . . ,0) with “1” in ith position
ϵp Perturbation of parameter p

v(x) Value function when the initial state is x
v⋆(x) Optimal value function when the initial state is x

η Discount rate
M Optimal operator
O Event operator
Oi Operator associated to the i-th type of event
pi Occurrence rate of event associated to operator Oi

H Cost function

T Translation operator: T v(x) =

{
v(y+a)+ ca if y+a∈X ,

v(y)+ cr otherwise.

C Choice operator: Cv(x) =

{
min{v(y+a)+ ca, v(y)+ cb} if y+a∈X ,

v(y)+ cr, otherwise.

cd = ca − cb (cost difference in the choice operator C)
P v is positive
N v is negative

Iα v is increasing in direction α
Dα v is decreasing in direction α

Sα,β v is supermodular in directions α and β
Sα,α v is convex in direction α

Sα,−α v is concave in direction α
Subα,β v is submodular in directions α and β

∆αv(x) Differentiation in direction α (= v(x+α)− v(x))
ΩOv(x) Marginal cost of operator O (=Ov(x)− v(x))
PM(O) Operator O has a positive marginal cost
NM(O) Operator O has a negative marginal cost
IMd(O) Operator O has an increasing marginal cost in direction d
DMd(O) Operator O has a decreasing marginal cost in direction d

Ra1,...,al(b) Property of the state space X (see Definition 1)
|assertion| = true iff the assertion is true

∧ Logical conjonction “and”
∨ Logical disjonction “or”

Table 2 Main notations
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rate decreases by ϵ. Without loss of generality, we set η+
∑l

i=0 pi = 1 which is equivalent to set a

time unit.

In this paper, we consider two new operators that generalize several operators from the literature.

Let y= x+b. The translation operator T and the choice operator C are defined as

T v(x) =

{
v(y+a)+ ca if y+a∈X ,

v(y)+ cr otherwise.

Cv(x) =

{
min{v(y+a)+ ca, v(y)+ cb} if y+a∈X ,

v(y)+ cr, otherwise.

In the definition of T and C, we implicitly assume that if x ∈ X then y ∈ X . The decision in

the choice operator depends on the sign of the cost difference cd = ca − cb. Operator C will reduce

to operator T if the optimal decision is always to move to state y+ a (for instance if cb goes to

infinity).

Table 3 illustrates how several operators from the literature (Koole 1998, 2006, Çil et al. 2009)

can be seen as special cases of the translation and choice operators. In this table and the rest of

the paper, ei = (0, . . . ,0,1,0, . . . ,0) is the unit vector in direction i (the “1” is in ith position).

We now provide some examples of operators that are not treated by our generic operators. The

choice operator does not address situations with more than two choices, typically the Movable

Server Departure operator

TMSDv(x) = min
i=1,··· ,n

{v(x− ei}},

when the number of choices is strictly larger than 2 (n > 2). The translation operator can not

either address operators with state-dependent service rate, typically the Parallel Server Departure

operator

TPSDv(x) =

{
xi
n
v(x− ei)+

n−xi
n

v(x) if xi <n,

v(x− ei) otherwise,

when the number of servers is strictly larger than 1 (n> 1).

Finally, we define two last operators ∆α and ΩO with α a translation of the system state and

O an ad-hoc operator:

∆αv(x) = v(x+α)− v(x),

ΩOv(x) =Ov(x)− v(x).

The quantity ΩOv(x) represents the marginal cost associated to the decision made by operator O.
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Table 3 Some operators from the literature (Koole 1998, 2006, Çil et al. 2009) as special cases of the translation and choice

operators. Unless specified, we set b= 0, ca = cb = cr = ca = 0 and S1 = (Z+)m1

Name Operator from the literature
With choice and

translation operators

Arrival TA(i)v(x) = v(x+ ei) T v(x) with a= ei

Departure TD(i)v(x) = v((x− ei)
+) T v(x) with a=−ei

Parallel departure TPDv(x) =
∑

k
γkv((x− ek)

+)
∑

k
γkTkv(x) with ak =−ek

Tandem server TT (i,j)v(x) = v((x− ei + ej)
+) T v(x) with a= ej − ei

Controlled arrival TCA(i)v(x) =min{v(x);v(x+ ei)+ c} Cv(x) with a= ei, ca = c

Controlled arrival as fork TCAF v(x) =min{v(x);v(x+
∑

k ek)+ c} Cv(x) with a=
∑

k ek, ca = c

Routing TR(i,j)v(x) =mink∈{i,j} v(x+ ek)+ ck
Cv(x) with a= ej − ei,
b= ei, ca = cj , cb = ci

Batch arrival TBA(i)v(x) =min0≥j≥B v(x+ jei)+ jc
C1(C2(. . . (CBv) . . . )(x)

with a= ei, ca = c, B > 0

Controlled departure TCD(i)v(x) =

{
min{v(x), v(x− ei)+ c} if xi > 0,

v(x) otherwise,
Cv(x) with a=−ei, ca = c

Controlled tandem server TCT (i,j)v(x) =


min{v(x), v(x− ei + ej)+ c}

if xi > 0,

v(x) otherwise.

Cv(x) with a= ej − ei, ca = c

4. Value function and state space properties

In the following definitions, v ≥ 0 means that for all s1, v(s1, s2) ≥ 0 (the value of s2 will be

clear from the context). The word increasing (resp. decreasing, positive, negative) is used for non-

decreasing (resp. non-increasing, non-negative, non-positive).

We first define some properties of a value function:

P : v≥ 0 (positive) ,

N : v≤ 0 (negative) ,

Iα : ∆αv≥ 0 (increasing) ,

Dα : ∆αv≤ 0 (decreasing) ,

Sα,β : ∆α∆βv≥ 0 (supermodularity) ,

Subα,β : ∆α∆βv≤ 0 (submodularity) .
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We can see P, N, Iα, Dα, Sα,β and Subα,β as Boolean variables. For instance, Iα is true if the assertion

“∆αv ≥ 0” is true. We will use notation ∧ (resp. ∨) for Boolean operator “and” (resp. “or”).

Moreover |a| will be a Boolean variable which is true when the assertion “a” is true. Thus Iα =

|∆αv≥ 0|. By convention, the “and” operator ∧ takes precedence over the “or” operator ∨.

We show in A.1 that :

i) Iα = D−α ,

ii) Sα,β = Sub−α,β = Subα,−β = S−α,−β ,

iii) Sα,β∧Sγ,β implies Sα+γ,β ,

For instance, property iii) means that if v is Sα,β and Sγ,β, then v is Sα+γ,β.

We also define some properties related to the marginal cost operator ΩO:

PM(O) : ΩOv≥ 0 (positive marginal cost) ,

NM(O) : ΩOv≤ 0 (negative marginal cost) ,

IMα(O) : ∆αΩOv≥ 0 (increasing marginal cost) ,

DMα(O) : ∆αΩOv≤ 0 (decreasing marginal cost) .

Again we can see PM(O), NM(O), IMα(O) and DMα(O) as Boolean variables. We have IMα(O) =

DM−α(O).

The form of the state space is also important when characterizing the optimal policy. The simplest

case is when the state space is infinite in all directions. However results can be derived for other

state spaces that can be described by the following property, illustrated in Figure 5.

Definition 1. A state space X is Ra1,...,al(b) if for all x such that {x,x+a1, . . . ,x+al} ⊂X , then

x+b∈X .

Again, we can see Ra1,...,al(b) as a Boolean variable which is true when X is Ra1,...(b). One can

easily check the following properties (see A.2 for a proof for vi) :

i) R(b) : the set X is invariant by translation b

ii) Ra1,...,al(0) = true

iii) Ra1,...,al(ai) = true

iv) Ra1,...,ai,aj ,...,al(b) = Ra1,...,aj ,ai,...,al(b)

v) Ra1,...,al−1
(b) implies Ra1,...,al(b)

vi) Ra1,...,al(b) = Ra1−al,...,al−1−al,−al(b−al)
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Figure 5 Illustration of R properties on different system state spaces

(a) X is Ra1,a2
(b)

a2

a1
b

(b) X is not Ra1,a2
(b)

a2

a1
b

(c) X is Ra1,a2,a3
(b)

a2

a1 b

a3

5. Properties of the operators

A system parameter perturbation ϵ= (0, . . . ,0, ϵ1, . . . , ϵm2
), with ϵi ∈R, translates the system state

from x to x+ ϵ. Such a translation can modify the transition rates pi, the discount rate η and

the costs ca, cr, cb of the operators. However a perturbation ϵ does not change the state, the state

space or the action space. Let ϵpi , ϵη, ϵca , ϵcr , ϵcb denote the perturbation for parameters pi, η, ca,

cr, cb.

In this section, we provide sufficient conditions such that the optimal value function is posi-

tive/negative, increasing/decreasing in the direction ϵ, convex/concave in the direction ϵ. We also

provide sufficient conditions such that the optimal switching curves, if any, increase or decrease

with ϵ.

Table 4 summarizes our results for the operators. A detailed proof of each result can be found

in Appendix B for the translation operator and in Appendix C for the choice operator. Section 6

will illustrate how to use these results for the admission control problem and the tandem queue

problem.

5.1. Sign of the optimal cost

To study the effect of the discount rate on the optimal value function, we will need results on

the sign of the optimal value function. This section is trivial but has the merit to introduce the

approach and notations in a simple way.

The optimal value function v⋆ is positive (resp. negative) if the optimal operator M propagates

P (resp. N) (i.e. if v is P then Mv is P). From (2), we have

Proposition 1. M propagates P if the following Boolean variable is true.

|H ≥ 0|
l∧

i=1

|Oi propagate P|

M propagates N if the following Boolean variable is true.

|H ≤ 0|
l∧

i=1

|Oi propagate N|
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In order to apply Proposition 1, we need to prove that each individual operator Oi propagates P

(or N). Table 4 (cells 1 to 4) provide sufficient conditions for the translation and the choice operators

to propagate P (or N). These results are trivial and simply state that an operator propagates P (or

N) if all its costs are positive (or negative). The proof for each cell is in B and C.

We point out that the translation operator is a special case of choice operator when cb tends to

infinity (i.e. ∆av+ ca− cb ≤ 0). However, we kept the two operators to facilitate the model and the

use of the results. It should be noted that our results for choice operator are sufficient conditions,

and that we simplify the results assuming that ∆av + ca − cb sometimes positive and sometimes

negative (i.e. ∃x1,x2 such that ∆av(x1)+≥ cb− ca and ∆av(x2)≤ cb− ca). That is why the results

on left column is not a particular case of the right column when cb tends to infinity. It is up to the

user of our results to consider translation operator if ∆av+ ca − cb always positive or negative.

5.2. Monotonicity of the optimal cost

To study the monotonicity of the optimal value function in direction ϵ, we can limit our analysis

to Iϵ as Dϵ = I−ϵ. The optimal value function v⋆ is Iϵ if the optimal operator M propagates Iϵ.

From (2), we have

Mv(x+ ϵ) =H(x+ ϵ)+
∑l

i=1(pi + ϵpi)Oiv(x+ ϵ)+ (p0 − ϵη −
∑l

i=1 ϵpi)v(x+ ϵ). (3)

From (2) and (3), it follows that

∆ϵMv(x) =


∆ϵH(x)

+p0∆ϵv(x)

+
∑l

i=1 pi∆ϵOiv(x)

+
∑l

i=1 ϵpiΩOi
v(x+ ϵ)

−ϵηv(x+ ϵ)

 . (4)

This quantity is positive if each line is positive. The sign of the first line depends on the problem

under consideration. The second line is positive if v is Iϵ. As pi > 0, the third line is positive if each

operator Oi propagates Iϵ. The fourth line is positive if ϵpi and the marginal cost ΩOi
v have the

same sign, or if ϵpi = 0. Finally the last line is positive if v and ϵη have opposite signs, or if ϵη = 0.

Using Boolean notations, this leads to the following proposition which provides sufficient condi-

tions for the optimal operator to propagate Iϵ.

Proposition 2. M propagates Iϵ if the following Boolean variable is true.

|∆ϵH≥ 0|
l∧

i=1


|Oi propagates Iϵ|

∧ |ϵpi < 0|∧ |ΩOi
v≤ 0|

∨ |ϵpi > 0|∧ |ΩOi
v≥ 0|

∨ |ϵpi = 0|


∧

 |ϵη < 0|∧ |v is P|
∨ |ϵη > 0|∧ |v is N|

∨ |ϵη = 0|

 .
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Table 4 Sufficient conditions for properties of the operators

Translation operator (O= T ) Choice operator (O= C)

1) 2)

O propagates P |ca ≥ 0|∧
(

|cr ≥ 0|
∨R−b(a)

)
|ca ≥ 0|∧ |cb ≥ 0|∧

(
|cr ≥ 0|
∨R−b(a)

)
3) 4)

O propagates N |ca ≤ 0|∧
(

|cr ≤ 0|
∨R−b(a)

)
|ca ≤ 0|∧ |cb ≤ 0|∧

(
|cr ≤ 0|
∨R−b(a)

)
5) 6)

O propagates Iϵ |ϵca ≥ 0|∧
(

|ϵcr ≥ 0|
∨R−b(a)

)
|ϵca ≥ 0|∧ |ϵcb ≥ 0|∧

(
|ϵcr ≥ 0|
∨R−b(a)

)
7) 8)

O propagates Sϵ,ϵ true Sa,ϵ∧Sub
a,ϵ∧|ϵcd = 0|

9) 10)

O propagates Sϵ,−ϵ true Sa,ϵ∧|ϵcd ≥ 0|∨Sub
a,ϵ∧|ϵcd ≤ 0|

11) 12)

O propagates Sd,ϵ

(
Sd−a,ϵ∧|ϵcr ≥ ϵca |
∨Rd,a+b(a+b+d)

)
∧
(
Sd+a,ϵ∧|ϵca ≥ ϵcr |
∨Rd,a+b+d(a+b)

)
 Sd,a∧Sd−a,ϵ∧|ϵcd ≤ 0|

∨Sub
d,a∧Sd+a,ϵ∧|ϵcd ≥ 0|

∨Sd+a,ϵ∧Sd−a,ϵ∧(Sub
a,ϵ∨Sa,ϵ)∧|ϵcd = 0|


∧
(
Sd−a,ϵ∧|ϵcr ≥ ϵca |∧ |ϵcr ≥ ϵcb |

∨Rd,a+b(a+b+d)

