Detecting Low-Complexity Confounders from Data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Detecting Low-Complexity Confounders from Data

Résumé

Statistical dependencies between two variables X and Y indicate that either X causes Y , or Y causes X, or there exists a latent variable Z which influences X and Y. In biology and medicine, an important problem is to find genetic or environmental unobserved causes of phenotypic difference between individuals. In this contribution, we introduce a novel approach to identify unobserved confounders in data. The proposed method is based on the state-of-the-art 3off2 causal network reconstruction algorithm, and on an evidence for a direct causal relation represented by purity of con-ditionals. The proposed method is implemented in Python, and it will be publicly available shortly. We discuss the results obtained on a real biomedi-cal dataset.
Fichier principal
Vignette du fichier
causalityWorkshop.pdf (529.22 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01858403 , version 1 (23-08-2018)

Identifiants

Citer

Maria Virginia Ruiz Cuevas, Nataliya Sokolovska, Pierre-Henri Wuillemin, Jean-Daniel Zucker. Detecting Low-Complexity Confounders from Data. ICML / IJCAI / AAMAS FAIM'18 Workshop on CausalML, Jul 2018, Stockholm, Sweden. ⟨hal-01858403⟩
209 Consultations
115 Téléchargements

Partager

More