)
∧
(
Sϵ,d+a∧|ϵca ≥ ϵcr |∧ |ϵcb ≥ ϵcr |

∨Rd,a+b+d(a+b)

)

13) 14)

Positive marginal
cost: ΩOv≥ 0

|∆a+bv≥−ca|∧
(
|∆bv≥−cr|
∨R−b(a)

)
|∆bv≥−cb|∧ |∆a+bv≥−ca|∧

(
|∆bv≥−cr|
∨R−b(a)

)
15) 16)

Negative marginal
cost: ΩOv≤ 0

|∆a+bv≤−ca|∧
(
|∆bv≤−cr|
∨R−b(a)

) (
|∆bv≤−cb|

∨ |∆a+bv≤−ca|

)
∧
(
|∆bv≤−cr|
∨R−b(a)

)
17) 18)

Increasing marginal
cost : ∆ϵΩOv≥ 0

Sϵ,a+b∧|ϵca ≥ 0|∧
(
Sϵ,b∧|ϵcr ≥ 0|
∨R(a+b)

)
Sϵ,b∧Sϵ,a∧|ϵca ≥ 0|∧ |ϵcb ≥ 0|∧

(
Sϵ,b∧|ϵcr ≥ 0|
∨R(a+b)

)
19) 20)

Increasing marginal
cost: ∆dΩOv≥ 0

Sd,a+b∧

 Sd,b

∨Rd(a+b+d)
∨Rd(a+b)


∧
(
|∆av≤ cr − ca|∧[Sd,b∨Sb,d−a]

∨Rd,a+b(a+b+d)

)
∧
(
|∆av≥ cr − ca|∧[Sd,b∨Sb,d+a]

∨Rd,a+b+d(a+b)

)

Sd,b∧Sd,a

∧

 |cr ≥max{−cb, cb}|
∨Sb,d−a∧|∆av≤ cr − ca|∧ |cr ≥ cb|

∨Rd,a+b(a+b+d)


∧
(
|cb ≥ cr|∧ |∆av≥ cr − ca|

∨Rd,a+b+d(a+b)

)
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To apply Proposition 2, we need to prove that each individual operator Oi propagates Iϵ (see

cells 5 and 6 of Table 4 for sufficient conditions). For each operator Oi such that ϵpi ̸= 0, we also

need to show that the marginal cost is either positive or negative (see cells 13 and 14 for sufficient

conditions).

The formalism used in Proposition 2 and Table 4 represent in a compact way the effect of

many parameters for a large class of operators. When considering the effect of a single parameter

Proposition 2 and Table 4 reduce drastically. For example consider the effect of an increase ϵp1 > 0

of parameter p1 on the optimal value function. From Proposition 2, M propagates Iϵp1 if each Oi

propagates Iϵp1 and if ΩO1
v≥ 0. From cells 5 and 6, the translation and choice operators propagates

Iϵp1 since ϵca = ϵcr = ϵcb = 0. Remains to check the positivity of the marginal cost.

5.3. Convexity or concavity of the optimal cost

A value function v is convex in direction ϵ if it is Sϵ,ϵ, i.e. ∆ϵ∆ϵv(x)≥ 0. It is concave in direction

ϵ if it is Sϵ,−ϵ.

We want to find sufficient conditions such that operator M propagates Sϵ,ϵ or Sϵ,−ϵ. From (2),

we have
Mv(x+2ϵ) =H(x+2ϵ)+

∑l

i=1(pi +2ϵpi)Oiv(x+2ϵ)

+(p0 − 2ϵη − 2
∑l

i=1 ϵpi)v(x+2ϵ).
(5)

From (2), (3) and (5), it follows that

∆ϵ∆ϵMv(x) = Mv(x+2ϵ)− 2Mv(x+ ϵ)+Mv(x)

=


∆ϵ∆ϵH(x)
+p0∆ϵ∆ϵv(x)

+
∑l

i=1 pi∆ϵ∆ϵOiv(x)

+2
∑l

i=1 ϵpi∆ϵΩOi
v(x+ ϵ)

−2ϵη∆ϵv(x+ ϵ)

 .
(6)

This quantity is positive (respectively negative) if each line is positive (respectively negative). This

leads to the following proposition.

Proposition 3. M propagates Sϵ,ϵ if the following Boolean variable is true.

|∆ϵ∆ϵH≥ 0|
l∧

i=1


|Oi propagates Sϵ,ϵ|

∧ |ϵpi < 0|∧ |∆ϵΩOi
v≤ 0|

∨ |ϵpi > 0|∧ |∆ϵΩOi
v≥ 0|

∨ |ϵpi = 0|


∧

 |ϵη < 0|∧ |v is Iϵ|
∨ |ϵη > 0|∧ |v is I−ϵ|

∨ |ϵη = 0|

 .

M propagates Sϵ,−ϵ if the following Boolean variable is true.

|∆ϵ∆ϵH≤ 0|
l∧

i=1


|Oi propagates Sϵ,−ϵ|

∧ |ϵpi > 0|∧ |∆ϵΩOi
v≤ 0|

∨ |ϵpi < 0|∧ |∆ϵΩOi
v≥ 0|

∨ |ϵpi = 0|


∧

 |ϵη > 0|∧ |v is Iϵ|
∨ |ϵη < 0|∧ |v is I−ϵ|

∨ |ϵη = 0|

 .
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In order to apply Proposition 3, we need to prove that each individual operator Oi propagates Sϵ,ϵ

or Sϵ,−ϵ (see cells 7 to 10 for sufficient conditions). For each operator Oi such that ϵpi ̸= 0, we also

need to show that the marginal cost is either increasing or decreasing in the direction ϵ (see cells

17 to 18 for sufficient conditions).

5.4. Monotonicity of the optimal policy

In this section, we study the effect of a system parameter perturbation ϵ on the optimal policy.

For the choice operator C, the decision depends on the sign of ∆av(x)+ cd. If ∆av(x)+ cd ≥ 0, it is

optimal to stay in state x. Otherwise, it is optimal to go in state x+a. The sign of ∆ϵ(∆av+ cd) =

∆ϵ∆av+ ϵcd will provide an indication on how the optimal policy evolves with ϵ.

Our objective is to find sufficient conditions to have ∆ϵ∆av+ϵcd positive. If ϵcd ≥ 0, it is sufficient

to show that ∆ϵ∆av ≥ 0 (i.e. v is Sa,ϵ). When ϵcd is negative, we can not conclude. Sufficient

conditions to have ∆ϵ∆av+ ϵcd negative can be easily deduced by noticing that Suba,ϵ = Sa,−ϵ.

Let d be a vector in X that translates the state but does not change the system parameters.

From (4), we have

∆d∆ϵMv(x) =


∆d∆ϵH(x)

+p0∆d∆ϵv(x)

+
∑l

i=1 pi∆d∆ϵOiv(x)

+
∑l

i=1 ϵpi∆dΩOi
v(x+ ϵ)

−ϵη∆dv(x+ ϵ)

 . (7)

This quantity is positive if each line is positive . This leads to the following proposition.

Proposition 4. M propagates Sd,ϵ if the following Boolean variable is true.

|∆d∆ϵH≥ 0|
l∧

i=1


|Oi propagates Sd,ϵ|

∧ |ϵpi < 0|∧ |∆dΩOi
v≤ 0|

∨ |ϵpi > 0|∧ |∆dΩOi
v≥ 0|

∨ |ϵpi = 0|


∧

 |ϵη < 0|∧ |v is Id|
∨ |ϵη > 0|∧ |v is I−d|

∨ |ϵη = 0|

 .

In order to apply Proposition 4, we need to prove that each individual operator Oi propagates Sd,ϵ

(see cells 11 and 12 for sufficient conditions). For each operator Oi such that ϵpi ̸= 0, we also need

to show that the marginal cost is either increasing or decreasing in the direction d (see cells 19

and 20 for sufficient conditions).

Propositions 1, 2, 3, 4 and Table 4 present an approach to check desired structural properties

for any event-based dynamic program consisting of translation and choice type operators with

the appropriate cost/reward parameters, transition directions and state space restrictions. On the

other hand, a large number of queueing/inventory control problems are modeled by relatively few

standard operators. For these most commonly used operators, we provide a detailed set of sufficient

conditions in Appendix F. These results should further facilitate applying the results of this section.
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6. Illustration of results

We illustrate in this section how to apply our results to the admission control problem and the

tandem queue problem, that have been introduced in Section 1. The general outline of the approach

for any other problem is likely to be similar. We first identify the dynamic programming operators

and the appropriate cost parameters and transition directions. We then use Propositions 1, 2, 3, 4

and Table 4 to check desired properties for the relevant operators. For the operators used in these

two problems, this task is facilitated by the explicit results provided in Appendix F.

6.1. Admission control problem

The optimality equations for the admission control are

Mv = H+µO0v+
∑n

i=1 λiOiv+ p0v,
H(x) = hx,

O0v(x) = v[(x− e1)
+] = T v(x) with

{
a=−e1,b= 0,
ca = cr = 0,

Oiv(x) = min(v(x)+ ci, v(x+ e1)) = Cv(x) with
{
a= e1,b= 0,
cb = ci, ca = cr = 0,

for i= 1, · · · , n.

The state space is S1 =Z+.

The optimal policy has been characterized in Stidham (1985). It consists of n thresholds t1, · · · , tn.
Customers of class i are accepted in the system if x < ti and rejected otherwise. If the rejection

costs are ordered as c1 ≥ · · · ≥ cn, then t1 ≥ · · · ≥ tn. Finally the optimal value function is convex

and increasing (Se1,e1 and Ie1). Çil et al. (2009) have shown that the optimal thresholds ti are

increasing in the service rate µ and decreasing in the arrival rates λi.

Using propositions 1, 2, 3, 4 and Table 4, we re-obtain these results and complement them in

several directions.

Theorem 1. In the admission control problem, the optimal value function and the optimal cost

have the following properties.

• Monotonicity: The optimal value function is increasing in the arrival rates λi, the rejection

costs ci, the holding cost h and decreasing in the service rate µ and the discount rate η.

• Convexity/concavity: The optimal value function is concave in the holding cost h.

• Monotonicity of the optimal policy: The optimal thresholds ti are decreasing in the arrival

rate λi, the holding cost h, and increasing in the service rate µ and the discount rate η.

Each result of Theorem 1 is proven in D.1. To illustrate the methodology, we provide below a

detailed proof for the effect of the lambda rate λ1 on the optimal cost.

Assume that v is Iϵλ1 . From Proposition 2, Mv is Iϵλ1 if

|ΩO1
v≥ 0∧|

n∧
i=0

∣∣∣Oi propagates Iϵλ1

∣∣∣ .
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is true. From Cell 14 of Table 4, ΩO1
v≥ 0 if

|∆0v≥−ci|∧ |∆e1v≥ 0|∧
(
|∆0v≥ 0|
∨R0(e1)

)
= |∆e1v≥ 0|

is true. From Cell 5 of Table 4, O0 propagates Iϵλ1 without condition. From Cell 6 of Table 4, Oi

propagates Iϵλ1 without condition, for i= 1, · · · , n. In the end, Mv is Iϵλ1 if v is Iϵλ1 and Ie1 .

Assume that v is Iϵλ1 and Ie1 , then Mv is Iϵλ1 from the previous paragraph. Moreover Mv is

Ie1 from Stidham (1985). By value iteration, the optimal value function v⋆ is Iϵλ1 and Ie1 .

Piecewise results. We can also derive piecewise results by looking at the effect of parameters for

a set of fixed thresholds t1, · · · , tn. If customers of class i are accepted if and only if xi < ti, operator

Oi is replaced by the following operator that is a translation operator.

Õiv(x) =

{
v(x+ e) if s∈ {0, . . . , ti − 1},
v(x)+ ci otherwise,

= T v(x) with

Si
1 = {0, . . . , ti − 1},

a= e1,b= 0,
ca = cr = 0.

Using again the results of Table 4, we obtain the following theorem. The proof is in D.2.

Theorem 2. The optimal value function is piecewise linear in the rejection costs ci and the holding

cost h and piecewise convex in the arrival rates λi and the service rate µ.

This theorem is illustrated in Section 1 (see Figure 2).

6.2. Tandem queue problem

The optimality equations for the tandem queue problem are

Mv = H+µ1O1v+µ2O2v+λO3v+ p0v,
H(x) = h1x1 +h2max{x2,0}+ bmax{−x2,0},

O1v(x) = min(v(x), v(x+ e1)) = Cv(x) with

{
a= e1,b= 0,

ca = cr = 0,

O2v(x) =

{
min(v(x), v(x− e1 + e2)) if x1 > 0,

v(x) otherwise,
= Cv(x) with

{
a= e2 − e1,b= 0,
ca = cb = cr = 0,

O3v(x) = v(x− e2) = T v(x) with

{
a=−e2,b= 0,
ca = cb = cr = 0.

The state space is S1 =Z+ ×Z.

From Veatch and Wein (1992) the optimal policy consists of two switching curves: Produce at

Mi iff x2 < si(x1), for i= 1,2. Moreover the optimal value function is Se1,e2 , Se1−e2,e1 , and Se2−e1,e2 .

Using propositions 1, 2, 3, 4 and Table 4, we obtain the following new results for this problem.

Theorem 3. In the tandem queue problem, the optimal value function and the optimal cost have

the following properties.
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• Monotonicity: The optimal value function is increasing in the costs hi and b, and decreasing

in the service rate µi and the discount rate η.

• Convexity/concavity: The optimal value function is concave in the costs h2 and b.

• Monotonicity of the optimal policy: the optimal switching curves si(x1) are increasing in

the demand rate λ, the backlog costs b, and decreasing in the holding cost h2.

Each result of Theorem 3 is proven in E. This theorem is illustrated in Section 1 for the effect of

λ (see Figure 4a).

7. Compensation between operators

In Section 5, we have provided a set of sufficient conditions for different properties of the optimal

value function. If each individual event operator Oi propagates a desired property, then the optimal

operator M also propagates this property. For instance, in (4) we saw that
∑l

i=1 ϵpiΩOi
v ≥ 0 if

ϵpi ≥ 0 and ΩOi
v ≥ 0 for all i. This approach relies on the trivial property that

∑l

i=1 uivi ≥ 0 if

ui ≥ 0 and vi ≥ 0 for all i.

In this section, we show that it is possible to derive another set of conditions by considering

several operators simultaneously, and not individually. We will call this approach compensation

between operators and system parameters. The following lemma provides another set of conditions

to have
∑

uivi ≥ 0 .

Lemma 1. Consider two sequences of real numbers (ui) and (vi) and set v0 = 0. We have

l∑
i=1

uivi =
l∑

k=1

[(
l∑

i=k

ui

)
(vi − vi−1)

]
.

Moreover
∑l

i=1 uivi ≥ 0 if

•
∑l

i=k ui ≥ 0 for all k= 1, · · · , n
• and vi ≤ vi+1 for i= 0, · · · , n− 1.

Hence, in (4), we have
∑l

i=1 ϵpiΩOi
v ≥ 0 if

∑l

i=k ϵpi ≥ 0 (for k = 1, · · · , n) and 0 ≤ ΩO1
v ≤

· · · ≤ ΩOl
v. Similarly in (6), we have

∑l

i=1 ϵpi∆dΩOi
v ≥ 0 if

∑l

i=k ϵpi ≥ 0 for k = 1, · · · , n and

0≤∆dΩO1
v≤ · · · ≤∆dΩOl

v.

Illustration on the admission control problem

We illustrate the compensation approach on the admission control problem. We obtain the following

additional results by considering together the admission control operators O1, · · · ,On.

Theorem 4. In the admission control problem, the optimal value function is increasing in ϵ and

the optimal thresholds ti are decreasing in ϵ if c1 ≤ · · · ≤ cn,
∑n

i=k ϵλi
≥ 0 (for k= 1, · · · , n), ϵh ≥ 0,

ϵµ ≤ 0, ϵci ≥ 0, and η≤ 0.
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Proof of Theorem 4. We know from Table 4 that ΩOi
v and ∆e1ΩOi

v are positive. Remains to

show that ΩOi
v and ∆e1ΩOi

v are increasing in i.

The marginal cost

ΩOi
v(x) =min{ci,∆e1v(x)}

is increasing in i, as ci is increasing in i and v does not depend on i.

We have ∆e1v(x)≤∆e1v(x+ e1) as v is convex (see Theorem 1). It follows that

∆e1ΩOi
v(x) =


0 if ci ≤∆e1v(x)≤∆e1v(x+ e1)

ci +∆e1v(x) if ∆e1v(x)≤ ci ≤∆e1v(x+ e1)

∆e1∆e1v(x) if ∆e1v(x)≤∆e1v(x+ e1)≤ ci

It follows that

∆e1ΩOi+1
v(x)−∆e1ΩOi

v(x)

=



0 if ci ≤ ci+1 ≤∆e1v(x)≤∆e1v(x+ e1)

0 if ci ≤∆e1v(x)≤ ci+1 ≤∆e1v(x+ e1)

∆e1∆e1v(x)≥ 0 if ci ≤∆e1v(x)≤∆e1v(x+ e1)≤ ci+1

ci+1 − ci ≥ 0 if ∆e1v(x)≤ ci ≤ ci+1 ≤∆e1v(x+ e1)

0 if ∆e1v(x)≤ ci ≤∆e1v(x+ e1)≤ ci+1

0 if ∆e1v(x)≤∆e1v(x+ e1)≤ ci ≤ ci+1

is positive. �
For two classes of customers, if c1 ≤ c2, Theorem 4 states that the optimal cost increases if λ1

decreases less than λ2 increases, which is rather intuitive. This theorem is illustrated numerically

with three classes of customers in Table 1 (see Section 1).

8. Conclusion

Designing effective policies for queueing or inventory control problems requires understanding the

optimal policy structure in addition to understanding how the optimal costs and the policies change

if input parameters were to change. In this paper, we focus on the latter part of the problem

and provide a general framework to study the effect of system parameters changes on the optimal

cost and the optimal policy in multi-dimensional queueing control problems. In order to maintain

modeling and analysis generality, we introduce two generic dynamic programming operators that

cover many operators considered in the queuing and inventory literature. For these operators, we

derive sufficient conditions on the state space and the value function to guarantee the propagation of

several properties of the value function and the marginal cost (sign, monotonicity supermodularity).

We also show how to apply our results on two examples for which we derive several new results.

Another contribution of the paper is to formalize a number of proofs that can be found in the

literature and to investigate in a systematic way a set of necessary conditions through Boolean
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equations. We believe that our approach opens interesting perspectives on the automation of proofs

of structural properties. A software tool would be particularly valuable for checking proofs from

the literature and deriving new results that might be too complex to tackle manually. It would be

also of interest to extend the results to operators that are not treated by our generic operators

(e.g. movable server, state dependent event rate).

The approach and the results we present have their limitations but we think these limitations are

not any more restrictive than the general state of the art in stochastic dynamic programming. The

monotonicity results we present are comparative statics type results in nature. For instance, we can

establish that the optimal value function is increasing and/or convex or has increasing differences

in various directions with respect to some input parameter but we cannot provide numbers on

the relative increase or the change (which is an interesting future research direction). Further,

there are relatively few nice structural results known for value functions beyond two dimensions in

queuing or inventory control and this imposes a natural constraint on the models that fall into our

framework when applied to optimal policy related comparative statics. In particular, this implies

that we can handle only special cases when the state space has more than two dimensions. Also

consistent with the literature, we can only provide and check sufficient conditions for monotonicity.

Finally, while the two operators we present cover a wide range of models, they cannot capture all

individual dynamic programming operators that may arise in specific problems. An operator that

is not a special case of our generic operators would then have to be studied separately along the

lines of the proposed approach.
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Appendix A: Properties

A.1. Properties on the value function

i) and ii) Direct consequence of the definitions of Iα, Dα, Sα,β and Subα,β.

iii) We sum the two inequalities ∆α∆βv(x+γ)≥ 0 and ∆γ∆βv≥ 0 to get ∆α+γ∆βv(x)≥ 0.

A.2. Properties on the system state space

i) to v) Trivial

vi) Ra1,...,al(b) is equivalent to “for all x such that {x,x+ a1, . . . ,x+ al} ⊂ X , x+ b ∈ X”. In

this assertion we replace x by x+al to obtain “for all x such that {x−al,x+a1 −al, . . . ,x} ⊂X ,

x+b∈X ’. So Ra1,...,al(b) = R−al,a1−al,...,al−1−al,0(b−al).

Appendix B: Translation operator

With y= x+b and ∀x,x+b∈X ,

T v(x) =

{
v(y+a)+ ca if y+a∈X
v(y)+ cr otherwise.

(8)

B.1. Propagation of P and N (Cells 1 and 3)

We suppose that v is P (i.e. v ≥ 0), then we want find conditions to have T which propagates P

(i.e. T v≥ 0). Given equation (8), we need to consider two cases:

• if y+a∈X , then T v≥ 0 if ca ≥ 0

• if y+a ̸∈ X , then T v≥ 0 if cr ≥ 0. However this case is unreachable if X is R−b(a).

So T v≥ 0 if |ca ≥ 0|∧(R−b(a)∨|cr ≥ 0|). In the same way, T v≤ 0 if |ca ≤ 0|∧(R−b(a)∨|cr ≤ 0|).

B.2. Propagation of Iϵ (Cell 5)

∆ϵT v(x) =

{
∆ϵv(y+a)+ ϵca if y+a∈X
∆ϵv(y)+ ϵcr otherwise

So T propagates Iϵ if |ϵca ≥ 0|∧(|ϵcr ≥ 0|∨R−b(a))

B.3. Propagation of Sϵ,−ϵ and Sϵ,ϵ (Cells 7 and 9)

We make the assumption that ∆ϵ∆ϵv is positive (resp. negative), then we want find conditions to

have ∆ϵ∆ϵT positive (resp. negative).

∆ϵ∆ϵT v(x) =

{
∆ϵ∆ϵv(y+a) if y+a∈X
∆ϵ∆ϵv(y) otherwise

So T propagates Sϵ,ϵ or Sϵ,−ϵ without condition.
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B.4. Propagation of Sd,ϵ (Cell 11)

We make the assumption that v is Sd,ϵ (i.e. ∆ϵ∆dv ≥ 0), then we want find conditions to have T

which propagates Sd,ϵ (i.e. ∆ϵ∆dT v≥ 0).

∆ϵ∆dT v(x) =∆ϵ∆d

{
v(y+a)+ ca if y+a∈X
v(y)+ cr otherwise

The four possible cases are described in the following table

y+a∈X y+a /∈X
y+a+d∈X Case 1 Case 3
y+a+d /∈X Case 2 Case 4

• Case 1 = 0

• Case 2 =∆ϵ[v(y+d)+ cr − v(y+a)− ca]

=∆ϵ∆d−av(y+a)+ ϵcr − ϵca

—Positive if Sd−a,ϵ∧|ϵcr − ϵca ≥ 0|

—Useless if X is Rd,a+b(a+b+d)

• Case 3 =∆ϵ[v(y+d+a)+ ca − v(y)− cr]

=∆ϵ∆d+av(y)− ϵcr + ϵca

—Positive if Sd+a,ϵ∧|ϵca − ϵcr ≥ 0|

—Useless if X is Rd,a+b+d(a+b)

• Case 4 = 0

So T propagates Sd,ϵ if

(Sd−a,ϵ∧|ϵcr − ϵca ≥ 0|∨Rd,a+b(a+b+d))∧(Sd+a,ϵ∧|ϵca − ϵcr ≥ 0|∨Rd,a+b+d(a+b))

B.5. PM(T ) and NM(T ) (Cells 13 and 15)

T v(x)− v(x) =

{
∆a+bv(x)+ ca if y+a∈X Case 1

∆bv(x)+ cr otherwise Case 2

So v is PM(T ) if |∆a+bv≥−ca|∧(|∆bv≥−cr| + R−b(a)) and v is NM(T ) if

[|∆a+bv≤−ca|∧(|∆bv≤−cr|+ R−b(a))

B.6. IMϵ(T ) (Cell 17)

∆ϵΩT v(x) =

{
∆ϵ∆a+bv(x)+ ϵca if y+a∈X
∆ϵ∆bv(x)+ ϵcr otherwise

So, v is IMϵ(T ) if Sϵ,a+b∧|ϵca ≥ 0|∧(Sϵ,b∧|ϵcr ≥ 0|∨R(a+b))



Vercraene, Gayon, and Karaesmen: Effects of system parameters in a class of multi-dimensional queueing control problems
Article submitted to Operations Research 25

B.7. IMd(T ) (Cell 19)

∆dΩT v(x) =∆d

{
∆a+bv(x)+ ca if y+a∈X
∆bv(x)+ cr otherwise

The four possible cases are described in the following table

y+a∈X y+a /∈X
y+a+d∈X Case 1 Case 3
y+a+d /∈X Case 2 Case 4

• Case 1 =∆d∆a+bv(x)

—Positive if Sd,a+b

• Case 2 =∆bv(x+d)+ cr −∆b+av(x)− ca=

{
∆d∆bv(x)−∆av(x+b)+ cr − ca
∆d−a∆bv(x+a)−∆av(x)+ cr − ca

—Positive if |∆av≤ cr − ca|∧(Sb,d∨Sb,d−a)

—Useless if X is Rd,a+b(a+b+d))

• Case 3 =∆b+av(x+d)+ ca −∆bv(x)− cr=

{
∆d∆bv(x)+∆av(x+b+d)− cr + ca
∆d+a∆bv(x)+∆av(x+d)− cr + ca

—Positive if |∆av≥ cr − ca|∧(Sb,d∨Sb,d+a)

—Useless if X is Rd,a+b+d(a+b))

• Case 4 =∆d∆bv(x)

—Positive if Sd,b

—Useless if X is Rd(a+b+d)∨Rd(a+b)

So, v is IMd(T ) if

Sd,a+b∧(Sd,b∨Rd(a+b+d)∨Rd(a+b))
∧(|∆av≤ cr − ca|∧[Sd,b∨Sb,d−a]∨Rd,a+b(a+b+d))
∧(|∆av≥ cr − ca|∧[Sd,b∨Sb,d+a]∨Rd,a+b+d(a+b))

Appendix C: Choice operator

Cv(x) =
{
min{v(y)+ cb, v(y+a)+ ca} if y+a∈X
v(y)+ cr, otherwise

(9)

with y= x+b and ∀x, x+b∈X . In this section we may use cd = ca − cb.

C.1. Propagation of P and N (Cells 2 and 4)

We suppose that v poisitve (resp. negative). From equation (9) the condition to have Cv positive

(resp. negative) is

|ca ≥ 0|∧ |cb ≥ 0|∧(|cr ≥ 0|∨R−b(a)) (resp. |ca ≤ 0|∧ |cb ≤ 0|∧(|cr ≤ 0|∨R−b(a)))
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C.2. Propagation of Iϵ (Cell 6)

∆ϵCv(x) =

∆ϵmin{v(y)+ cb, v(y+a)+ ca}
if y+a∈X

∆ϵv(y)+ cr, otherwise

The four cases of ∆ϵmin{v(y)+ cb, v(y+a)+ ca} are described in the following table.

∆av(y)≤−cd ∆av(y)≥−cd
∆av

′(y)≤−cd
′ Case 1 Case 3

∆av
′(y)≥−cd

′ Case 2 Case 4

• Case 1 =∆ϵv(y+a)+ ϵca

—Positive if |ϵca ≥ 0|

• Case 2 = v′(y)+ cb
′ − v(y+a)− ca ≥∆ϵv(y)+ ϵcb

—Positive if
∣∣ϵcb ≥ 0

∣∣
• Case 3 = v′(y+a)+ ca

′ − v(y)− cb ≥∆ϵv(y+a)+ ϵca

—Positive if |ϵca ≥ 0|

• Case 4 Q=∆ϵv(y)+ ϵcb

—Positive if
∣∣ϵcb ≥ 0

∣∣
Note that when ∆av ≤ −cd − ϵ+cd (resp. ∆av ≥ −cd + ϵ−cd) the cases 2, 3, 4 (resp. 1, 2, 3) are

Useless.

So C propagates Iϵ if  |ϵca ≥ 0|∧
∣∣ϵcb ≥ 0

∣∣
∨
∣∣∆av≤−cd − ϵ+cd

∣∣∧|ϵca ≥ 0|
∨
∣∣∆av≥−cd + ϵ−cd

∣∣∧ ∣∣ϵcb ≥ 0
∣∣
∧

(
R−b(a)

∨|ϵcr ≥ 0|

)

C.3. Propagation of Sϵ,−ϵ and Sϵ,ϵ (Cells 8 and 10)

We make the assumption that ∆ϵ∆ϵv is positive (resp. negative) then we want find conditions on

v, and ϵ to have ∆ϵ∆ϵC positive (resp. negative).

∆ϵ∆ϵCv(x) =

∆ϵ∆ϵmin{v(y)+ cb, v(y+a)+ ca}
if y+a∈X

∆ϵ∆ϵv(y), otherwise

We focus on ∆ϵ∆ϵmin{v(y)+cb, v(y+a)+ca}. We use v′′(x) (resp. cb
′′, ca

′′) to denote v(x+2ϵ)

(resp. cb +2ϵcb , ca +2ϵca).

∆ϵ∆ϵmin{v(y)+ cb, v(y+a)+ ca} = min{v′′(y)+ cb
′′, v′′(y+a)+ ca

′′}
−2min{v′(y)+ cb

′, v′(y+a)+ ca
′}

+min{v(y)+ cb, v(y+a)+ ca}
The 8 possible cases are given in the following table.
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∆av
′′(y)≤−cd

′′ ∆av
′′(y)≥−cd

′′

∆av
′(y)≤−cd

′

∆av(y)≤−cd Case 1 Case 5

∆av
′(y)≤−cd

′

∆av(y)≥−cd Case 2 Case 6

∆av
′(y)≥−cd

′

∆av(y)≤−cd Case 3 Case 7

∆av
′(y)≥−cd

′

∆av(y)≥−cd Case 4 Case 8

• Cases 1 and 8 are positive or negative without condition.

• Case 2 = v′′(y+a)+ ca
′′ − 2(v′(y+a)+ ca

′)+ v(y)+ cb =∆ϵ∆ϵv(y+a)−∆av(y)− cd

—Negative without condition

—Useless if Sa,ϵ∧
∣∣ϵcd ≥ 0

∣∣
• Case 3 = v′′(y+a)+ ca

′′−2(v′(y)+ cb
′)+v(y+a)+ ca =∆ϵ∆ϵv(y+a)+2∆av

′(y)+ cd+2ϵcd

—Positive without condition

—Useless if Sa,ϵ∧
∣∣ϵcd ≥ 0

∣∣∨Suba,ϵ∧ ∣∣ϵcd ≤ 0
∣∣

• Case 4 = v′′(y+a)+ ca
′′ − 2(v′(y)+ cb

′)+ v(y)+ cb =∆av
′′(y)+∆ϵ∆ϵv(y)+ cd +2ϵcd

—Negative without condition

—Useless if Sa,ϵ∧
∣∣ϵcd ≥ 0

∣∣
• Case 5 = v′′(y)+ cb

′′− 2(v′(y+a)+ ca
′)+ v(y+a)+ ca =∆ϵ∆ϵv(y+a)−∆av

′′(y)− cd− 2ϵcd

—Negative without condition

—Useless if Suba,ϵ∧
∣∣ϵcd ≤ 0

∣∣
• Case 6 = v′′(y)+ cb

′′ − 2(v′(y+a)+ ca
′)+ v(y)+ cb =∆ϵ∆ϵv(y)− 2∆av

′(y+a)− cd − 2ϵcd

—Positive without condition

—Useless if Sa,ϵ∧
∣∣ϵcd ≥ 0

∣∣∨Suba,ϵ∧ ∣∣ϵcd ≤ 0
∣∣

• Case 7 = v′′(y)+ cb
′′ − 2(v′(y)+ cb

′)+ v(y+a)+ ca =∆ϵ∆ϵv(y)+∆av(y)+ cd

—Negative without condition

—Useless if Suba,ϵ∧
∣∣ϵcd ≤ 0

∣∣
So C propagates Sϵ,ϵ if

Sa,ϵ∧Suba,ϵ∧
∣∣ϵcd = 0

∣∣∨ ∣∣∆av≤−cd − ϵ+cd

∣∣∨ ∣∣∆av≥−cd + ϵ−cd

∣∣
and propagate Subϵ,ϵ if

Sa,ϵ∧
∣∣ϵcd ≥ 0

∣∣∨Suba,ϵ∧ ∣∣ϵcd ≤ 0
∣∣∨ ∣∣∆av≤−cd − ϵ+cd

∣∣∨ ∣∣∆av≥−cd + ϵ−cd

∣∣
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C.4. Propagation of Sd,ϵ (Cell 12)

We make the assumption that v is Sd,ϵ then we want find conditions on v, and ϵ to have C which

propagates Sd,ϵ.

∆d∆ϵCv(x) =∆d

{
∆ϵmin{v(y)+ cb, v(y+a)+ ca} if y+a∈X
∆ϵv(y)+ cr, otherwise

The 4 possible cases are given in the following table.

y+a∈X y+a /∈X
y+a+d∈X Case A Case C
y+a+d /∈X Case B Case D

C.4.1. Case A.

Case A = ∆ϵ∆dmin{v(y)+ cb, v(y+a)+ ca}
= min{v′(y+d)+ cb

′, v′(y+a+d)+ ca
′}−min{v′(y)+ cb

′, v′(y+a)+ ca
′}

−min{v(y+d)+ cb(, v(y+a+d)+ ca}+min{v(y)+ cb
′, v(y+a)+ ca}

The 16 possible cases of case A are described in Table 5

Table 5 Possible cases for Case A =∆ϵ∆dmin{v(y)+ cb, v(y+a)+ ca}.
Case A ∆av

′(y+d)≤−cd
′, ∆av

′(y+d)≤−cd
′, ∆av

′(y+d)≥−cd
′, ∆av

′(y+d)≥−cd
′,

∆av
′(y)≤−cd

′ ∆av
′(y)≥−cd

′ ∆av
′(y)≤−cd

′ ∆av
′(y)≥−cd

′

∆av(y+d)≤−cd
∆av(y)≤−cd

Case 1 Case 5 Case 9 Case 13

∆av(y+d)≤−cd
∆av(y)≥−cd

Case 2 Case 6 Case 10 Case 14

∆av(y+d)≥−cd
∆av(y)≤−cd

Case 3 Case 7 Case 11 Case 15

∆av(y+d)≥−cd
∆av(y)≥−cd

Case 4 Case 8 Case 12 Case 16

• Case 1 =∆ϵ∆dv(y+a)≥ 0

• Case 2 =∆dv
′(y+a)−∆d+av(y)− cd=∆d+av

′(y)−∆d+av(y)− cd −∆av
′(y)

—Positive if
∣∣ϵcd ≥ 0

∣∣∧Sd+a,ϵ

—Useless if Sa,d∨Sa,ϵ∧
∣∣ϵcd ≥ 0

∣∣
• Case 3 =−∆d−av(y+a)+∆dv

′(y+a)+cd=−∆dv(y+a)+∆av(y+d)+∆dv
′(y+a)+cd ≥ 0

• Case 4 =∆dv
′(y+a)−∆dv(y)≥


∆dv(y+a)−∆dv(y)

∆dv
′(y+a)−∆dv(y)+∆av

′(y)−∆av(y+d)︸ ︷︷ ︸
≥0 if ϵcd≥0

=∆d+av
′(y)−∆d+av(y)
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—Positive if Sd,a∨Sd+a,ϵ∧
∣∣ϵcd ≥ 0

∣∣
—Useless if Sa,ϵ∧

∣∣ϵcd ≥ 0
∣∣

• Case 5 =∆d+av
′(y)−∆dv(y+a)+ cd

′=∆dv
′(y+a)−∆dv(y+a)+ cd

′ +∆av
′(y)≥ 0

• Case 6 =∆d+av
′(y)−∆d+av(y)+ cd

′ − cd

—Positive if Sd+a,ϵ∧
∣∣ϵcd ≥ 0

∣∣
—Useless if Sd,a

• Case 7 =∆d+av
′(y)−∆d−av(y+a)+ cd + cd

′

—Useless if Subd,a∨Suba,ϵ∧
∣∣ϵcd ≤ 0

∣∣∨Sd,a∨Sa,ϵ∧ ∣∣ϵcd ≥ 0
∣∣

• Case 8 =−∆dv(y)+∆d+av
′(y)+ cd

′=−∆d+av(y)+∆d+av
′(y)+∆av(y+d)+ cd

′

—Positive if
∣∣ϵcd ≥ 0

∣∣∧Sd+a,ϵ

—Useless if Sd,a∨Sa,ϵ∧
∣∣ϵcd ≥ 0

∣∣
• Case 9 =∆d−av

′(y+a)−∆dv(y+a)− cd
′=∆d−av

′(y+a)−∆d−av(y+a)−∆av(y)− cd
′

—Positive if Sd−a,ϵ∧
∣∣ϵcd ≤ 0

∣∣
—Useless if Subd,a∨Suba,ϵ∧

∣∣ϵcd ≤ 0
∣∣

• Case 10 =∆d−av
′(y+a)−∆d+av(y)+ cd

′ + cd

—Useless if Subd,a∨Suba,ϵ∧
∣∣ϵcd ≤ 0

∣∣∨Sd,a∨Sa,ϵ∧ ∣∣ϵcd ≥ 0
∣∣

• Case 11 =−∆d−av(y+a)+∆d−av
′(y+a)+ cd − cd

′

—Positive if Sd−a,ϵ∧
∣∣ϵcd ≤ 0

∣∣
—Useless if Subd,a

• Case 12 =−∆dv(y)+∆d−av
′(y+a)− cd

′

=−∆dv(y)−∆av
′(y)+∆dv

′(y)− cd ≥ 0

• Case 13 =∆dv
′(y)−∆dv(y+a)≥


∆dv(y)−∆dv(y+a)

∆dv
′(y)−∆dv(y+a)+∆av

′(y+d)−∆av(y)︸ ︷︷ ︸
≥0 if ϵcd≤0

=∆d+av
′(y)−∆d+av(y)

—Positive if Subd,a∨Sd−a,ϵ∧
∣∣ϵcd ≤ 0

∣∣
—Useless if Suba,ϵ∧

∣∣ϵcd ≤ 0
∣∣

• Case 14 =∆dv
′(y)−∆d+av(y)+ cd=∆dv

′(y)−∆dv(y)−∆av(y+d)− cd ≥ 0

• Case 15 =∆dv
′(y)−∆d−av(y+a)+ cd=∆d−av

′(y)−∆d−av(y)+∆av
′(y)+ cd

—Positive if
∣∣ϵcd ≤ 0

∣∣∧Sd−a,ϵ

—Useless if Subd,a∨Suba,ϵ∧
∣∣ϵcd ≤ 0

∣∣
• Case 16 =−∆dv(y)+∆dv

′(y)≥ 0

Note that if ∆av ≤−cd − ϵ+cd or ∆av ≥−cd + ϵ−cd there is no condition because only cases 1 and

16 can be reach.

So Case A is positive if
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∣∣∆av≤−cd − ϵ+cd

∣∣∨ ∣∣∆av≥−cd + ϵ−cd

∣∣∨
(
∣∣ϵcd ≥ 0

∣∣∧Sd+a,ϵ∨Sd,a∨Sa,ϵ∧
∣∣ϵcd ≥ 0

∣∣) (Case 2)
∧(Sd,a∨Sd+a,ϵ∧

∣∣ϵcd ≥ 0
∣∣∨Sa,ϵ∧ ∣∣ϵcd ≥ 0

∣∣) (Case 4)
∧(Sd+a,ϵ∧

∣∣ϵcd ≥ 0
∣∣∨Sd,a) (Case 6)

∧(Subd,a∨Sd,a∨Suba,ϵ∧
∣∣ϵcd ≤ 0

∣∣∨Sa,ϵ∧ ∣∣ϵcd ≥ 0
∣∣) (Case 7)

∧(
∣∣ϵcd ≥ 0

∣∣∧Sd+a,ϵ∨Sd,a∨Sa,ϵ∧
∣∣ϵcd ≥ 0

∣∣) (Case 8)
∧(
∣∣ϵcd ≤ 0

∣∣∧Sd−a,ϵ∨Subd,a∨Suba,ϵ∧
∣∣ϵcd ≤ 0

∣∣) (Case 9)
∧(Subd,a∨Sd,a∨Suba,ϵ∧

∣∣ϵcd ≤ 0
∣∣∨Sa,ϵ∧ ∣∣ϵcd ≥ 0

∣∣) (Case 10)
∧(Sd−a,ϵ∧

∣∣ϵcd ≤ 0
∣∣∨Subd,a) (Case 11)

∧(Subd,a∨Sd−a,ϵ∧
∣∣ϵcd ≤ 0

∣∣∨Suba,ϵ∧ ∣∣ϵcd ≤ 0
∣∣) (Case 13)

∧(
∣∣ϵcd ≤ 0

∣∣∧Sd−a,ϵ∨Subd,a∨Suba,ϵ∧
∣∣ϵcd ≤ 0

∣∣) (Case 15)

With simplifications this condition reduces to∣∣∆av≤−cd − ϵ+cd

∣∣∨ ∣∣∆av≥−cd + ϵ−cd

∣∣
∨Sd,a∧Sd−a,ϵ∧

∣∣ϵcd ≤ 0
∣∣∨Subd,a∧Sd+a,ϵ∧

∣∣ϵcd ≥ 0
∣∣

∨Sd+a,ϵ∧Sd−a,ϵ∧(Suba,ϵ∨Sa,ϵ)∧
∣∣ϵcd = 0

∣∣
C.4.2. Case B.

Case B = ∆ϵ[Cv(x+d)−Cv(x)]
= v′(y+d)− v(y+d)+ ϵcr −min{v′(y)+ cb

′, v′(y+a)+ ca
′}+min{v(y)+ cb, v(y+a)+ ca}

Case B ∆av
′(y)≤−cd

′, ∆av
′(y)≥−cd

′

∆av(y)≤−cd Case 1 Case 3
∆av(y)≥−cd Case 2 Case 4

• Case 1 =∆ϵ∆d−av(y+a)− ϵca + ϵcr

—Positive if Sd−a,ϵ∧|ϵcr − ϵca ≥ 0|
• Case 2 =∆d−av

′(y+a)−∆dv(y)− ca
′ + cb + ϵcr=∆ϵ∆dv(y)−∆av

′(y)− ca
′ + cb + ϵcr

—Positive if
∣∣ϵcr − ϵcb ≥ 0

∣∣
—Useless if Sa,ϵ∧

∣∣ϵcd ≥ 0
∣∣

• Case 3 =∆dv
′(y)− cb

′ −∆d−av(y+a)+ ca + ϵcr=∆ϵ∆d−av(y)+∆av
′(y)+ ca − cb

′ + ϵcr

—Positive if Sd−a,ϵ∧|ϵcr − ϵca ≥ 0|
—Useless if Suba,ϵ∧

∣∣ϵcd ≤ 0
∣∣

• Case 4 =∆ϵ∆dv(x)− ϵcb + ϵcr

—Positive if
∣∣ϵcr − ϵcb ≥ 0

∣∣
Note that when ∆av ≤ −cd − ϵ+cd (resp. ∆av ≥ −cd + ϵ−cd) the cases 2, 3, 4 (resp. 1, 2, 3) are

Useless. So case B is

• Positive if
Sd−a,ϵ∧|ϵcr − ϵca ≥ 0|∧

∣∣ϵcr − ϵcb ≥ 0
∣∣

∨
∣∣∆av≤−cd − ϵ+cd

∣∣∧Sϵ,d−a∧|ϵcr − ϵca ≥ 0|
∨
∣∣∆av≥−cd + ϵ−cd

∣∣∧ ∣∣ϵcr − ϵcb ≥ 0
∣∣

• Useless if X is Rd,a+b(a+b+d)
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C.4.3. Case C.
Case C = ∆ϵ[Cv(x+d)−Cv(x)]

= ∆ϵ[Cv(x+d)− v(y)]− ϵcr
= min{v′(y+d)+ cb

′, v′(y+d+a)+ ca
′}

−min{v(y+d)+ cb, v(y+d+a)+ ca}
−v′(y)+ v(y)− ϵcr

Case C ∆av
′(y+d)≤−c′, ∆av

′(y+d)≥−c′

∆av(y+d)≤−c Case 1 Case 3
∆av(y+d)≥−c Case 2 Case 4

• Case 1 =∆ϵ∆d+av(y)+ ϵca − ϵcr

—Positive if Sϵ,d+a∧|ϵca − ϵcr ≥ 0|

• Case 2 =∆d+av
′(y)−∆dv(y)+ ca

′ − cb − ϵcr=∆ϵ∆d+av(y)+∆av(y+d)+ ca
′ − cb − ϵcr

—Positive if Sϵ,d+a∧|ϵca − ϵcr ≥ 0|

—Useless if Sϵ,a∧
∣∣ϵcd ≥ 0

∣∣
• Case 3 ∆dv

′(y)−∆d+av(y)− ca + cb
′ − ϵcr=∆ϵ∆dv(y)−∆av(y+d)− ca + cb

′ − ϵcr

—Positive if
∣∣ϵcb − ϵcr ≥ 0

∣∣
—Useless if Subϵ,a∧

∣∣ϵcd ≤ 0
∣∣

• Case 4 =∆ϵ∆dv(y)+ ϵcb − ϵcr

—Positive if
∣∣ϵcb − ϵcr ≥ 0

∣∣
Note that when ∆av ≤−cd − ϵ+cd (resp.∆av ≥−cd + ϵ−cd) the cases 2, 3, and 4 (resp. 1, 2, and 3)

are Useless. So case C is

• Positive if
Sϵ,d+a∧|ϵca − ϵcr ≥ 0|∧

∣∣ϵcb − ϵcr ≥ 0
∣∣

∨
∣∣∆av≤−cd − ϵ+cd

∣∣∧Sϵ,d+a∧|ϵca − ϵcr ≥ 0|
∨
∣∣∆av≥−cd + ϵ−cd

∣∣∧ ∣∣ϵcb − ϵcr ≥ 0
∣∣

• Useless if Rd,a+b+d(a+b)

C.4.4. Case D.

Case D=∆ϵ[Cv(x+d)−Cv(x)] =∆ϵ∆dv(x)≥ 0

C.4.5. Conclusion. The operator C propagates Sd,ϵ if,


∣∣∆av≤−cd − ϵ+cd

∣∣∨ ∣∣∆av≥−cd + ϵ−cd

∣∣
∨Sd,a∧Sd−a,ϵ∧

∣∣ϵcd ≤ 0
∣∣∨Subd,a∧Sd+a,ϵ∧

∣∣ϵcd ≥ 0
∣∣

∨Sd+a,ϵ∧Sd−a,ϵ∧(Suba,ϵ∨Sa,ϵ)∧
∣∣ϵcd = 0

∣∣


∧


Sd−a,ϵ∧|ϵcr − ϵca ≥ 0|∧

∣∣ϵcr − ϵcb ≥ 0
∣∣

∨
∣∣∆av≤−cd − ϵ+cd

∣∣∧Sϵ,d−a∧|ϵcr − ϵca ≥ 0|
∨
∣∣∆av≥−cd + ϵ−cd

∣∣∧ ∣∣ϵcr − ϵcb ≥ 0
∣∣

∨Rd,a+b(a+b+d)

∧


Sϵ,d+a∧|ϵca − ϵcr ≥ 0|∧

∣∣ϵcb − ϵcr ≥ 0
∣∣

∨
∣∣∆av≤−cd − ϵ+cd

∣∣∧Sϵ,d+a∧|ϵca − ϵcr ≥ 0|
∨
∣∣∆av≥−cd + ϵ−cd

∣∣∧ ∣∣ϵcb − ϵcr ≥ 0
∣∣

∨Rd,a+b+d(a+b)
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We can simplify this results because if |∆a ≤−cd| the state x+ a+ b is always chosen in the

minimization, so the operator is equivalent to T (plus the cost ca), and if |∆a ≤−cd| the state

x+ a+b is never chosen in the minimization, so the operator is equivalent to T or C with a= 0.

So we can consider that |∆a ≤−cd|= |∆a ≥−cd|= false. Then the relation reduces to

(
Sd,a∧Sd−a,ϵ∧

∣∣ϵcd ≤ 0
∣∣∨Subd,a∧Sd+a,ϵ∧

∣∣ϵcd ≥ 0
∣∣

∨Sd+a,ϵ∧Sd−a,ϵ∧(Suba,ϵ∨Sa,ϵ)∧
∣∣ϵcd = 0

∣∣ )
∧
(
Sd−a,ϵ∧|ϵcr − ϵca ≥ 0|∧

∣∣ϵcr − ϵcb ≥ 0
∣∣

∨Rd,a+b(a+b+d)

)
∧
(
Sϵ,d+a∧|ϵca − ϵcr ≥ 0|∧

∣∣ϵcb − ϵcr ≥ 0
∣∣

∨Rd,a+b+d(a+b)

)

C.5. PM(T ) and NM(T ) (Cells 14 and 16)

Cv(x)− v(x) =

{
min{∆bv(x)+ cb,∆a+bv(x)+ ca} if x+a+b∈X
∆bv(x)+ cr, otherwise

So v is PM(C) if

(|∆bv≥−cb|∨ |∆av≤−cd|)∧(|∆a+bv≥−ca|∨ |∆av≥−cd|)∧(|∆bv≥−cr|∨R−b(a))

and v is NM(C) if

(
|∆bv≤−cb|∧|∆av≤−cd|∨ |∆a+bv≤−ca|∧|∆av≥−cd|

)
∧(|∆bv≤−cr|∨R−b(a))

C.6. IMϵ(T ) (Cell 18)

∆ϵΩCv(x) =

{
∆ϵmin{∆a+bv(x)+ ca,∆bv(x)+ cb} if y+a∈X
∆ϵ∆bv(x)+ ϵcr otherwise

The 4 possible cases for ∆ϵmin{∆a+bv(x)+ ca,∆bv(x)+ cb} are given in the following table.

∆av
′(y)≤−cd ∆av

′(y)≥−cd
∆av(y)≤−cd Case 1 Case 3
∆av(y)≥−cd Case 2 Case 4

• Case 1 =∆ϵ∆a+bv(x)+ ϵca

—Positive if Sϵ,b+a∧|ϵca ≥ 0|

• Case 2 =∆a+bv
′(x)+ ca

′ −∆bv(x)+ cb

—Useless if Sϵ,a

• Case 3 =∆bv
′(x)+ cb

′ −∆a+bv(x)− ca ≥∆ϵv(x+b)−∆ϵv(x)+ ϵcb

—Positive if Sϵ,b∧
∣∣ϵcb ≥ 0

∣∣
—Useless if Subϵ,a
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• Case 4 =∆ϵ∆bv(x)+ ϵcb

—Positive if Sϵ,b∧
∣∣ϵcb ≥ 0

∣∣
Note that when ∆av≤−cd (resp.∆av≥−cd) the cases 2, 3, and 4 (resp. 1, 2, and 3) are Useless.

So ∆ϵΩCv is positive if Sϵ,b∧Sϵ,a∧|ϵca ≥ 0|∧
∣∣ϵcb ≥ 0

∣∣
∨|∆av≤−cd|∧Sϵ,b+a∧|ϵca ≥ 0|
∨ |∆av≥−cd|∧Sϵ,b∧

∣∣ϵcb ≥ 0
∣∣
∧

(
Sϵ,b∧|ϵcr ≥ 0|
∨R(a+b)

)
C.7. IMd(T ) (Cell 20)

∆dΩCv(x) =∆d(Cv(x)− v(x))

The 4 possible cases are given in the following table.

y+a∈X y+a /∈X
y+a+d∈X Case A Case C
y+a+d /∈X Case B Case D

C.7.1. Case A.

∆dΩCv(x) =min{v(y+d)+ cb, v(y+d+a)+ ca}− v(x+d)
−min{v(y)+ cb, v(y+a)+ ca}+ v(x)

The 4 possible cases are given in the following table.

∆av(y)≤−cd ∆av(y)≥−cd
∆av(y+d)≤−cd Case 1 Case 3
∆av(y+d)≥−cd Case 2 Case 4

• Case 1 =∆dv(y+a)−∆dv(x) =∆dv(x+b+a)−∆dv(x)

—Positive if Sd,b+a

• Case 2 =∆dv(y)−∆dv(x)−∆av(y)− cd ≥∆dv(x+b)−∆dv(x)

—Positive if Sd,b

—Useless if Subd,a

• Case 3 =∆dv(y)−∆dv(x)+∆av(y+d)+ cd ≤∆dv(x+b)−∆dv(x)

—Useless if Sd,a

• Case 4 =∆dv(x+b)−∆dv(x)

—Positive if Sd,b

Note that when ∆av≤−cd (resp.∆av≥−cd) the cases 2, 3, and 4 (resp. 1, 2, and 3) are Useless.

So Case A is

• Positive if Sd,b∧Sd,a∨|∆av≤−cd|∧Sd,b+a∨|∆av≥−cd|∧Sd,b
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C.7.2. Case B. Case B= v(y+d)+ cr − v(x+d)−Cv(x)+ v(x)

• If ∆av(y)≤−cd then Case B =

{
∆d∆bv(x)−∆av(y)+ cr − ca ≥∆b∆dv(x)+ cr + cb
∆d−a∆bv(x+a)−∆av(x)+ cr − ca

—Positive if
(
Sd,b∧|cr + cb ≥ 0|∨Sb,d−a∧|∆av≤ cr − ca|

)
—Useless if ∆av≥−cd

• If ∆av(y)≥−cd then Case B =∆b∆dv(x)+ cr − cb

—Positive if Sd,b∧|cr − cb ≥ 0|
—Useless if ∆av≤−cd

So Case B is

• Positive if

Sd,b∧|cr + cb ≥ 0|∨Sb,d−a∧|∆av≤ cr − ca|∨ |∆av≥−cd|∧(Sd,b∧|cr − cb ≥ 0|∨ |∆av≤−cd|)

• Useless if X is Rd,a+b(a+b+d)

C.7.3. Case C. Case C = Cv(x+d)− v(x+d)− v(y)− cr + v(x)

• If ∆av(y+d)≤−cd then Case C =

{
∆d∆bv(x)+∆av(y+d)− cr + ca
∆d+a∆bv(x)+∆av(x+d)− cr + ca

—Positive if |∆av≥ cr − ca|∧(Sb,d∨Sb,d+a)

—Useless if ∆av≥−cd

• If ∆av(y+d)≥−cd then Case C =∆b∆dv(x)− cr + cb

—Positive if Sd,b∧|cb − cr ≥ 0|
—Useless if ∆av≤−cd

So Case C is

• Positive if (|∆av≥ cr − ca|∧(Sb,d∨Sb,d+a)∨|∆av≥−cd|)∧(Sd,b∧|cb − cr ≥ 0|∨ |∆av≤−cd|)
• Useless if X is Rd,a+b+d(a+b)

C.7.4. Case D. Case D =∆d∆bv(x)

• Positive if Sd,b

• Useless if X is Rd(a+b))∨Rd(a+b+d))

C.7.5. Conclusion. ∆dΩCv≥ 0 if, Sd,b∧Sd,a
∨|∆av≤−cd|∧Sd,b+a

∨|∆av≥−cd|∧Sd,b

∧(Sd,b∨Rd(a+b+d)∨Rd(a+b))

∧


 Sd,b∧|cr + cb ≥ 0|

∨Sb,d−a∧|∆av≤ cr − ca|
∨ |∆av≥−cd|


∧(Sd,b∧|cr − cb ≥ 0|∨ |∆av≤−cd|)

∨Rd,a+b(a+b+d)

∧


 Sb,d∧|∆av≥ cr − ca|

∨Sb,d+a∧|∆av≥ cr − ca|)
∨|∆av≥−cd|


∧(Sd,b∧|cb − cr ≥ 0|∨ |∆av≤−cd|)

∨Rd,a+b+d(a+b)


With |∆av≤−cd|= |∆av≥−cd|= false this expression reduces to

(|cr ≥ 0|∧ |cb = 0|∨Rd,a+b(a+b+d))∧Sd,b∧Sd,a∧Rd,a+b+d(a+b)



Vercraene, Gayon, and Karaesmen: Effects of system parameters in a class of multi-dimensional queueing control problems
Article submitted to Operations Research 35

Appendix D: Admission control

Mv = H+µO0v+
∑n

i=1 λiOiv+ p0v,
H(x) = hx,

O0v(x) = T v(x) with

{
a=−e1,b= 0,
ca = cr = 0,

Oiv(x) = Cv(x) with
{
a= e1,b= 0,
cb = ci, ca = cr = 0.

The state space is S1 =Z+.

From Stidham (1985) we know that M propagates Se1,e1 and Ie1 .

D.1. Proof of Theorem 1

D.1.1. Monotonicity. We look for the condition on v and ϵ to have M that propagates Iϵ.

From Proposition 2 we obtain that M propagates Iϵ if the following condition is satisfied, knowing

that v is Iϵ, Se1,e1 , and Ie1 .

|∆ϵ(hx)≥ 0|

∧
|O0 propagates Iϵ|

∧ |ϵµ < 0|∧ |ΩO0
v≤ 0|

∨ |ϵµ > 0|∧ |ΩO0
v≥ 0|

∨ |ϵµ = 0|


∧l

i=1


|Oi propagates Iϵ|

∧ |ϵλi
< 0|∧ |ΩOi

v≤ 0|
∨ |ϵλi

> 0|∧ |ΩOi
v≥ 0|

∨ |ϵλi
= 0|


∧

 |ϵη < 0|∧ |v is P|
∨ |ϵη > 0|∧ |v is N|

∨ |ϵη = 0|

 .

(10)

From Table 4 we obtain the following relations.

• |∆ϵ(hx)≥ 0|= |ϵh ≥ 0|

• |O0 propagates Iϵ|= true (see cell 5).

• |ΩO0
v≤ 0|= |∆−e1v≤ 0|= true (see cell 15).

• |ΩO0
v≥ 0|= |∆−e1v≥ 0|= false (see cell 13).

• |Oi propagates Iϵ|= |ϵci ≥ 0| because R(e1) = true (see cell 6).

• |ΩOi
v≤ 0|= |∆e1v≤ 0|= false (see cell 16).

• |ΩOi
v≥ 0|= |∆e1v≥ 0|= true (see cell 14).

• |v is P|= true because costs are positive (see cells 1 and 2).

• |v is N|= false because costs are not negative (see cells 3 and 4).

So equation (10) can be reduced to

|ϵh ≥ 0|∧ |ϵµ ≤ 0|∧ |ϵη ≤ 0|
l∧

i=1

(|ϵci ≥ 0|∧ |ϵλi
≥ 0|) (11)

Conclusion, the optimal value function is increasing in the arrival rates λi, the rejection costs ci,

the holding cost h and decreasing in the service rate µ and the discount rate η.
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D.1.2. Convexity/Concavity. First we look for the condition on v and ϵ to haveM that prop-

agates Sϵ,ϵ. However |Oi propagates Sϵ,ϵ|= false, so M does not propagate Sϵ,ϵ (see Proposition

3 and cell 10 in Table 4).

Now we look for the condition on v and ϵ to have M that propagates Sϵ,−ϵ. From Proposition 3

we obtain that M propagates Sϵ,−ϵ if the following condition is satisfied, knowing that v is Sϵ,−ϵ,

Se1,e1 , and Ie1 .

|∆ϵ∆ϵ(hx)≤ 0|

∧
|O0 propagates Sϵ,−ϵ|

∧ |ϵµ > 0|∧ |∆ϵΩO0
v≤ 0|

∨ |ϵµ < 0|∧ |∆ϵΩO0
v≥ 0|

∨ |ϵµ = 0|


∧l

i=1


|Oi propagates Sϵ,−ϵ|

∧ |ϵλi
> 0|∧ |∆ϵΩOi

v≤ 0|
∨ |ϵλi

< 0|∧ |∆ϵΩOi
v≥ 0|

∨ |ϵλi
= 0|


∧

 |ϵη > 0|∧ |v is Iϵ|
∨ |ϵη < 0|∧ |v is I−ϵ|

∨ |ϵη = 0|

 .

(12)

From Table 4 we obtain the following relations.

• |∆ϵ∆ϵ(hx)≤ 0|= true.

• |O0 propagates Sϵ,−ϵ|= true (see cell 9).

• |∆−ϵΩO0
v≥ 0|= Sϵ,e1 (see cell 17).

• |∆ϵΩO0
v≥ 0|= S−ϵ,e1 (see cell 17).

• |Oi propagates Sϵ,−ϵ|= Se1,ϵ∧|ϵci ≤ 0|∨Sube1,ϵ∧|ϵci ≥ 0| (see cell 10).

• |∆−ϵΩOi
v≥ 0|= S−ϵ,e1∧|ϵci ≤ 0| (see cell 18).

• |∆ϵΩOi
v≥ 0|= Sϵ,e1∧|ϵci ≥ 0| (see cell 18).

• |v is Iϵ| if (see equation 11) |ϵh ≥ 0|∧ |ϵµ ≤ 0|∧ |ϵη ≤ 0|
∧l

i=1 |ϵci ≥ 0|∧ |ϵλi
≥ 0| .

• |v is I−ϵ| if (see equation 11) |ϵh ≤ 0|∧ |ϵµ ≥ 0|∧ |ϵη ≥ 0|
∧l

i=1 |ϵci ≤ 0|∧ |ϵλi
≤ 0| .

So equation (12) reduces to

 |ϵµ > 0|∧Sϵ,e1
∨|ϵµ < 0|∧S−ϵ,e1

∨|ϵµ = 0|

∧l

i=1


Se1,ϵ∧|ϵci ≤ 0|∨Sube1,ϵ∧|ϵci ≥ 0|∧|ϵλi

> 0|∧S−ϵ,e1∧|ϵci ≤ 0|
∨ |ϵλi

< 0|∧Sϵ,e1∧|ϵci ≥ 0|
∨ |ϵλi

= 0|


∧ |ϵη = 0| . (13)

In the following section (see equation 15) we will see that M propagates Sϵ,e1 if

|ϵh ≥ 0|∧ |ϵci ≥ 0|∧ |ϵλi
≥ 0|∧ |ϵµ ≤ 0|∧ |ϵη ≤ 0| ,

so equation (13) reduces to

|ϵci = 0|∧ |ϵλi
= 0|∧ |ϵµ = 0|∧ |ϵη = 0| .

Conclusion, the optimal value function is concave in the holding cost h.
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D.1.3. Monotonicity of the optimal policy. We look for the condition on v and ϵ to have

M that propagates Sϵ,e1 . From Proposition 3 we obtain that M propagates Sϵ,e1 if the following

condition is satisfied, knowing that v is Sϵ,e1 , Se1,e1 , and Ie1 .

|∆e1∆ϵ(hx)≥ 0|

∧
|O0 propagates Se1,ϵ|∧ |ϵµ < 0|∧ |∆e1ΩO0

v≤ 0|
∨ |ϵµ > 0|∧ |∆e1ΩO0

v≥ 0|
∨ |ϵµ = 0|


∧l

i=1


|Oi propagates Se1,ϵ|∧ |ϵλi

< 0|∧ |∆e1ΩOi
v≤ 0|

∨ |ϵλi
> 0|∧ |∆e1ΩOi

v≥ 0|
∨ |ϵλi

= 0|


∧

 |ϵη < 0|∧ |v is Ie1 |
∨ |ϵη > 0|∧ |v is I−e1 |

∨ |ϵη = 0|

 .

(14)

From Table 4 we obtain the following relations.

• |∆e1∆ϵ(hx)≥ 0|= |ϵh ≥ 0|
• |O0 propagates Se1,ϵ|= true (see cell 11).

• |∆−e1ΩO0
v≤ 0|= S−e1,−e1∧|∆−e1v≤ 0|= true (see cell 19).

• |∆e1ΩO0
v≥ 0|= Se1,−e1∧· · ·= false (see cell 19).

• |Oi propagates Se1,ϵ|= Se1,e1∧|ϵci ≥ 0| (see cell 12).

• |∆−e1ΩOi
v≥ 0|= S−e1,e1 = false (see cell 20).

• |∆e1ΩOi
v≥ 0|= Se1,e1 = true (see cell 20).

• |v is Ie1 |= true (Stidham 1985).

• |v is I−e1 |= false (Stidham 1985).

So equation (14) can be reduced, and M propages Sϵ,e1 if

|ϵh ≥ 0|∧ |ϵci ≥ 0|∧ |ϵλi
≥ 0|∧ |ϵµ ≤ 0|∧ |ϵη ≤ 0| . (15)

Given that the optimal thresholds ti decrease if

|M propagates Sϵ,e|∧ |ϵci ≤ 0| ,

the optimal thresholds ti are decreasing in the arrival rate λi, the holding cost h, and increasing

in the service rate µ and the discount rate η.

D.2. Proof of Theorem 2

D.2.1. Effect of λ and µ : Piecewise convexity. Let [µl, µu] (resp. [λl, λu]) be a set such that

for all µ ∈ [µl, µu] (resp. λi ∈ [λl, λu]) the optimal thresholds S∗
i do not change. For all µ ∈ [µl, µu]

(resp. λi ∈ [λl, λu]) the MDP formulation can be rewritten.

Let ϵµ (resp. ϵλi
) be positive such that µ+ ϵµ ∈ [µl, µu] (resp. λi + ϵλi

∈ [λl, λu]).

• For all state space X and for all direction a, T propagates Sϵ,ϵ without conditions.

• IMϵ(O0) is positive if v is Sϵ,−e which is true because ϵµ is positive. (resp. IMϵ(Oi>0) is positive

if v is Sϵ,e which is true because ϵλi
is positive.)

So v⋆(x) is convex in µ ∈ [µl, µu] resp. λi ∈ [λl, λu]) if the optimal thresholds S∗
i do not change

on the set [µl, µu] (resp. [λl, λu]).
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D.2.2. Effect of h and ci : concavity and piecewise linearity. With ϵh ≥ 0 and ϵci ≤ 0, v

is Sϵ,e and operators C (with a= e) and T (with a=−e) propagate Sϵ,−ϵ. So v is concave in ϵh

and ϵc.

We consider a set of parameters [hl, hu] (resp. [cl, cu]) such that the optimal thresholds S∗
i do not

change on this set. As previously the MDP formulation can be rewritten on this set with translation

operator only.

With ϵh ≥ 0 (resp. ϵci ≥ 0) such that h+ ϵh ∈ [hl, hu] (resp. ci + ϵci ∈ [cl, cu]), then T propagates

Subϵ,ϵ and Sϵ,ϵ without conditions ∀X and ∀a.

Given that v Subϵ,ϵ and Sϵ,ϵ imply that v is linear in ϵ, the optimal value function v⋆(x) is linear

in h∈ [hl, hu] (resp. ci ∈ [cl, cu]) if the optimal thresholds S∗
i do not change on the set [hl, hu] (resp.

[cl, cu]).

Appendix E: Tandem queue, proof of Theorem 3

The optimality equations for the tandem queue problem are

Mv = H+µ1O1v+µ2O2v+λO3v+ p0v,
H(x) = h1x1 +h2max{x2,0}+ bmax{−x2,0},

O1v(x) = Cv(x) with

{
a= e1,b= 0,

ca = cr = 0,

O2v(x) = Cv(x) with
{
a= e2 − e1,b= 0,
ca = cb = cr = 0,

O3v(x) = T v(x) with

{
a=−e2,b= 0,
ca = cb = cr = 0.

From Veatch and Wein (1992) we know that M propagates Se1,e2 , Se1,e1−e2 , and Se2,e2−e1 .

E.1. Monotonicity

We look for the condition on v and ϵ to have M that propagates Iϵ. From Proposition 2 we obtain

that M propagates Iϵ if the following condition is satisfied, knowing that v is Iϵ, Se1,e2 , Se1,e1−e2 ,

and Se2,e2−e1 . ∣∣∆ϵ(h1x1 +h2x
+
2 + b(−x2)

+)≥ 0
∣∣ ,

∧
|O1 propagates Iϵ|

∧ |ϵµ1
< 0|∧ |ΩO1

v≤ 0|
∨ |ϵµ1

> 0|∧ |ΩO1
v≥ 0|

∨ |ϵµ1
= 0|


∧


|O2 propagates Iϵ|

∧ |ϵµ2
< 0|∧ |ΩO2

v≤ 0|
∨ |ϵµ2

> 0|∧ |ΩO2
v≥ 0|

∨ |ϵµ2
= 0|




∧
|O3 propagates Iϵ|

∧ |ϵλ < 0|∧ |ΩO3
v≤ 0|

∨ |ϵλ > 0|∧ |ΩO3
v≥ 0|

∨ |ϵλ = 0|


∧

 |ϵη < 0|∧ |v is P|
∨ |ϵη > 0|∧ |v is N|

∨ |ϵη = 0|

 .

(16)

From Table 4 we obtain the following relations.
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•
∣∣∆ϵ(h1x1 +h2x

+
2 + b(−x2)

+)≥ 0
∣∣= |ϵh1

≥ 0|∧ |ϵh2
≥ 0|∧ |ϵb ≥ 0|,

• |O1 propagates Iϵ|= true (see cell 6).

• |ΩO1
v≤ 0|= true (see cell 16).

• |ΩO1
v≥ 0|= |∆e1v≥ 0|= false (see cell 14).

• |O2 propagates Iϵ|= true (see cell 6).

• |ΩO2
v≤ 0|= true (see cell 16).

• |ΩO2
v≥ 0|= |∆e2−e1v≥ 0| false when h1 ≤ h2 (see cell 14).

• |O3 propagates Iϵ|= true (see cell 5).

• |ΩO3
v≤ 0|= |∆−e2v≤ 0|= false (see cell 15).

• |ΩO3
v≥ 0|= |∆−e2v≥ 0|= false (see cell 13).

• |v is P|= true because all costs are positive.

• |v is N|= false because all costs are positive.

So equation (16) can be reduced, and M propagates Iϵ if

|ϵh1
≥ 0|∧ |ϵh2

≥ 0|∧ |ϵb ≥ 0|∧ |ϵµ1
≤ 0|∧ |ϵµ2

≤ 0|∧ |ϵλ = 0|∧ |ϵη ≤ 0| . (17)

Conclusion, the optimal value function is increasing in the costs hi and b, and decreasing in the

service rate µi and the discount rate η.

E.2. Convexity/concavity

First we look for the condition on v and ϵ to have M that propagates Sϵ,ϵ. However

|O1 propagates Sϵ,ϵ| = false, so M does not propagate Sϵ,ϵ (see Proposition 3 and cell 10 in

Table 4).

Now we look for the condition on v and ϵ to have M that propagates Sϵ,−ϵ. From Proposition 3

we obtain that M propagates Sϵ,−ϵ if the following condition is satisfied, knowing that v is Sϵ,−ϵ,

Se1,e2 , Se1,e1−e2 , and Se2,e2−e1 .∣∣∆ϵ∆ϵ(h1x1 +h2x
+
2 + b(−x2)

+)≤ 0
∣∣

∧
|O1 propagates Sϵ,−ϵ|

∧ |ϵµ1
> 0|∧ |∆ϵΩO1

v≤ 0|
∨ |ϵµ1

< 0|∧ |∆ϵΩO1
v≥ 0|

∨ |ϵµ1
= 0|


∧


|O2 propagates Sϵ,−ϵ|

∧ |ϵµ2
> 0|∧ |∆ϵΩO2

v≤ 0|
∨ |ϵµ2

< 0|∧ |∆ϵΩO2
v≥ 0|

∨ |ϵµ2
= 0|




∧
|O3 propagates Sϵ,−ϵ|

∧ |ϵλ > 0|∧ |∆ϵΩO3
v≤ 0|

∨ |ϵλ < 0|∧ |∆ϵΩO3
v≥ 0|

∨ |ϵλ = 0|


∧

 |ϵη > 0|∧ |v is Iϵ|
∨ |ϵη < 0|∧ |v is I−ϵ|

∨ |ϵη = 0|

 .

(18)

From Table 4 we obtain the following relations.

•
∣∣∆ϵ∆ϵ(h1x1 +h2x

+
2 + b(−x2)

+)≤ 0
∣∣= true,

• |O1 propagates Sϵ,−ϵ|= Se1,ϵ∨Sube1,ϵ (see cell 10),
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• |∆ϵΩO1
v≤ 0|= S−ϵ,e1 (see cell 18),

• |∆ϵΩO1
v≥ 0|= Sϵ,e1 (see cell 18),

• |O2 propagates Sϵ,−ϵ|= Se2−e1,ϵ∨Sube2−e1,ϵ
(see cell 10),

• |∆ϵΩO2
v≤ 0|= S−ϵ,e2−e1 (see cell 18),

• |∆ϵΩO2
v≥ 0|= Sϵ,e2−e1 (see cell 18),

• |O3 propagates Sϵ,−ϵ|= S−e2,ϵ∨Sub−e2,ϵ
(see cell 9),

• |∆ϵΩO3
v≤ 0|= S−ϵ,−e2 (see cell 17),

• |∆ϵΩO3
v≥ 0|= Sϵ,−e2 (see cell 17),

• |v is Iϵ| (see equation 17). |ϵh1
≥ 0|∧ |ϵh2

≥ 0|∧ |ϵb ≥ 0|∧ |ϵµ1
≤ 0|∧ |ϵµ2

< 0|∧ |ϵλ = 0|∧ |ϵη ≤ 0| .

• |v is I−ϵ| if (see equation 17) |ϵh1
≤ 0|∧ |ϵh2

≤ 0|∧ |ϵb ≤ 0|∧ |ϵµ1
≥ 0|∧ |ϵµ2

≥ 0|∧ |ϵλ = 0|∧ |ϵη ≥ 0| .

In the following section (see equation 15) we will see that M propagates Sϵ,e1 , Sϵ,e2−e1 , and

Sϵ,e2 if

|ϵh1
= 0|∧ |ϵh2

≥ 0|∧ |ϵb ≥ 0|∧ |ϵµ1
= 0|∧ |ϵµ2

= 0|∧ |ϵλ ≤ 0| .

So M propagates Sϵ,−ϵ if

|ϵh1
= 0|∧ |ϵh2

≥ 0|∧ |ϵb ≥ 0|∧ |ϵµ1
= 0|∧ |ϵµ2

= 0|∧ |ϵλ = 0| .

Conclusion, the optimal value function is concave in the costs h2 and b.

E.3. Monotonicity of the optimal policy

We look for the condition on v and ϵ to haveM that propagates Sϵ,e1 and Sϵ,e2−e1 . From Proposition

3 we obtain that M propagates Sϵ,d if the conditions (19) and (20) are satisfied, knowing that v

is Sϵ,e1 , Sϵ,e2−e1 , Se1,e2 , Se1,e1−e2 , and Se2,e2−e1 .∣∣∆e1∆ϵ(h1x1 +h2x
+
2 + b(−x2)

+)≤ 0
∣∣

∧
|O1 propagates Sϵ,e1 |∧ |ϵµ1

> 0|∧ |∆e1ΩO1
v≤ 0|

∨ |ϵµ1
< 0|∧ |∆e1ΩO1

v≥ 0|
∨ |ϵµ1

= 0|


∧


|O2 propagates Sϵ,e1 |∧ |ϵµ2

> 0|∧ |∆e1ΩO2
v≤ 0|

∨ |ϵµ2
< 0|∧ |∆e1ΩO2

v≥ 0|
∨ |ϵµ2

= 0|




∧
|O3 propagates Sϵ,e1 |∧ |ϵλ > 0|∧ |∆e1ΩO3

v≤ 0|
∨ |ϵλ < 0|∧ |∆e1ΩO3

v≥ 0|
∨ |ϵλ = 0|


∧

 |ϵη > 0|∧ |v is Ie1 |
∨ |ϵη < 0|∧ |v is I−e1 |

∨ |ϵη = 0|

 .

(19)

From Table 4 we obtain the following relations.

•
∣∣∆ϵ∆e1(h1x1 +h2x

+
2 + b(−x2)

+)≤ 0
∣∣= |ϵh1

≥ 0|∧ |ϵh2
≥ 0|∧ |ϵb ≥ 0|,

• |O1 propagates Sϵ,e1 |= true,

• |∆e1ΩO1
v≤ 0|= false,

• |∆e1ΩO1
v≥ 0|= true,
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• |O2 propagates Sϵ,e1 |= true,

• |∆e1ΩO2
v≤ 0|= true,

• |∆e1ΩO2
v≥ 0|= false,

• |O3 propagates Sϵ,e1 |= true,

• |∆e1ΩO3
v≤ 0|= true,

• |∆e1ΩO3
v≥ 0|= false,

• |v is Ie1 |= false,

• |v is I−e1 |= false.∣∣∆e2−e1∆ϵ(h1x1 +h2x
+
2 + b(−x2)

+)≤ 0
∣∣

∧
|O1 propagates Sϵ,e2−e1 |∧ |ϵµ1

> 0|∧ |∆e2−e1ΩO1
v≤ 0|

∨ |ϵµ1
< 0|∧ |∆e2−e1ΩO1

v≥ 0|
∨ |ϵµ1

= 0|


∧


|O2 propagates Sϵ,e2−e1 |∧ |ϵµ2

> 0|∧ |∆e2−e1ΩO2
v≤ 0|

∨ |ϵµ2
< 0|∧ |∆e2−e1ΩO2

v≥ 0|
∨ |ϵµ2

= 0|




∧
|O3 propagates Sϵ,e2−e1 |∧ |ϵλ > 0|∧ |∆e2−e1ΩO3

v≤ 0|
∨ |ϵλ < 0|∧ |∆e2−e1ΩO3

v≥ 0|
∨ |ϵλ = 0|


∧

 |ϵη > 0|∧ |v is Ie2−e1 |
∨ |ϵη < 0|∧ |v is Ie1−e2 |

∨ |ϵη = 0|

 .

(20)

From Table 4 we obtain the following relations.

•
∣∣∆ϵ∆e2−e1(h1x1 +h2x

+
2 + b(−x2)

+)≤ 0
∣∣= |ϵh1

≤ 0|∧ |ϵh2
≥ 0|∧ |ϵb ≥ 0|,

• |O1 propagates Sϵ,e2−e1 |= true,

• |∆e2−e1ΩO1
v≤ 0|= true,

• |∆e2−e1ΩO1
v≥ 0|= false,

• |O2 propagates Sϵ,e2−e1 |= true,

• |∆e2−e1ΩO2
v≤ 0|= false,

• |∆e2−e1ΩO2
v≥ 0|= true,

• |O3 propagates Sϵ,e2−e1 |= true,

• |∆e2−e1ΩO3
v≤ 0|= true,

• |∆e2−e1ΩO3
v≥ 0|= false,

• |v is Ie2−e1 |= false,

• |v is I−e2−e1 |= false.

So equations (19) and (20) reduce to

|ϵh1
= 0|∧ |ϵh2

≥ 0|∧ |ϵb ≥ 0|∧ |ϵµ1
= 0|∧ |ϵµ2

= 0|∧ |ϵλ ≤ 0| .

Conclusion, the optimal switching curves si(x1) are increasing in the demand rate λ, the backlog

costs b, and decreasing in the holding cost h2.

Appendix F: Detailed tables
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TA(i) TD(i)

TPD

(
∑

k ak=−ei−ej)
TT (i,j)

P true true true true

N true true true true

Iϵ true true true true

Sϵ,ϵ true true true true

Sϵ,−ϵ true true true true

Sei,ϵ true true true Sej ,ϵ

Sei+ej ,ϵ true Sej ,ϵ Sej ,ϵ Sej ,ϵ

Sej ,ϵ true true true true

Sej−ei,ϵ true Sej ,ϵ
Sej ,ϵ∧S−ej ,ϵ

(=false in most cases)

true

S−ei,ϵ true true true S−ej ,ϵ

S−ei−ej ,ϵ true S−ej ,ϵ S−ej ,ϵ S−ej ,ϵ

S−ej ,ϵ true true true true

Sei−ej ,ϵ true S−ej ,ϵ Sej ,ϵ∧S−ej ,ϵ true

ΩOv≥ 0 Iei Dei Dei Iej−ei

ΩOv≤ 0 Dei Iei Iei Dej−ei

∆ϵΩOv≥ 0 Sϵ,ei Sϵ,−ei Sϵ,−ei Sϵ,ej−ei

∆eiΩOv≥ 0 Sei,ei Sei,−ei∧Dei Sei,−ei∧Dei∧Sej ,−ei Sei,ej−ei∧Iej−ei

∆ei+ejΩOv≥ 0 Sei+ej ,ei Sei+ej ,−ei∧Dei Sei+ej ,−ei∧Dei Sei+ej ,ej−ei∧Iej−ei

∆ejΩOv≥ 0 Sej ,ei Sej ,−ei Sei,−ei∧Dei∧Sej ,−ei Sej ,ej−ei

∆ej−eiΩOv≥ 0 Sej−ei,ei Sej−ei,−ei∧Iei false Sej−ei,ej−ei∧Dej−ei

∆−eiΩOv≥ 0 S−ei,ei Sei,ei∧Iei Sei,ei∧S−ej ,−ei∧Iei S−ei,ej−ei∧Dej−ei

∆−ei−ejΩOv≥ 0 S−ei−ej ,ei Sei+ej ,ei∧Iei Sei+ej ,ei∧Iei S−ei−ej ,ej−ei∧Dej−ei

∆−ejΩOv≥ 0 S−ej ,ei S−ej ,−ei Sei,ei∧S−ej ,−ei∧Iei S−ej ,ej−ei

∆ei−ejΩOv≥ 0 Sei−ej ,ei Sei−ej ,−ei∧Dei false Sei−ej ,ej−ei∧Iej−ei

Table 6 Detailed results for Arrival, Departure, Parallel Departure, and Tandem server operators
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TCA(i) and TBA(i) TCD(i)

P |c≥ 0| |c≥ 0|

N |c≤ 0| |c≤ 0|

Iϵ |ϵc ≥ 0| |ϵc ≥ 0|

Sϵ,ϵ Sei,ϵ∧Subei,ϵ∧|ϵc = 0| Subei,ϵ∧Sei,ϵ∧|ϵc = 0|

Sϵ,−ϵ Sei,ϵ∧|ϵc ≥ 0|∨Subei,ϵ∧|ϵc ≤ 0| Subei,ϵ∧|ϵc ≥ 0|∨Sei,ϵ∧|ϵc ≤ 0|

Sei,ϵ Sei,ei∧|ϵc ≤ 0|∨Sei,−ei∧|ϵc ≥ 0|∨ |ϵc = 0| Sei,ei∧|ϵc ≥ 0|∨ |ϵc = 0|

Sei+ej ,ϵ

Sei+ej ,ei∧Sej ,ϵ∧|ϵc ≤ 0|

∨Subei+ej ,ei∧S2ei+ej ,ϵ∧|ϵc ≥ 0|

∨S2ei+ej ,ϵ∧Sej ,ϵ∧(Subei,ϵ∨Sei,ϵ)∧|ϵc = 0|

 Subei+ej ,−ei

∨S2ei+ej ,ϵ∧(Sei,ϵ∨Subei,ϵ)∧|ϵc = 0|


∧Sϵ,ej∧|ϵc ≥ 0|

Sej ,ϵ

Sej ,ei∧Sej−ei,ϵ∧|ϵc ≤ 0|

∨Subej ,ei∧Sej+ei,ϵ∧|ϵc ≥ 0|

∨Sej+ei,ϵ∧Sej−ei,ϵ∧(Subei,ϵ∨Sei,ϵ)∧|ϵc = 0|

Sej ,−ei∧Sej+ei,ϵ∧|ϵc ≤ 0|

∨Subej ,−ei∧Sej−ei,ϵ∧|ϵc ≥ 0|

∨Sej−ei,ϵ∧Sej+ei,ϵ∧(Sei,ϵ∨Subei,ϵ)∧|ϵc = 0|

Sej−ei,ϵ

Sej−ei,ei∧Sej−2ei,ϵ∧|ϵc ≤ 0|

∨Subej−ei,ei∧Sej ,ϵ∧|ϵc ≥ 0|

∨Sej ,ϵ∧Sej−2ei,ϵ∧(Subei,ϵ∨Sei,ϵ)∧|ϵc = 0|

 Subej−ei,−ei∧Sej−2ei,ϵ

∨Sej−2ei,ϵ∧(Sei,ϵ∨Subei,ϵ)∧|ϵc = 0|


∧Sej ,ϵ∧|0≥ ϵc|

S−ei,ϵ Sei,−ei∧|ϵc ≤ 0|∨Sei,ei∧|ϵc ≥ 0|∨ |ϵc = 0| Sei,ei∧|ϵc ≤ 0|∨ |ϵc = 0|

S−ei−ej ,ϵ

S−ei−ej ,ei∧S−2ei−ej ,ϵ∧|ϵc ≤ 0|

∨Sub−ei−ej ,ei∧S−ej ,ϵ∧|ϵc ≥ 0|

∨S−ej ,ϵ∧S−2ei−ej ,ϵ∧(Subei,ϵ∨Sei,ϵ)∧|ϵc = 0|

 Sei+ej ,ei

∨S−2ei−ej ,ϵ∧(Sub−ei,ϵ∨S−ei,ϵ)∧|ϵc = 0|


∧S−ej ,ϵ∧|ϵc ≤ 0|

S−ej ,ϵ

S−ej ,ei∧S−ej−ei,ϵ∧|ϵc ≤ 0|

∨Sub−ej ,ei∧S−ej+ei,ϵ∧|ϵc ≥ 0|

∨S−ej+ei,ϵ∧S−ej−ei,ϵ∧(Subei,ϵ∨Sei,ϵ)∧|ϵc = 0|

Sej ,ei∧S−ej+ei,ϵ∧|ϵc ≤ 0|

∨Subej ,ei∧S−ej−ei,ϵ∧|ϵc ≥ 0|

∨S−ej−ei,ϵ∧S−ej+ei,ϵ∧(Sei,ϵ∨Subei,ϵ)

∧|ϵc = 0|

Sei−ej ,ϵ

Sei−ej ,ei∧S−ej ,ϵ∧|ϵc ≤ 0|

∨Subei−ej ,ei∧S2ei−ej ,ϵ∧|ϵc ≥ 0|

∨S2ei−ej ,ϵ∧S−ej ,ϵ∧(Subei,ϵ∨Sei,ϵ)∧|ϵc = 0|

 Subei−ej ,−ei∧|ϵc ≥ 0|

∨S2ei−ej ,ϵ∧(Sub−ei,ϵ∨S−ei,ϵ)∧|ϵc = 0|


∧Sϵ,−ej∧|ϵc ≥ 0|

ΩOv≥ 0 |∆eiv≥−c| |∆−eiv≥−c|

ΩOv≤ 0 true true

∆ϵΩOv≥ 0 Sϵ,ei∧|ϵc ≥ 0| Sϵ,−ei∧|ϵc ≥ 0|

∆eiΩOv≥ 0 Sei,ei Sei,−ei∧|∆−eiv≥−c|

∆ei+ejΩOv≥ 0 Sei+ej ,ei Sei+ej ,−ei∧|∆−eiv≥−c|

∆ejΩOv≥ 0 Sej ,ei Sej ,−ei

∆ej−eiΩOv≥ 0 Sej−ei,ei Sej−ei,−ei∧|∆−eiv≤−c|

∆−eiΩOv≥ 0 S−ei,ei Sei,ei

∆−ei−ejΩOv≥ 0 S−ei−ej ,ei S−ei−ej ,−ei

∆−ejΩOv≥ 0 S−ej ,ei S−ej ,−ei

∆ei−ejΩOv≥ 0 Sei−ej ,ei Sei−ej ,−ei∧|∆−eiv≥−c|

Table 7 Detailed results for Controlled Arrival, Batch Arrival, and Controlled Departure operators
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TCT (i,j) TCAF (a= ei + ej)

P |c≥ 0| |c≥ 0|

N |c≤ 0| |c≤ 0|

Iϵ |ϵc ≥ 0| |ϵc ≥ 0|

Sϵ,ϵ Sej−ei,ϵ∧Subej−ei,ϵ∧|ϵc = 0| Sei+ej ,ϵ∧Subei+ej ,ϵ∧|ϵc = 0|

Sϵ,−ϵ Sej−ei,ϵ∧|ϵc ≥ 0|∨Subej−ei,ϵ∧|ϵc ≤ 0| Sei+ej ,ϵ∧|ϵc ≥ 0|∨Subei+ej ,ϵ∧|ϵc ≤ 0|

Sei,ϵ Subei,ej−ei∧Sej ,ϵ∧Sϵ,ej∧|ϵc ≥ 0|

Sei,ei+ej∧Sej ,ϵ∧|ϵc ≤ 0|

∨Subei,ei+ej∧S2ei+ej ,ϵ∧|ϵc ≥ 0|

∨S2ei+ej ,ϵ∧Sej ,ϵ∧(Subei+ej ,ϵ∨Sei+ej ,ϵ)∧|ϵc = 0|

Sei+ej ,ϵ

 Subei+ej ,ej−ei

∨Sei,ϵ∧(Subej−ei,ϵ∨Sej−ei,ϵ)∧|ϵc = 0|


∧Sϵ,ej∧|ϵc ≥ 0|

Sei+ej ,ei+ej∧|ϵc ≤ 0|

∨Subei+ej ,ei+ej∧Sei+ej ,ϵ∧|ϵc ≥ 0|

∨Sei+ej ,ϵ∧(Subei+ej ,ϵ∨Sei+ej ,ϵ)∧|ϵc = 0|

Sej ,ϵ

Sej ,ej−ei∧Sei,ϵ∧|ϵc ≤ 0|

∨Subej ,ej−ei∧S2ej−ei,ϵ∧|ϵc ≥ 0|

∨S2ej−ei,ϵ∧Sei,ϵ∧(Subej−ei,ϵ∨Sej−ei,ϵ)∧|ϵc = 0|

Sej ,ei+ej∧S−ei,ϵ∧|ϵc ≤ 0|

∨Subej ,ei+ej∧Sei+2ej ,ϵ∧|ϵc ≥ 0|

∨Sei+2ej ,ϵ∧S−ei,ϵ∧(Subei+ej ,ϵ∨Sei+ej ,ϵ)∧|ϵc = 0|

Sej−ei,ϵ Sej−ei,ej−ei∧|ϵc ≤ 0|∨ |ϵc = 0|

Sej−ei,ei+ej∧S−ei,ϵ∧|ϵc ≤ 0|

∨Subej−ei,ei+ej∧Sej ,ϵ∧|ϵc ≥ 0|

∨Sej ,ϵ∧S−ei,ϵ∧(Subei+ej ,ϵ∨Sei+ej ,ϵ)∧|ϵc = 0|

S−ei,ϵ

 S−ei,ej−ei∧S−ej ,ϵ

∨S−2ei+ej ,ϵ∧(Subej−ei,ϵ∨Sej−ei,ϵ)∧|ϵc = 0|


∧S−ej ,ϵ∧|ϵc ≤ 0|

S−ei,ei+ej∧S−2ei−ej ,ϵ∧|ϵc ≤ 0|

∨Sub−ei,ei+ej∧Sej ,ϵ∧|ϵc ≥ 0|

∨Sej ,ϵ∧S−2ei−ej ,ϵ∧(Subei+ej ,ϵ∨Sei+ej ,ϵ)∧|ϵc = 0|

S−ei−ej ,ϵ

 S−ei−ej ,ej−ei∧S−ej ,ϵ

∨S−ei,ϵ∧(Subej−ei,ϵ∨Sej−ei,ϵ)∧|ϵc = 0|


∧S−ej ,ϵ∧|ϵc ≤ 0|

S−ei−ej ,ei+ej∧S−ei−ej ,ϵ∧|ϵc ≤ 0|

∨Sei+ej ,ei+ej∧|ϵc ≥ 0|

∨S−ei−ej ,ϵ∧(Subei+ej ,ϵ∨Sei+ej ,ϵ)∧|ϵc = 0|

S−ej ,ϵ

S−ej ,ej−ei∧S−2ej+ei,ϵ∧|ϵc ≤ 0|

∨Sub−ej ,ej−ei∧S−ei,ϵ∧|ϵc ≥ 0|

∨S−ei,ϵ∧S−2ej+ei,ϵ∧(Subej−ei,ϵ∨Sej−ei,ϵ)∧|ϵc = 0|

S−ej ,ei+ej∧S−2ej−ei,ϵ∧|ϵc ≤ 0|

∨Sub−ej ,ei+ej∧Sei,ϵ∧|ϵc ≥ 0|

∨Sei,ϵ∧S−2ej−ei,ϵ∧(Subei+ej ,ϵ∨Sei+ej ,ϵ)∧|ϵc = 0|

Sei−ej ,ϵ Subei−ej ,ej−ei∧|ϵc ≥ 0|∨ |ϵc = 0|

Sei−ej ,ei+ej∧S−ej ,ϵ∧|ϵc ≤ 0|

∨Subei−ej ,ei+ej∧Sei,ϵ∧|ϵc ≥ 0|

∨Sei,ϵ∧S−ej ,ϵ∧(Subei+ej ,ϵ∨Sei+ej ,ϵ)∧|ϵc = 0|

ΩOv≥ 0
∣∣∆ej−eiv≥−c

∣∣ ∣∣∆ei+ejv≥−c
∣∣

ΩOv≤ 0 true true

∆ϵΩOv≥ 0 Sϵ,ej−ei∧|ϵc ≥ 0| Sϵ,ei+ej∧|ϵc ≥ 0|

∆eiΩOv≥ 0 Sei,ej−ei∧
∣∣∆ej−eiv≥−c

∣∣ Sei,ei+ej

∆ei+ejΩOv≥ 0 Sei+ej ,ej−ei∧
∣∣∆ej−eiv≥−c

∣∣ Sei+ej ,ei+ej

∆ejΩOv≥ 0 Sej ,ej−ei Sej ,ei+ej

∆ej−eiΩOv≥ 0 Sej−ei,ej−ei Sej−ei,ei+ej

∆−eiΩOv≥ 0 S−ei,ej−ei S−ei,ei+ej

∆−ei−ejΩOv≥ 0 S−ei−ej ,ej−ei S−ei−ej ,ei+ej

∆−ejΩOv≥ 0 S−ej ,ej−ei S−ej ,ei+ej

∆ei−ejΩOv≥ 0 Sei−ej ,ej−ei∧
∣∣∆ej−eiv≥−c

∣∣ Sei−ej ,ei+ej

Table 8 Detailed results for Controlled Tandem and Controled Arrival as Fork operators
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TR(i,j)

P
∣∣cj ≥ 0

∣∣∧ ∣∣ci ≥ 0
∣∣

N
∣∣cj ≤ 0

∣∣∧ ∣∣ci ≤ 0
∣∣

Iϵ
∣∣ϵjc ≥ 0

∣∣∧ ∣∣ϵic ≥ 0
∣∣

Sϵ,ϵ Sej−ei,ϵ∧Subej−ei,ϵ∧|ϵcj = ϵci |

Sϵ,−ϵ Sej−ei,ϵ∧|ϵcj ≥ ϵci |∨Subej−ei,ϵ∧|ϵcj ≤ ϵci |

Sei,ϵ

Sei,ej−ei∧S2ei−ej ,ϵ∧|ϵcj − ϵci ≤ 0|

∨Subei,ej−ei∧Sej ,ϵ∧|ϵcj − ϵci ≥ 0|

∨Sej ,ϵ∧S2ei−ej ,ϵ∧(Subej−ei,ϵ∨Sej−ei,ϵ)∧|ϵcj − ϵci = 0|

Sei+ej ,ϵ

Sei+ej ,ej−ei∧Sei,ϵ∧|ϵcj − ϵci ≤ 0|

∨Subei+ej ,ej−ei∧Sej ,ϵ∧|ϵcj − ϵci ≥ 0|

∨Sej ,ϵ∧Sei,ϵ∧(Subej−ei,ϵ∨Sej−ei,ϵ)∧|ϵcj − ϵci = 0|

Sej ,ϵ

Sej ,ej−ei∧Sei,ϵ∧|ϵcj − ϵci ≤ 0|

∨Subej ,ej−ei∧S2ej−ei,ϵ∧|ϵcj − ϵci ≥ 0|

∨S2ej−ei,ϵ∧Sei,ϵ∧(Subej−ei,ϵ∨Sej−ei,ϵ)∧|ϵcj − ϵci = 0|

Sej−ei,ϵ

Sej−ei,ej−ei∧|ϵcj − ϵci ≤ 0|

∨Subej−ei,ej−ei∧Sej−ei,ϵ∧|ϵcj − ϵci ≥ 0|

∨Sej−ei,ϵ∧|ϵcj − ϵci = 0|

S−ei,ϵ

S−ei,ej−ei∧S−ej ,ϵ∧|ϵcj − ϵci ≤ 0|

∨Sub−ei,ej−ei∧Sej−2ei,ϵ∧|ϵcj − ϵci ≥ 0|

∨Sej−2ei,ϵ∧S−ej ,ϵ∧(Subej−ei,ϵ∨Sej−ei,ϵ)∧|ϵcj − ϵci = 0|

S−ei−ej ,ϵ

S−ei−ej ,ej−ei∧S−ej ,ϵ∧|ϵcj − ϵci ≤ 0|

∨Sub−ei−ej ,ej−ei∧S−ei,ϵ∧|ϵcj − ϵci ≥ 0|

∨S−ei,ϵ∧S−ej ,ϵ∧(Subej−ei,ϵ∨Sej−ei,ϵ)∧|ϵcj − ϵci = 0|

S−ej ,ϵ

S−ej ,ej−ei∧S−2ej+ei,ϵ∧|ϵcj − ϵci ≤ 0|

∨Sub−ej ,ej−ei∧S−ei,ϵ∧|ϵcj − ϵci ≥ 0|

∨S−ei,ϵ∧S−2ej+ei,ϵ∧(Subej−ei,ϵ∨Sej−ei,ϵ)∧|ϵcj − ϵci = 0|

Sei−ej ,ϵ

Sei−ej ,ej−ei∧Sei−ej ,ϵ∧|ϵcj − ϵci ≤ 0|

∨Subei−ej ,ej−ei∧|ϵcj − ϵci ≥ 0|

∨
∣∣ϵcj−ci = 0

∣∣
ΩOv≥ 0

∣∣∆eiv≥−ci
∣∣∧ ∣∣∆ejv≥−cj

∣∣
ΩOv≤ 0

∣∣∆eiv≤−ci
∣∣∨ ∣∣∆ejv≤−cj

∣∣
∆ϵΩOv≥ 0 Sϵ,ei∧Sϵ,ej−ei∧

∣∣ϵjc ≥ 0
∣∣∧ ∣∣ϵic ≥ 0

∣∣
∆eiΩOv≥ 0 Sei,ei∧Sei,ej−ei

∆ei+ejΩOv≥ 0 Sei+ej ,ei∧Sei+ej ,ej−ei

∆ejΩOv≥ 0 Sej ,ei∧Sej ,ej−ei

∆ej−eiΩOv≥ 0 Sej−ei,ei∧Sej−ei,ej−ei

∆−eiΩOv≥ 0 S−ei,ei∧S−ei,ej−ei

∆−ei−ejΩOv≥ 0 S−ei−ej ,ei∧S−ei−ej ,ej−ei

∆−ejΩOv≥ 0 S−ej ,ei∧S−ej ,ej−ei

∆ei−ejΩOv≥ 0 Sei−ej ,ei∧Sei−ej ,ej−ei

Table 9 Detailed results for Routing operator
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